rockbox/songdbj/com/jcraft/jorbis/Mapping0.java
Michiel Van Der Kolk 9fee0ec4ca Songdb java version, source. only 1.5 compatible
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@7101 a1c6a512-1295-4272-9138-f99709370657
2005-07-11 15:42:37 +00:00

566 lines
15 KiB
Java

/* JOrbis
* Copyright (C) 2000 ymnk, JCraft,Inc.
*
* Written by: 2000 ymnk<ymnk@jcraft.com>
*
* Many thanks to
* Monty <monty@xiph.org> and
* The XIPHOPHORUS Company http://www.xiph.org/ .
* JOrbis has been based on their awesome works, Vorbis codec.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public License
* as published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
package com.jcraft.jorbis;
import com.jcraft.jogg.*;
class Mapping0 extends FuncMapping{
static int seq=0;
void free_info(Object imap){};
void free_look(Object imap){
/*
LookMapping0 l=(LookMapping0)imap;
InfoMapping0 info=l.map;
if(l!=null){
for(int i=0;i<l.map.submaps;i++){
l.time_func[i].free_look(l.time_look[i]);
l.floor_func[i].free_look(l.floor_look[i]);
l.residue_func[i].free_look(l.residue_look[i]);
if(l.psy_look!=null)l.psy_look[i].clear();
}
}
if(l.floor_state!=null){
for(int i=0;i<l.ch;i++)
l.floor_func[info.chmuxlist[i]].free_state(l.floor_state[i]);
//free(l.floor_state);
}
if(l.decay!=null){
for(int i=0;i<l.ch;i++){
//if(l.decay[i])free(l->decay[i]);
l.decay[i]=null;
}
//free(l->decay);
l.decay=null;
}
//free(l->time_func);
//free(l->floor_func);
//free(l->residue_func);
//free(l->time_look);
//free(l->floor_look);
//free(l->residue_look);
//f(l->psy_look)free(l->psy_look);
l.time_func=null;
l.floor_func=null;
l.residue_func=null;
l.time_look=null;
l.floor_look=null;
l.residue_look=null;
//memset(l,0,sizeof(vorbis_look_mapping0));
//free(l);
*/
}
Object look(DspState vd, InfoMode vm, Object m){
//System.err.println("Mapping0.look");
Info vi=vd.vi;
LookMapping0 look=new LookMapping0();
InfoMapping0 info=look.map=(InfoMapping0)m;
look.mode=vm;
look.time_look=new Object[info.submaps];
look.floor_look=new Object[info.submaps];
look.residue_look=new Object[info.submaps];
/*
if(vd.analysisp!=0){
look.floor_state=new Object[vi.channels];
}
if(vi.psys!=0){
look.psy_look=new PsyLook[info.submaps];
for(int i=0; i<info.submaps; i++){ look.psy_look[i]=new PsyLook(); }
}
*/
look.time_func=new FuncTime[info.submaps];
look.floor_func=new FuncFloor[info.submaps];
look.residue_func=new FuncResidue[info.submaps];
for(int i=0;i<info.submaps;i++){
int timenum=info.timesubmap[i];
int floornum=info.floorsubmap[i];
int resnum=info.residuesubmap[i];
look.time_func[i]=FuncTime.time_P[vi.time_type[timenum]];
look.time_look[i]=look.time_func[i].look(vd,vm,vi.time_param[timenum]);
look.floor_func[i]=FuncFloor.floor_P[vi.floor_type[floornum]];
look.floor_look[i]=look.floor_func[i].
look(vd,vm,vi.floor_param[floornum]);
look.residue_func[i]=FuncResidue.residue_P[vi.residue_type[resnum]];
look.residue_look[i]=look.residue_func[i].
look(vd,vm,vi.residue_param[resnum]);
/*
if(vi.psys!=0 && vd.analysisp!=0){
int psynum=info.psysubmap[i];
look.psy_look[i].init(vi.psy_param[psynum],
vi.blocksizes[vm.blockflag]/2,vi.rate);
}
*/
}
if(vi.psys!=0 && vd.analysisp!=0){
/*
if(info->psy[0] != info->psy[1]){
int psynum=info->psy[0];
look->psy_look[0]=_ogg_calloc(1,sizeof(vorbis_look_psy));
_vp_psy_init(look->psy_look[0],ci->psy_param[psynum],
ci->psy_g_param,
ci->blocksizes[vm->blockflag]/2,vi->rate);
psynum=info->psy[1];
look->psy_look[1]=_ogg_calloc(1,sizeof(vorbis_look_psy));
_vp_psy_init(look->psy_look[1],ci->psy_param[psynum],
ci->psy_g_param,
ci->blocksizes[vm->blockflag]/2,vi->rate);
}else{
int psynum=info->psy[0];
look->psy_look[0]=_ogg_calloc(1,sizeof(vorbis_look_psy));
look->psy_look[1]=look->psy_look[0];
_vp_psy_init(look->psy_look[0],ci->psy_param[psynum],
ci->psy_g_param,
ci->blocksizes[vm->blockflag]/2,vi->rate);
}
*/
}
look.ch=vi.channels;
// if(vd->analysisp)drft_init(&look->fft_look,ci->blocksizes[vm->blockflag]);
return(look);
//return null;
}
void pack(Info vi, Object imap, Buffer opb){
InfoMapping0 info=(InfoMapping0)imap;
/* another 'we meant to do it this way' hack... up to beta 4, we
packed 4 binary zeros here to signify one submapping in use. We
now redefine that to mean four bitflags that indicate use of
deeper features; bit0:submappings, bit1:coupling,
bit2,3:reserved. This is backward compatable with all actual uses
of the beta code. */
if(info.submaps>1){
opb.write(1,1);
opb.write(info.submaps-1,4);
}
else{
opb.write(0,1);
}
if(info.coupling_steps>0){
opb.write(1,1);
opb.write(info.coupling_steps-1,8);
for(int i=0;i<info.coupling_steps;i++){
opb.write(info.coupling_mag[i],ilog2(vi.channels));
opb.write(info.coupling_ang[i],ilog2(vi.channels));
}
}
else{
opb.write(0,1);
}
opb.write(0,2); /* 2,3:reserved */
/* we don't write the channel submappings if we only have one... */
if(info.submaps>1){
for(int i=0;i<vi.channels;i++)
opb.write(info.chmuxlist[i],4);
}
for(int i=0;i<info.submaps;i++){
opb.write(info.timesubmap[i],8);
opb.write(info.floorsubmap[i],8);
opb.write(info.residuesubmap[i],8);
}
}
// also responsible for range checking
Object unpack(Info vi, Buffer opb){
InfoMapping0 info=new InfoMapping0();
// !!!!
if(opb.read(1)!=0){
info.submaps=opb.read(4)+1;
}
else{
info.submaps=1;
}
if(opb.read(1)!=0){
info.coupling_steps=opb.read(8)+1;
for(int i=0;i<info.coupling_steps;i++){
int testM=info.coupling_mag[i]=opb.read(ilog2(vi.channels));
int testA=info.coupling_ang[i]=opb.read(ilog2(vi.channels));
if(testM<0 ||
testA<0 ||
testM==testA ||
testM>=vi.channels ||
testA>=vi.channels){
//goto err_out;
info.free();
return(null);
}
}
}
if(opb.read(2)>0){ /* 2,3:reserved */
//goto err_out;
info.free();
return(null);
}
if(info.submaps>1){
for(int i=0;i<vi.channels;i++){
info.chmuxlist[i]=opb.read(4);
if(info.chmuxlist[i]>=info.submaps){
//goto err_out;
info.free();
return(null);
}
}
}
for(int i=0;i<info.submaps;i++){
info.timesubmap[i]=opb.read(8);
if(info.timesubmap[i]>=vi.times){
//goto err_out;
info.free();
return(null);
}
info.floorsubmap[i]=opb.read(8);
if(info.floorsubmap[i]>=vi.floors){
//goto err_out;
info.free();
return(null);
}
info.residuesubmap[i]=opb.read(8);
if(info.residuesubmap[i]>=vi.residues){
//goto err_out;
info.free();
return(null);
}
}
return info;
//err_out:
//free_info(info);
//return(NULL);
}
/*
// no time mapping implementation for now
static int seq=0;
int forward(Block vb, Object l){
DspState vd=vb.vd;
Info vi=vd.vi;
LookMapping0 look=(LookMapping0)l;
InfoMapping0 info=look.map;
InfoMode mode=look.mode;
int n=vb.pcmend;
float[] window=vd.window[vb.W][vb.lW][vb.nW][mode.windowtype];
float[][] pcmbundle=new float[vi.channles][];
int[] nonzero=new int[vi.channels];
// time domain pre-window: NONE IMPLEMENTED
// window the PCM data: takes PCM vector, vb; modifies PCM vector
for(int i=0;i<vi.channels;i++){
float[] pcm=vb.pcm[i];
for(int j=0;j<n;j++)
pcm[j]*=window[j];
}
// time-domain post-window: NONE IMPLEMENTED
// transform the PCM data; takes PCM vector, vb; modifies PCM vector
// only MDCT right now....
for(int i=0;i<vi.channels;i++){
float[] pcm=vb.pcm[i];
mdct_forward(vd.transform[vb.W][0],pcm,pcm);
}
{
float[] floor=_vorbis_block_alloc(vb,n*sizeof(float)/2);
for(int i=0;i<vi.channels;i++){
float[] pcm=vb.pcm[i];
float[] decay=look.decay[i];
int submap=info.chmuxlist[i];
// if some other mode/mapping was called last frame, our decay
// accumulator is out of date. Clear it.
//if(look.lastframe+1 != vb->sequence)
// memset(decay,0,n*sizeof(float)/2);
// perform psychoacoustics; do masking
_vp_compute_mask(look.psy_look[submap],pcm,floor,decay);
_analysis_output("mdct",seq,pcm,n/2,0,1);
_analysis_output("lmdct",seq,pcm,n/2,0,0);
_analysis_output("prefloor",seq,floor,n/2,0,1);
// perform floor encoding
nonzero[i]=look.floor_func[submap].
forward(vb,look.floor_look[submap],floor,floor,look.floor_state[i]);
_analysis_output("floor",seq,floor,n/2,0,1);
// apply the floor, do optional noise levelling
_vp_apply_floor(look->psy_look+submap,pcm,floor);
_analysis_output("res",seq++,pcm,n/2,0,0);
}
// perform residue encoding with residue mapping; this is
// multiplexed. All the channels belonging to one submap are
// encoded (values interleaved), then the next submap, etc
for(int i=0;i<info.submaps;i++){
int ch_in_bundle=0;
for(int j=0;j<vi.channels;j++){
if(info.chmuxlist[j]==i && nonzero[j]==1){
pcmbundle[ch_in_bundle++]=vb.pcm[j];
}
}
look.residue_func[i].forward(vb,look.residue_look[i], pcmbundle,ch_in_bundle);
}
}
look.lastframe=vb.sequence;
return(0);
}
*/
float[][] pcmbundle=null;
int[] zerobundle=null;
int[] nonzero=null;
Object[] floormemo=null;
synchronized int inverse(Block vb, Object l){
//System.err.println("Mapping0.inverse");
DspState vd=vb.vd;
Info vi=vd.vi;
LookMapping0 look=(LookMapping0)l;
InfoMapping0 info=look.map;
InfoMode mode=look.mode;
int n=vb.pcmend=vi.blocksizes[vb.W];
float[] window=vd.window[vb.W][vb.lW][vb.nW][mode.windowtype];
// float[][] pcmbundle=new float[vi.channels][];
// int[] nonzero=new int[vi.channels];
if(pcmbundle==null || pcmbundle.length<vi.channels){
pcmbundle=new float[vi.channels][];
nonzero=new int[vi.channels];
zerobundle=new int[vi.channels];
floormemo=new Object[vi.channels];
}
// time domain information decode (note that applying the
// information would have to happen later; we'll probably add a
// function entry to the harness for that later
// NOT IMPLEMENTED
// recover the spectral envelope; store it in the PCM vector for now
for(int i=0;i<vi.channels;i++){
float[] pcm=vb.pcm[i];
int submap=info.chmuxlist[i];
floormemo[i]=look.floor_func[submap].inverse1(vb,look.
floor_look[submap],
floormemo[i]
);
if(floormemo[i]!=null){ nonzero[i]=1; }
else{ nonzero[i]=0; }
for(int j=0; j<n/2; j++){
pcm[j]=0;
}
//_analysis_output("ifloor",seq+i,pcm,n/2,0,1);
}
for(int i=0; i<info.coupling_steps; i++){
if(nonzero[info.coupling_mag[i]]!=0 ||
nonzero[info.coupling_ang[i]]!=0){
nonzero[info.coupling_mag[i]]=1;
nonzero[info.coupling_ang[i]]=1;
}
}
// recover the residue, apply directly to the spectral envelope
for(int i=0;i<info.submaps;i++){
int ch_in_bundle=0;
for(int j=0;j<vi.channels;j++){
if(info.chmuxlist[j]==i){
if(nonzero[j]!=0){
zerobundle[ch_in_bundle]=1;
}
else{
zerobundle[ch_in_bundle]=0;
}
pcmbundle[ch_in_bundle++]=vb.pcm[j];
}
}
look.residue_func[i].inverse(vb,look.residue_look[i],
pcmbundle,zerobundle,ch_in_bundle);
}
for(int i=info.coupling_steps-1;i>=0;i--){
float[] pcmM=vb.pcm[info.coupling_mag[i]];
float[] pcmA=vb.pcm[info.coupling_ang[i]];
for(int j=0;j<n/2;j++){
float mag=pcmM[j];
float ang=pcmA[j];
if(mag>0){
if(ang>0){
pcmM[j]=mag;
pcmA[j]=mag-ang;
}
else{
pcmA[j]=mag;
pcmM[j]=mag+ang;
}
}
else{
if(ang>0){
pcmM[j]=mag;
pcmA[j]=mag+ang;
}
else{
pcmA[j]=mag;
pcmM[j]=mag-ang;
}
}
}
}
// /* compute and apply spectral envelope */
for(int i=0;i<vi.channels;i++){
float[] pcm=vb.pcm[i];
int submap=info.chmuxlist[i];
look.floor_func[submap].inverse2(vb,look.floor_look[submap],floormemo[i],pcm);
}
// transform the PCM data; takes PCM vector, vb; modifies PCM vector
// only MDCT right now....
for(int i=0;i<vi.channels;i++){
float[] pcm=vb.pcm[i];
//_analysis_output("out",seq+i,pcm,n/2,0,0);
((Mdct)vd.transform[vb.W][0]).backward(pcm,pcm);
}
// now apply the decoded pre-window time information
// NOT IMPLEMENTED
// window the data
for(int i=0;i<vi.channels;i++){
float[] pcm=vb.pcm[i];
if(nonzero[i]!=0){
for(int j=0;j<n;j++){
pcm[j]*=window[j];
}
}
else{
for(int j=0;j<n;j++){
pcm[j]=0.f;
}
}
//_analysis_output("final",seq++,pcm,n,0,0);
}
// now apply the decoded post-window time information
// NOT IMPLEMENTED
// all done!
return(0);
}
private static int ilog2(int v){
int ret=0;
while(v>1){
ret++;
v>>>=1;
}
return(ret);
}
}
class InfoMapping0{
int submaps; // <= 16
int[] chmuxlist=new int[256]; // up to 256 channels in a Vorbis stream
int[] timesubmap=new int[16]; // [mux]
int[] floorsubmap=new int[16]; // [mux] submap to floors
int[] residuesubmap=new int[16];// [mux] submap to residue
int[] psysubmap=new int[16]; // [mux]; encode only
int coupling_steps;
int[] coupling_mag=new int[256];
int[] coupling_ang=new int[256];
void free(){
chmuxlist=null;
timesubmap=null;
floorsubmap=null;
residuesubmap=null;
psysubmap=null;
coupling_mag=null;
coupling_ang=null;
}
}
class LookMapping0{
InfoMode mode;
InfoMapping0 map;
Object[] time_look;
Object[] floor_look;
Object[] floor_state;
Object[] residue_look;
PsyLook[] psy_look;
FuncTime[] time_func;
FuncFloor[] floor_func;
FuncResidue[] residue_func;
int ch;
float[][] decay;
int lastframe; // if a different mode is called, we need to
// invalidate decay and floor state
}