f40bfc9267
Change-Id: Id7f4717d51ed02d67cb9f9cb3c0ada4a81843f97 Reviewed-on: http://gerrit.rockbox.org/137 Reviewed-by: Nils Wallménius <nils@rockbox.org> Tested-by: Nils Wallménius <nils@rockbox.org>
57 lines
1.7 KiB
C
57 lines
1.7 KiB
C
/*
|
|
* Musepack audio compression
|
|
* Copyright (C) 1999-2004 Buschmann/Klemm/Piecha/Wolf
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
# define clip(x,min,max) ( (x) < (min) ? (min) : (x) > (max) ? (max) : (x) )
|
|
|
|
#ifdef __cplusplus
|
|
|
|
# define maxi(A,B) ( (A) >? (B) )
|
|
# define mini(A,B) ( (A) <? (B) )
|
|
# define maxd(A,B) ( (A) >? (B) )
|
|
# define mind(A,B) ( (A) <? (B) )
|
|
# define maxf(A,B) ( (A) >? (B) )
|
|
# define minf(A,B) ( (A) <? (B) )
|
|
|
|
#else
|
|
|
|
# define maxi(A,B) ( (A) > (B) ? (A) : (B) )
|
|
# define mini(A,B) ( (A) < (B) ? (A) : (B) )
|
|
# define maxd(A,B) ( (A) > (B) ? (A) : (B) )
|
|
# define mind(A,B) ( (A) < (B) ? (A) : (B) )
|
|
# define maxf(A,B) ( (A) > (B) ? (A) : (B) )
|
|
# define minf(A,B) ( (A) < (B) ? (A) : (B) )
|
|
|
|
#endif
|
|
|
|
#ifdef __GNUC__
|
|
|
|
# define absi(A) abs (A)
|
|
# define absf(A) fabsf (A)
|
|
# define absd(A) fabs (A)
|
|
|
|
#else
|
|
|
|
# define absi(A) ( (A) >= 0 ? (A) : -(A) )
|
|
# define absf(A) ( (A) >= 0.f ? (A) : -(A) )
|
|
# define absd(A) ( (A) >= 0. ? (A) : -(A) )
|
|
|
|
#endif
|
|
|