rockbox/apps/debug_menu.c
Heikki Hannikainen 9872b66cd1 Use average of two samples at both ends of the range for calculating smoother delta values.
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@1716 a1c6a512-1295-4272-9138-f99709370657
2002-08-13 16:06:29 +00:00

598 lines
15 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2002 Heikki Hannikainen
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#ifndef SIMULATOR
#include <stdio.h>
#include <stdbool.h>
#include "lcd.h"
#include "menu.h"
#include "debug_menu.h"
#include "kernel.h"
#include "sprintf.h"
#include "button.h"
#include "adc.h"
#include "mas.h"
#include "power.h"
#include "rtc.h"
#include "debug.h"
#include "thread.h"
#include "powermgmt.h"
#include "system.h"
/*---------------------------------------------------*/
/* SPECIAL DEBUG STUFF */
/*---------------------------------------------------*/
extern int ata_device;
extern int ata_io_address;
extern int num_threads;
extern char *thread_name[];
#ifdef HAVE_LCD_BITMAP
/* Test code!!! */
void dbg_os(void)
{
char buf[32];
int button;
int i;
int usage;
lcd_clear_display();
while(1)
{
lcd_puts(0, 0, "Stack usage:");
for(i = 0; i < num_threads;i++)
{
usage = thread_stack_usage(i);
snprintf(buf, 32, "%s: %d%%", thread_name[i], usage);
lcd_puts(0, 1+i, buf);
}
lcd_update();
sleep(HZ/10);
button = button_get(false);
switch(button)
{
case BUTTON_OFF:
case BUTTON_LEFT:
return;
}
}
}
#else
void dbg_os(void)
{
char buf[32];
int button;
int usage;
int currval = 0;
lcd_clear_display();
while(1)
{
lcd_puts(0, 0, "Stack usage");
usage = thread_stack_usage(currval);
snprintf(buf, 32, "%d: %d%% ", currval, usage);
lcd_puts(0, 1, buf);
sleep(HZ/10);
button = button_get(false);
switch(button)
{
case BUTTON_STOP:
return;
case BUTTON_LEFT:
currval--;
if(currval < 0)
currval = num_threads-1;
break;
case BUTTON_RIGHT:
currval++;
if(currval > num_threads-1)
currval = 0;
break;
}
}
}
#endif
#ifdef HAVE_LCD_BITMAP
/* Test code!!! */
void dbg_ports(void)
{
unsigned short porta;
unsigned short portb;
unsigned char portc;
char buf[32];
int button;
int battery_voltage;
int batt_int, batt_frac;
bool charge_status = false;
bool ide_status = true;
lcd_clear_display();
while(1)
{
porta = PADR;
portb = PBDR;
portc = PCDR;
snprintf(buf, 32, "PADR: %04x", porta);
lcd_puts(0, 0, buf);
snprintf(buf, 32, "PBDR: %04x", portb);
lcd_puts(0, 1, buf);
snprintf(buf, 32, "AN0: %03x AN4: %03x", adc_read(0), adc_read(4));
lcd_puts(0, 2, buf);
snprintf(buf, 32, "AN1: %03x AN5: %03x", adc_read(1), adc_read(5));
lcd_puts(0, 3, buf);
snprintf(buf, 32, "AN2: %03x AN6: %03x", adc_read(2), adc_read(6));
lcd_puts(0, 4, buf);
snprintf(buf, 32, "AN3: %03x AN7: %03x", adc_read(3), adc_read(7));
lcd_puts(0, 5, buf);
battery_voltage = (adc_read(ADC_UNREG_POWER) * BATTERY_SCALE_FACTOR) / 10000;
batt_int = battery_voltage / 100;
batt_frac = battery_voltage % 100;
snprintf(buf, 32, "Batt: %d.%02dV %d%% ", batt_int, batt_frac,
battery_level());
lcd_puts(0, 6, buf);
snprintf(buf, 32, "ATA: %s, 0x%x",
ata_device?"slave":"master", ata_io_address);
lcd_puts(0, 7, buf);
lcd_update();
sleep(HZ/10);
button = button_get(false);
switch(button)
{
case BUTTON_ON:
charge_status = charge_status?false:true;
charger_enable(charge_status);
break;
case BUTTON_UP:
ide_status = ide_status?false:true;
ide_power_enable(ide_status);
break;
case BUTTON_OFF:
case BUTTON_LEFT:
charger_enable(false);
ide_power_enable(true);
return;
}
}
}
#else
void dbg_ports(void)
{
unsigned short porta;
unsigned short portb;
unsigned char portc;
char buf[32];
unsigned long crc_count;
int button;
int battery_voltage;
int batt_int, batt_frac;
int currval = 0;
lcd_clear_display();
while(1)
{
porta = PADR;
portb = PBDR;
portc = PCDR;
switch(currval)
{
case 0:
snprintf(buf, 32, "PADR: %04x ", porta);
break;
case 1:
snprintf(buf, 32, "PBDR: %04x ", portb);
break;
case 2:
snprintf(buf, 32, "AN0: %03x ", adc_read(0));
break;
case 3:
snprintf(buf, 32, "AN1: %03x ", adc_read(1));
break;
case 4:
snprintf(buf, 32, "AN2: %03x ", adc_read(2));
break;
case 5:
snprintf(buf, 32, "AN3: %03x ", adc_read(3));
break;
case 6:
snprintf(buf, 32, "AN4: %03x ", adc_read(4));
break;
case 7:
snprintf(buf, 32, "AN5: %03x ", adc_read(5));
break;
case 8:
snprintf(buf, 32, "AN6: %03x ", adc_read(6));
break;
case 9:
snprintf(buf, 32, "AN7: %03x ", adc_read(7));
break;
case 10:
snprintf(buf, 32, "%s, 0x%x ",
ata_device?"slv":"mst", ata_io_address);
break;
case 11:
mas_readmem(MAS_BANK_D0, 0x303, &crc_count, 1);
snprintf(buf, 32, "CRC: %d ", crc_count);
break;
}
lcd_puts(0, 0, buf);
battery_voltage = (adc_read(ADC_UNREG_POWER) *
BATTERY_SCALE_FACTOR) / 10000;
batt_int = battery_voltage / 100;
batt_frac = battery_voltage % 100;
snprintf(buf, 32, "Batt: %d.%02dV", batt_int, batt_frac);
lcd_puts(0, 1, buf);
sleep(HZ/5);
button = button_get(false);
switch(button)
{
case BUTTON_STOP:
return;
case BUTTON_LEFT:
currval--;
if(currval < 0)
currval = 11;
break;
case BUTTON_RIGHT:
currval++;
if(currval > 11)
currval = 0;
break;
}
}
}
#endif
#ifdef HAVE_RTC
/* Read RTC RAM contents and display them */
void dbg_rtc(void)
{
char buf[32];
unsigned char addr = 0, r, c;
int i;
int button;
lcd_clear_display();
lcd_puts(0, 0, "RTC read:");
while(1)
{
for (r = 0; r < 4; r++) {
snprintf(buf, 10, "0x%02x: ", addr + r*4);
for (c = 0; c <= 3; c++) {
i = rtc_read(addr + r*4 + c);
snprintf(buf + 6 + c*2, 3, "%02x", i);
}
lcd_puts(1, r+1, buf);
}
lcd_update();
sleep(HZ/2);
button = button_get(false);
switch(button)
{
case BUTTON_DOWN:
if (addr < 63-16) { addr += 16; }
break;
case BUTTON_UP:
if (addr) { addr -= 16; }
break;
case BUTTON_F2:
/* clear the user RAM space */
for (c = 0; c <= 43; c++)
rtc_write(0x18 + c, 0);
break;
case BUTTON_OFF:
case BUTTON_LEFT:
return;
}
}
}
#else
void dbg_rtc(void)
{
return;
}
#endif
#ifdef HAVE_LCD_CHARCELLS
#define NUMROWS 1
#else
#define NUMROWS 4
#endif
/* Read MAS registers and display them */
void dbg_mas(void)
{
char buf[32];
unsigned int addr = 0, r, i;
lcd_clear_display();
lcd_puts(0, 0, "MAS register read:");
while(1)
{
for (r = 0; r < NUMROWS; r++) {
i = mas_readreg(addr + r);
snprintf(buf, 30, "%02x %08x", addr + r, i);
lcd_puts(0, r+1, buf);
}
lcd_update();
sleep(HZ/16);
switch(button_get(false))
{
#ifdef HAVE_RECORDER_KEYPAD
case BUTTON_DOWN:
#else
case BUTTON_RIGHT:
#endif
addr += NUMROWS;
break;
#ifdef HAVE_RECORDER_KEYPAD
case BUTTON_UP:
#else
case BUTTON_LEFT:
#endif
if(addr)
addr -= NUMROWS;
break;
#ifdef HAVE_RECORDER_KEYPAD
case BUTTON_LEFT:
#else
case BUTTON_DOWN:
#endif
return;
}
}
}
#ifdef HAVE_MAS3587F
void dbg_mas_codec(void)
{
char buf[32];
unsigned int addr = 0, r, i;
lcd_clear_display();
lcd_puts(0, 0, "MAS codec reg read:");
while(1)
{
for (r = 0; r < 4; r++) {
i = mas_codec_readreg(addr + r);
snprintf(buf, 30, "0x%02x: %08x", addr + r, i);
lcd_puts(1, r+1, buf);
}
lcd_update();
sleep(HZ/16);
switch(button_get(false))
{
case BUTTON_DOWN:
addr += 4;
break;
case BUTTON_UP:
if (addr) { addr -= 4; }
break;
case BUTTON_LEFT:
return;
}
}
}
#endif
#ifdef HAVE_LCD_BITMAP
/*
* view_battery() shows a automatically scaled graph of the battery voltage
* over time. Usable for estimating battery life / charging rate.
* The power_history array is updated in power_thread of powermgmt.c.
*/
#define BAT_FIRST_VAL MAX(POWER_HISTORY_LEN - LCD_WIDTH - 1, 0)
#define BAT_YSPACE (LCD_HEIGHT - 20)
void view_battery(void)
{
int view = 0;
int i, x, y;
int maxv, minv;
char buf[32];
while(1)
{
switch (view) {
case 0: /* voltage history graph */
/* Find maximum and minimum voltage for scaling */
maxv = minv = 0;
for (i = BAT_FIRST_VAL; i < POWER_HISTORY_LEN; i++) {
if (power_history[i] > maxv)
maxv = power_history[i];
if ((minv == 0) || ((power_history[i]) &&
(power_history[i] < minv)) )
{
minv = power_history[i];
}
}
if (minv < 1)
minv = 1;
if (maxv < 2)
maxv = 2;
lcd_clear_display();
lcd_puts(0, 0, "Battery voltage:");
snprintf(buf, 30, "scale %d.%02d-%d.%02d V",
minv / 100, minv % 100, maxv / 100, maxv % 100);
lcd_puts(0, 1, buf);
x = 0;
for (i = BAT_FIRST_VAL+1; i < POWER_HISTORY_LEN; i++) {
y = (power_history[i] - minv) * BAT_YSPACE / (maxv - minv);
lcd_clearline(x, LCD_HEIGHT-1, x, 20);
lcd_drawline(x, LCD_HEIGHT-1, x,
MIN(MAX(LCD_HEIGHT-1 - y, 20), LCD_HEIGHT-1));
x++;
}
break;
case 1: /* status: */
lcd_clear_display();
lcd_puts(0, 0, "Power status:");
y = (adc_read(ADC_UNREG_POWER) * BATTERY_SCALE_FACTOR) / 10000;
snprintf(buf, 30, "Battery: %d.%02d V", y / 100, y % 100);
lcd_puts(0, 1, buf);
y = (adc_read(ADC_EXT_POWER) * EXT_SCALE_FACTOR) / 10000;
snprintf(buf, 30, "External: %d.%02d V", y / 100, y % 100);
lcd_puts(0, 2, buf);
snprintf(buf, 30, "Charger: %s",
charger_inserted() ? "present" : "absent");
lcd_puts(0, 3, buf);
#ifdef HAVE_CHARGE_CTRL
snprintf(buf, 30, "Charging: %s",
charger_enabled ? "yes" : "no");
lcd_puts(0, 4, buf);
#endif
y = ( power_history[POWER_HISTORY_LEN-1] * 100
+ power_history[POWER_HISTORY_LEN-2] * 100
- power_history[POWER_HISTORY_LEN-1-CHARGE_END_NEGD+1] * 100
- power_history[POWER_HISTORY_LEN-1-CHARGE_END_NEGD] * 100 )
/ CHARGE_END_NEGD / 2;
snprintf(buf, 30, "short delta: %d", y);
lcd_puts(0, 5, buf);
y = ( power_history[POWER_HISTORY_LEN-1] * 100
+ power_history[POWER_HISTORY_LEN-2] * 100
- power_history[POWER_HISTORY_LEN-1-CHARGE_END_ZEROD+1] * 100
- power_history[POWER_HISTORY_LEN-1-CHARGE_END_ZEROD] * 100 )
/ CHARGE_END_ZEROD / 2;
snprintf(buf, 30, "long delta: %d", y);
lcd_puts(0, 6, buf);
#ifdef HAVE_CHARGE_CTRL
lcd_puts(0, 7, power_message);
#endif
break;
case 2: /* voltage deltas: */
lcd_clear_display();
lcd_puts(0, 0, "Voltage deltas:");
for (i = 0; i <= 6; i++) {
y = power_history[POWER_HISTORY_LEN-1-i] -
power_history[POWER_HISTORY_LEN-1-i-1];
snprintf(buf, 30, "-%d min: %s%d.%02d V", i,
(y < 0) ? "-" : "", ((y < 0) ? y * -1 : y) / 100,
((y < 0) ? y * -1 : y ) % 100);
lcd_puts(0, i+1, buf);
}
break;
}
lcd_update();
sleep(HZ/2);
switch(button_get(false))
{
case BUTTON_UP:
if (view)
view--;
break;
case BUTTON_DOWN:
if (view < 2)
view++;
break;
case BUTTON_LEFT:
case BUTTON_OFF:
return;
}
}
}
#endif
void debug_menu(void)
{
int m;
struct menu_items items[] = {
{ "View I/O ports", dbg_ports },
#ifdef HAVE_LCD_BITMAP
#ifdef HAVE_RTC
{ "View/clr RTC RAM", dbg_rtc },
#endif /* HAVE_RTC */
#endif /* HAVE_LCD_BITMAP */
{ "View OS stacks", dbg_os },
{ "View MAS regs", dbg_mas },
#ifdef HAVE_MAS3587F
{ "View MAS codec", dbg_mas_codec },
#endif
#ifdef HAVE_LCD_BITMAP
{ "View battery", view_battery },
#endif
};
m=menu_init( items, sizeof items / sizeof(struct menu_items) );
menu_run(m);
menu_exit(m);
}
#endif /* SIMULATOR */