rockbox/firmware/target/arm/imx31/gigabeat-s/spi-imx31.c

346 lines
9.5 KiB
C
Raw Normal View History

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (c) 2007 Will Robertson
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "system.h"
#include "spi-imx31.h"
#include "avic-imx31.h"
#include "clkctl-imx31.h"
#include "debug.h"
#include "kernel.h"
/* Forward interrupt handler declarations */
#if (SPI_MODULE_MASK & USE_CSPI1_MODULE)
static __attribute__((interrupt("IRQ"))) void CSPI1_HANDLER(void);
#endif
#if (SPI_MODULE_MASK & USE_CSPI2_MODULE)
static __attribute__((interrupt("IRQ"))) void CSPI2_HANDLER(void);
#endif
#if (SPI_MODULE_MASK & USE_CSPI3_MODULE)
static __attribute__((interrupt("IRQ"))) void CSPI3_HANDLER(void);
#endif
/* State data associatated with each CSPI module */
static struct spi_module_descriptor
{
struct cspi_map * const base;
int enab;
struct spi_node *last;
enum IMX31_CG_LIST cg;
enum IMX31_INT_LIST ints;
int byte_size;
void (*handler)(void);
struct mutex m;
struct wakeup w;
struct spi_transfer *trans;
int rxcount;
} spi_descs[SPI_NUM_CSPI] =
/* Init non-zero members */
{
#if (SPI_MODULE_MASK & USE_CSPI1_MODULE)
{
.base = (struct cspi_map *)CSPI1_BASE_ADDR,
.cg = CG_CSPI1,
.ints = CSPI1,
.handler = CSPI1_HANDLER,
},
#endif
#if (SPI_MODULE_MASK & USE_CSPI2_MODULE)
{
.base = (struct cspi_map *)CSPI2_BASE_ADDR,
.cg = CG_CSPI2,
.ints = CSPI2,
.handler = CSPI2_HANDLER,
},
#endif
#if (SPI_MODULE_MASK & USE_CSPI3_MODULE)
{
.base = (struct cspi_map *)CSPI3_BASE_ADDR,
.cg = CG_CSPI3,
.ints = CSPI3,
.handler = CSPI3_HANDLER,
},
#endif
};
/* Common code for interrupt handlers */
static void spi_interrupt(enum spi_module_number spi)
{
struct spi_module_descriptor *desc = &spi_descs[spi];
struct cspi_map * const base = desc->base;
struct spi_transfer *trans = desc->trans;
int inc = desc->byte_size + 1;
if (desc->rxcount > 0)
{
/* Data received - empty out RXFIFO */
while ((base->statreg & CSPI_STATREG_RR) != 0)
{
uint32_t word = base->rxdata;
switch (desc->byte_size & 3)
{
case 3:
*(unsigned char *)(trans->rxbuf + 3) = word >> 24;
case 2:
*(unsigned char *)(trans->rxbuf + 2) = word >> 16;
case 1:
*(unsigned char *)(trans->rxbuf + 1) = word >> 8;
case 0:
*(unsigned char *)(trans->rxbuf + 0) = word;
}
trans->rxbuf += inc;
if (--desc->rxcount < 4)
{
unsigned long intreg = base->intreg;
if (desc->rxcount <= 0)
{
/* No more to receive - stop RX interrupts */
intreg &= ~(CSPI_INTREG_RHEN | CSPI_INTREG_RREN);
base->intreg = intreg;
break;
}
else if (!(intreg & CSPI_INTREG_RREN))
{
/* < 4 words expected - switch to RX ready */
intreg &= ~CSPI_INTREG_RHEN;
base->intreg = intreg | CSPI_INTREG_RREN;
}
}
}
}
if (trans->count > 0)
{
/* Data to transmit - fill TXFIFO or write until exhausted */
while ((base->statreg & CSPI_STATREG_TF) == 0)
{
uint32_t word = 0;
switch (desc->byte_size & 3)
{
case 3:
word = *(unsigned char *)(trans->txbuf + 3) << 24;
case 2:
word |= *(unsigned char *)(trans->txbuf + 2) << 16;
case 1:
word |= *(unsigned char *)(trans->txbuf + 1) << 8;
case 0:
word |= *(unsigned char *)(trans->txbuf + 0);
}
trans->txbuf += inc;
base->txdata = word;
if (--trans->count <= 0)
{
/* Out of data - stop TX interrupts */
base->intreg &= ~CSPI_INTREG_THEN;
break;
}
}
}
/* If all interrupts have been remasked - we're done */
if (base->intreg == 0)
{
base->statreg = CSPI_STATREG_TC | CSPI_STATREG_BO;
wakeup_signal(&desc->w);
}
}
/* Interrupt handlers for each CSPI module */
#if (SPI_MODULE_MASK & USE_CSPI1_MODULE)
static __attribute__((interrupt("IRQ"))) void CSPI1_HANDLER(void)
{
spi_interrupt(CSPI1_NUM);
}
#endif
#if (SPI_MODULE_MASK & USE_CSPI2_MODULE)
static __attribute__((interrupt("IRQ"))) void CSPI2_HANDLER(void)
{
spi_interrupt(CSPI2_NUM);
}
#endif
#if (SPI_MODULE_MASK & USE_CSPI3_MODULE)
static __attribute__((interrupt("IRQ"))) void CSPI3_HANDLER(void)
{
spi_interrupt(CSPI3_NUM);
}
#endif
/* Write the context for the node and remember it to avoid unneeded reconfigure */
static bool spi_set_context(struct spi_node *node,
struct spi_module_descriptor *desc)
{
struct cspi_map * const base = desc->base;
if ((base->conreg & CSPI_CONREG_EN) == 0)
return false;
if (node != desc->last)
{
/* Switch the module's node */
desc->last = node;
desc->byte_size = (((node->conreg >> 8) & 0x1f) + 1 + 7) / 8 - 1;
/* Keep reserved and start bits cleared. Keep enabled bit. */
base->conreg =
(node->conreg & ~(0xfcc8e000 | CSPI_CONREG_XCH | CSPI_CONREG_SMC))
| CSPI_CONREG_EN;
/* Set the wait-states */
base->periodreg = node->periodreg & 0xffff;
/* Clear out any spuriously-pending interrupts */
base->statreg = CSPI_STATREG_TC | CSPI_STATREG_BO;
}
return true;
}
/* Initialize each of the used SPI descriptors */
void spi_init(void)
{
int i;
for (i = 0; i < SPI_NUM_CSPI; i++)
{
struct spi_module_descriptor * const desc = &spi_descs[i];
mutex_init(&desc->m);
wakeup_init(&desc->w);
}
}
/* Get mutually-exclusive access to the node */
void spi_lock(struct spi_node *node)
{
mutex_lock(&spi_descs[node->num].m);
}
/* Release mutual exclusion */
void spi_unlock(struct spi_node *node)
{
mutex_unlock(&spi_descs[node->num].m);
}
/* Enable the specified module for the node */
void spi_enable_module(struct spi_node *node)
{
struct spi_module_descriptor * const desc = &spi_descs[node->num];
mutex_lock(&desc->m);
if (++desc->enab == 1)
{
/* First enable for this module */
struct cspi_map * const base = desc->base;
/* Enable clock-gating register */
imx31_clkctl_module_clock_gating(desc->cg, CGM_ON_ALL);
/* Reset */
base->conreg &= ~CSPI_CONREG_EN;
base->conreg |= CSPI_CONREG_EN;
base->intreg = 0;
base->statreg = CSPI_STATREG_TC | CSPI_STATREG_BO;
/* Enable interrupt at controller level */
avic_enable_int(desc->ints, IRQ, 6, desc->handler);
}
mutex_unlock(&desc->m);
}
/* Disabled the specified module for the node */
void spi_disable_module(struct spi_node *node)
{
struct spi_module_descriptor * const desc = &spi_descs[node->num];
mutex_lock(&desc->m);
if (desc->enab > 0 && --desc->enab == 0)
{
/* Last enable for this module */
struct cspi_map * const base = desc->base;
/* Disable interrupt at controller level */
avic_disable_int(desc->ints);
/* Disable interface */
base->conreg &= ~CSPI_CONREG_EN;
/* Disable interface clock */
imx31_clkctl_module_clock_gating(desc->cg, CGM_OFF);
}
mutex_unlock(&desc->m);
}
/* Send and/or receive data on the specified node */
int spi_transfer(struct spi_node *node, struct spi_transfer *trans)
{
struct spi_module_descriptor * const desc = &spi_descs[node->num];
int retval;
if (trans->count <= 0)
return true;
mutex_lock(&desc->m);
retval = spi_set_context(node, desc);
if (retval)
{
struct cspi_map * const base = desc->base;
unsigned long intreg;
desc->trans = trans;
desc->rxcount = trans->count;
/* Enable needed interrupts - FIFOs will start filling */
intreg = CSPI_INTREG_THEN;
intreg |= (trans->count < 4) ?
CSPI_INTREG_RREN : /* Must grab data on every word */
CSPI_INTREG_RHEN; /* Enough data to wait for half-full */
base->intreg = intreg;
/* Start transfer */
base->conreg |= CSPI_CONREG_XCH;
if (wakeup_wait(&desc->w, HZ) != OBJ_WAIT_SUCCEEDED)
{
base->intreg = 0;
base->conreg &= ~CSPI_CONREG_XCH;
retval = false;
}
}
mutex_unlock(&desc->m);
return retval;
}