rockbox/firmware/target/arm/iriver/h10/lcd-h10_20gb.c
Boris Gjenero 403decf65d Fix FS#12243 : On 20GB H10, restore correct upside down state when waking LCD.
In lcd_power_on(), R_DRV_OUTPUT_CONTROL and R_GATE_SCAN_START_POS are now
initialized like in lcd_set_flip(), so the display wakes up properly when it
is supposed to be upside down.

Thanks to Neil Sharrow for reporting the problem and testing the patch.


git-svn-id: svn://svn.rockbox.org/rockbox/trunk@31514 a1c6a512-1295-4272-9138-f99709370657
2012-01-01 17:39:30 +00:00

551 lines
16 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2006 by Barry Wardell
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "cpu.h"
#include "lcd.h"
#include "kernel.h"
#include "system.h"
/** Initialized in lcd_init_device() **/
/* Is the power turned on? */
static bool power_on;
/* Is the display turned on? */
static bool display_on;
/* Amount of vertical offset. Used for flip offset correction/detection. */
static int y_offset;
/* Reverse flag. Must be remembered when display is turned off. */
static unsigned short disp_control_rev;
/* Contrast setting << 8 */
static int lcd_contrast;
static unsigned lcd_yuv_options SHAREDBSS_ATTR = 0;
/* Forward declarations */
#if defined(HAVE_LCD_ENABLE) || defined(HAVE_LCD_SLEEP)
static void lcd_display_off(void);
#endif
/* register defines for the Renesas HD66773R */
#define R_START_OSC 0x00
#define R_DEVICE_CODE_READ 0x00
#define R_DRV_OUTPUT_CONTROL 0x01
#define R_DRV_AC_CONTROL 0x02
#define R_POWER_CONTROL1 0x03
#define R_POWER_CONTROL2 0x04
#define R_ENTRY_MODE 0x05
#define R_COMPARE_REG 0x06
#define R_DISP_CONTROL 0x07
#define R_FRAME_CYCLE_CONTROL 0x0b
#define R_POWER_CONTROL3 0x0c
#define R_POWER_CONTROL4 0x0d
#define R_POWER_CONTROL5 0x0e
#define R_GATE_SCAN_START_POS 0x0f
#define R_VERT_SCROLL_CONTROL 0x11
#define R_1ST_SCR_DRV_POS 0x14
#define R_2ND_SCR_DRV_POS 0x15
#define R_HORIZ_RAM_ADDR_POS 0x16
#define R_VERT_RAM_ADDR_POS 0x17
#define R_RAM_WRITE_DATA_MASK 0x20
#define R_RAM_ADDR_SET 0x21
#define R_WRITE_DATA_2_GRAM 0x22
#define R_RAM_READ_DATA 0x22
#define R_GAMMA_FINE_ADJ_POS1 0x30
#define R_GAMMA_FINE_ADJ_POS2 0x31
#define R_GAMMA_FINE_ADJ_POS3 0x32
#define R_GAMMA_GRAD_ADJ_POS 0x33
#define R_GAMMA_FINE_ADJ_NEG1 0x34
#define R_GAMMA_FINE_ADJ_NEG2 0x35
#define R_GAMMA_FINE_ADJ_NEG3 0x36
#define R_GAMMA_GRAD_ADJ_NEG 0x37
#define R_GAMMA_AMP_ADJ_POS 0x3a
#define R_GAMMA_AMP_ADJ_NEG 0x3b
static inline void lcd_wait_write(void)
{
while (LCD2_PORT & LCD2_BUSY_MASK);
}
/* Send command */
static inline void lcd_send_cmd(unsigned v)
{
lcd_wait_write();
LCD2_PORT = LCD2_CMD_MASK;
LCD2_PORT = LCD2_CMD_MASK | v;
}
/* Send 16-bit data */
static inline void lcd_send_data(unsigned v)
{
lcd_wait_write();
LCD2_PORT = LCD2_DATA_MASK | (v >> 8); /* Send MSB first */
LCD2_PORT = LCD2_DATA_MASK | (v & 0xff);
}
/* Send 16-bit data byte-swapped. Only needed until we can use block transfer. */
static inline void lcd_send_data_swapped(unsigned v)
{
lcd_wait_write();
LCD2_PORT = LCD2_DATA_MASK | (v & 0xff); /* Send LSB first */
LCD2_PORT = LCD2_DATA_MASK | (v >> 8);
}
/* Write value to register */
static void lcd_write_reg(int reg, int val)
{
lcd_send_cmd(reg);
lcd_send_data(val);
}
/*** hardware configuration ***/
int lcd_default_contrast(void)
{
return DEFAULT_CONTRAST_SETTING;
}
void lcd_set_contrast(int val)
{
/* Clamp val in range 0-14, 16-30 */
if (val < 1)
val = 0;
else if (val <= 15)
--val;
else if (val > 30)
val = 30;
lcd_contrast = val << 8;
if (!power_on)
return;
/* VCOMG=1, VDV4-0=xxxxx, VCM4-0=11000 */
lcd_write_reg(R_POWER_CONTROL5, 0x2018 | lcd_contrast);
}
void lcd_set_invert_display(bool yesno)
{
if (yesno == (disp_control_rev == 0x0000))
return;
disp_control_rev = yesno ? 0x0000 : 0x0004;
if (!display_on)
return;
/* PT1-0=00, VLE2-1=00, SPT=0, GON=1, DTE=1, REV=x, D1-0=11 */
lcd_write_reg(R_DISP_CONTROL, 0x0033 | disp_control_rev);
}
/* turn the display upside down (call lcd_update() afterwards) */
void lcd_set_flip(bool yesno)
{
if (yesno == (y_offset != 0))
return;
/* The LCD controller is 132x160 while the LCD itself is 128x160, so we need
* to shift the origin by 4 when we flip the LCD */
y_offset = yesno ? 4 : 0;
if (!power_on)
return;
/* SCN4-0=000x0 (G1/G160) */
lcd_write_reg(R_GATE_SCAN_START_POS, yesno ? 0x0002 : 0x0000);
/* SM=0, GS=x, SS=x, NL4-0=10011 (G1-G160) */
lcd_write_reg(R_DRV_OUTPUT_CONTROL, yesno ? 0x0213 : 0x0113);
}
/* LCD init */
void lcd_init_device(void)
{
#ifndef BOOTLOADER
/* The OF won't boot if this is done in the bootloader - ideally we should
tweak the lcd controller speed settings but this will do for now */
CLCD_CLOCK_SRC |= 0xc0000000; /* Set LCD interface clock to PLL */
#endif
power_on = true;
display_on = true;
y_offset = 0;
disp_control_rev = 0x0004;
lcd_contrast = DEFAULT_CONTRAST_SETTING << 8;
}
#ifdef HAVE_LCD_SLEEP
static void lcd_power_on(void)
{
/* Be sure standby bit is clear. */
/* BT2-0=000, DC2-0=000, AP2-0=000, SLP=0, STB=0 */
lcd_write_reg(R_POWER_CONTROL1, 0x0000);
/** Power ON Sequence **/
/* Per datasheet Rev.1.10, Jun.21.2003, p. 99 */
lcd_write_reg(R_START_OSC, 0x0001); /* Start Oscillation */
/* 10ms or more for oscillation circuit to stabilize */
sleep(HZ/50);
/* Instruction (1) for power setting; VC2-0, VRH3-0, CAD,
VRL3-0, VCM4-0, VDV4-0 */
/* VC2-0=001 */
lcd_write_reg(R_POWER_CONTROL3, 0x0001);
/* VRL3-0=0100, PON=0, VRH3-0=0001 */
lcd_write_reg(R_POWER_CONTROL4, 0x0401);
/* CAD=1 */
lcd_write_reg(R_POWER_CONTROL2, 0x8000);
/* VCOMG=0, VDV4-0=xxxxx (19), VCM4-0=11000 */
lcd_write_reg(R_POWER_CONTROL5, 0x0018 | lcd_contrast);
/* Instruction (2) for power setting; BT2-0, DC2-0, AP2-0 */
/* BT2-0=000, DC2-0=001, AP2-0=011, SLP=0, STB=0 */
lcd_write_reg(R_POWER_CONTROL1, 0x002c);
/* Instruction (3) for power setting; VCOMG = "1" */
/* VCOMG=1, VDV4-0=xxxxx (19), VCM4-0=11000 */
lcd_write_reg(R_POWER_CONTROL5, 0x2018 | lcd_contrast);
/* 40ms or more; time for step-up circuits 1,2 to stabilize */
sleep(HZ/25);
/* Instruction (4) for power setting; PON = "1" */
/* VRL3-0=0100, PON=1, VRH3-0=0001 */
lcd_write_reg(R_POWER_CONTROL4, 0x0411);
/* 40ms or more; time for step-up circuit 4 to stabilize */
sleep(HZ/25);
/* Instructions for other mode settings (in register order). */
/* SM=0, GS=x, SS=x, NL4-0=10011 (G1-G160)*/
lcd_write_reg(R_DRV_OUTPUT_CONTROL, y_offset ? 0x0213 : 0x0113); /* different to X5 */
/* FLD1-0=01 (1 field), B/C=1, EOR=1 (C-pat), NW5-0=000000 (1 row) */
lcd_write_reg(R_DRV_AC_CONTROL, 0x0700);
/* DIT=0, BGR=1, HWM=0, I/D1-0=10, AM=1, LG2-0=000 */
lcd_write_reg(R_ENTRY_MODE, 0x1028); /* different to X5 */
/* CP15-0=0000000000000000 */
lcd_write_reg(R_COMPARE_REG, 0x0000);
/* NO1-0=01, SDT1-0=00, EQ1-0=00, DIV1-0=00, RTN3-00000 */
lcd_write_reg(R_FRAME_CYCLE_CONTROL, 0x4000);
/* SCN4-0=000x0 (G1/G160) */
lcd_write_reg(R_GATE_SCAN_START_POS, y_offset ? 0x0002 : 0x0000);
/* VL7-0=0x00 */
lcd_write_reg(R_VERT_SCROLL_CONTROL, 0x0000);
/* SE17-10(End)=0x9f (159), SS17-10(Start)=0x00 */
lcd_write_reg(R_1ST_SCR_DRV_POS, 0x9f00);
/* SE27-20(End)=0x5c (92), SS27-20(Start)=0x00 */
lcd_write_reg(R_2ND_SCR_DRV_POS, 0x5c00);
/* HEA7-0=7f, HSA7-0=00 */
lcd_write_reg(R_HORIZ_RAM_ADDR_POS, 0x7f00);
/* PKP12-10=0x0, PKP02-00=0x0 */
lcd_write_reg(R_GAMMA_FINE_ADJ_POS1, 0x0003);
/* PKP32-30=0x4, PKP22-20=0x0 */
lcd_write_reg(R_GAMMA_FINE_ADJ_POS2, 0x0400);
/* PKP52-50=0x4, PKP42-40=0x7 */
lcd_write_reg(R_GAMMA_FINE_ADJ_POS3, 0x0407);
/* PRP12-10=0x3, PRP02-00=0x5 */
lcd_write_reg(R_GAMMA_GRAD_ADJ_POS, 0x0305);
/* PKN12-10=0x0, PKN02-00=0x3 */
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG1, 0x0003);
/* PKN32-30=0x7, PKN22-20=0x4 */
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG2, 0x0704);
/* PKN52-50=0x4, PRN42-40=0x7 */
lcd_write_reg(R_GAMMA_FINE_ADJ_NEG3, 0x0407);
/* PRN12-10=0x5, PRN02-00=0x3 */
lcd_write_reg(R_GAMMA_GRAD_ADJ_NEG, 0x0503);
/* VRP14-10=0x14, VRP03-00=0x09 */
lcd_write_reg(R_GAMMA_AMP_ADJ_POS, 0x1409);
/* VRN14-00=0x06, VRN03-00=0x02 */
lcd_write_reg(R_GAMMA_AMP_ADJ_NEG, 0x0602);
/* 100ms or more; time for step-up circuits to stabilize */
sleep(HZ/10);
power_on = true;
}
static void lcd_power_off(void)
{
/* Display must be off first */
if (display_on)
lcd_display_off();
power_on = false;
/** Power OFF sequence **/
/* Per datasheet Rev.1.10, Jun.21.2003, p. 99 */
/* Step-up1 halt setting bit */
/* BT2-0=110, DC2-0=001, AP2-0=011, SLP=0, STB=0 */
lcd_write_reg(R_POWER_CONTROL1, 0x062c);
/* Step-up3,4 halt setting bit */
/* VRL3-0=0100, PON=0, VRH3-0=0001 */
lcd_write_reg(R_POWER_CONTROL4, 0x0401);
/* VCOMG=0, VDV4-0=10011, VCM4-0=11000 */
lcd_write_reg(R_POWER_CONTROL5, 0x0018 | lcd_contrast);
/* Wait 100ms or more */
sleep(HZ/10);
/* Step-up2,amp halt setting bit */
/* BT2-0=000, DC2-0=000, AP2-0=000, SLP=0, STB=0 */
lcd_write_reg(R_POWER_CONTROL1, 0x0000);
}
void lcd_sleep(void)
{
if (power_on)
lcd_power_off();
/* Set standby mode */
/* BT2-0=000, DC2-0=000, AP2-0=000, SLP=0, STB=1 */
lcd_write_reg(R_POWER_CONTROL1, 0x0001);
}
#endif
#if defined(HAVE_LCD_ENABLE) || defined(HAVE_LCD_SLEEP)
static void lcd_display_off(void)
{
display_on = false;
/** Display OFF sequence **/
/* Per datasheet Rev.1.10, Jun.21.2003, p. 97 */
/* EQ1-0=00 already */
/* PT1-0=00, VLE2-1=00, SPT=0, GON=1, DTE=1, REV=x, D1-0=10 */
lcd_write_reg(R_DISP_CONTROL, 0x0032 | disp_control_rev);
sleep(HZ/25); /* Wait 2 frames or more */
/* PT1-0=00, VLE2-1=00, SPT=0, GON=1, DTE=0, REV=x, D1-0=10 */
lcd_write_reg(R_DISP_CONTROL, 0x0022 | disp_control_rev);
sleep(HZ/25); /* Wait 2 frames or more */
/* PT1-0=00, VLE2-1=00, SPT=0, GON=0, DTE=0, REV=0, D1-0=00 */
lcd_write_reg(R_DISP_CONTROL, 0x0000);
}
#endif
#if defined(HAVE_LCD_ENABLE)
static void lcd_display_on(void)
{
/* Be sure power is on first */
if (!power_on)
lcd_power_on();
/** Display ON Sequence **/
/* Per datasheet Rev.1.10, Jun.21.2003, p. 97 */
/* PT1-0=00, VLE2-1=00, SPT=0, GON=0, DTE=0, REV=0, D1-0=01 */
lcd_write_reg(R_DISP_CONTROL, 0x0001);
sleep(HZ/25); /* Wait 2 frames or more */
/* PT1-0=00, VLE2-1=00, SPT=0, GON=1, DTE=0, REV=x, D1-0=01 */
lcd_write_reg(R_DISP_CONTROL, 0x0021 | disp_control_rev);
/* PT1-0=00, VLE2-1=00, SPT=0, GON=1, DTE=0, REV=x, D1-0=11 */
lcd_write_reg(R_DISP_CONTROL, 0x0023 | disp_control_rev);
sleep(HZ/25); /* Wait 2 frames or more */
/* PT1-0=00, VLE2-1=00, SPT=0, GON=1, DTE=1, REV=x, D1-0=11 */
lcd_write_reg(R_DISP_CONTROL, 0x0033 | disp_control_rev);
display_on = true;
}
void lcd_enable(bool on)
{
if (on == display_on)
return;
if (on)
{
lcd_display_on();
/* Probably out of sync and we don't wanna pepper the code with
lcd_update() calls for this. */
lcd_update();
send_event(LCD_EVENT_ACTIVATION, NULL);
}
else
{
lcd_display_off();
}
}
#endif
#if defined(HAVE_LCD_ENABLE) || defined(HAVE_LCD_SLEEP)
bool lcd_active(void)
{
return display_on;
}
#endif
/*** update functions ***/
void lcd_yuv_set_options(unsigned options)
{
lcd_yuv_options = options;
}
/* Line write helper function for lcd_yuv_blit. Write two lines of yuv420. */
extern void lcd_write_yuv420_lines(unsigned char const * const src[3],
int width,
int stride);
extern void lcd_write_yuv420_lines_odither(unsigned char const * const src[3],
int width,
int stride,
int x_screen, /* To align dither pattern */
int y_screen);
/* Performance function to blit a YUV bitmap directly to the LCD */
void lcd_blit_yuv(unsigned char * const src[3],
int src_x, int src_y, int stride,
int x, int y, int width, int height)
{
const unsigned char *yuv_src[3];
const unsigned char *ysrc_max;
int y0;
int options;
if (!display_on)
return;
width &= ~1;
height &= ~1;
/* calculate the drawing region */
/* The 20GB LCD is actually 128x160 but rotated 90 degrees so the origin
* is actually the bottom left and horizontal and vertical are swapped.
* Rockbox expects the origin to be the top left so we need to use
* 127 - y instead of just y */
/* max vert << 8 | start vert */
lcd_write_reg(R_VERT_RAM_ADDR_POS, ((x + width - 1) << 8) | x);
y0 = LCD_HEIGHT - 1 - y + y_offset;
/* DIT=0, BGR=1, HWM=0, I/D1-0=10, AM=0, LG2-0=000 */
lcd_write_reg(R_ENTRY_MODE, 0x1020);
yuv_src[0] = src[0] + src_y * stride + src_x;
yuv_src[1] = src[1] + (src_y * stride >> 2) + (src_x >> 1);
yuv_src[2] = src[2] + (yuv_src[1] - src[1]);
ysrc_max = yuv_src[0] + height * stride;
options = lcd_yuv_options;
do
{
/* max horiz << 8 | start horiz */
lcd_write_reg(R_HORIZ_RAM_ADDR_POS, (y0 << 8) | (y0 - 1));
/* position cursor (set AD0-AD15) */
/* start vert << 8 | start horiz */
lcd_write_reg(R_RAM_ADDR_SET, (x << 8) | y0);
/* start drawing */
lcd_send_cmd(R_WRITE_DATA_2_GRAM);
if (options & LCD_YUV_DITHER)
{
lcd_write_yuv420_lines_odither(yuv_src, width, stride,
x, y);
y -= 2;
}
else
{
lcd_write_yuv420_lines(yuv_src, width, stride);
}
y0 -= 2;
yuv_src[0] += stride << 1;
yuv_src[1] += stride >> 1;
yuv_src[2] += stride >> 1;
}
while (yuv_src[0] < ysrc_max);
/* DIT=0, BGR=1, HWM=0, I/D1-0=10, AM=1, LG2-0=000 */
lcd_write_reg(R_ENTRY_MODE, 0x1028);
}
/* Update a fraction of the display. */
void lcd_update_rect(int x0, int y0, int width, int height)
{
int x1, y1;
unsigned short *addr;
if (!display_on)
return;
/* calculate the drawing region */
y1 = (y0 + height) - 1; /* max vert */
x1 = (x0 + width) - 1; /* max horiz */
if(x1 >= LCD_WIDTH)
x1 = LCD_WIDTH - 1;
if (x1 <= 0)
return; /* nothing left to do, 0 is harmful to lcd_write_data() */
if(y1 >= LCD_HEIGHT)
y1 = LCD_HEIGHT-1;
/* The 20GB LCD is actually 128x160 but rotated 90 degrees so the origin
* is actually the bottom left and horizontal and vertical are swapped.
* Rockbox expects the origin to be the top left so we need to use
* 127 - y instead of just y */
/* max horiz << 8 | start horiz */
lcd_send_cmd(R_HORIZ_RAM_ADDR_POS);
lcd_send_data( (((LCD_HEIGHT-1)-y0+y_offset) << 8) | ((LCD_HEIGHT-1)-y1+y_offset) );
/* max vert << 8 | start vert */
lcd_send_cmd(R_VERT_RAM_ADDR_POS);
lcd_send_data((x1 << 8) | x0);
/* position cursor (set AD0-AD15) */
/* start vert << 8 | start horiz */
lcd_send_cmd(R_RAM_ADDR_SET);
lcd_send_data( (x0 << 8) | ((LCD_HEIGHT-1)-y0+y_offset) );
/* start drawing */
lcd_send_cmd(R_WRITE_DATA_2_GRAM);
addr = (unsigned short*)&lcd_framebuffer[y0][x0];
int c, r;
/* for each row */
for (r = 0; r < height; r++) {
/* for each column */
for (c = 0; c < width; c++) {
/* output 1 pixel */
lcd_send_data_swapped(*addr++);
}
addr += LCD_WIDTH - width;
}
}
/* Update the display.
This must be called after all other LCD functions that change the display. */
void lcd_update(void)
{
lcd_update_rect(0, 0, LCD_WIDTH, LCD_HEIGHT);
}