rockbox/rbutil/mkimxboot/mkimxboot.c
Amaury Pouly 6022d3100a mkimxboot: tool can now recreate a stub to recover from very low battery
Several devices, including the Fuze+ have great trouble recovering from
very low battery states, even in the presence of USB power. This is partly
due to buggy Sigmatel boot stubs and Rockbox bootloader doing unsafe power
operations on boot (should be fixed soon).  In such a state, it is impossible
to boot either the OF and Rockbox, so only the recovery mode is available.
With this commit, mkimxboot can now create a very small stub which only
does one thing but does it well: setup charging to recover from any situation.
It does not provide a fancy charging screen or whatever, screen will just
stay black and the device will slowly charge at ~100mA. When the battery is
back to a normal level, just unplug and boot normally.

Change-Id: Ib50880af85ed1f4f64a7eed0f2221e73c889c351
2014-01-21 19:01:34 +01:00

876 lines
29 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2011 by Amaury Pouly
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <ctype.h>
#include "mkimxboot.h"
#include "sb.h"
#include "dualboot.h"
#include "md5.h"
#include "elf.h"
/* abstract structure to represent a Rockbox firmware. It can be a scrambled file
* or an ELF file or whatever. */
struct rb_fw_t
{
int nr_insts;
struct sb_inst_t *insts;
int entry_idx;
};
struct imx_fw_variant_desc_t
{
/* Offset within file */
size_t offset;
/* Total size of the firmware */
size_t size;
};
struct imx_md5sum_t
{
/* Device model */
enum imx_model_t model;
/* md5sum of the file */
char *md5sum;
/* Version string */
const char *version;
/* Variant descriptions */
struct imx_fw_variant_desc_t fw_variants[VARIANT_COUNT];
};
struct imx_model_desc_t
{
/* Descriptive name of this model */
const char *model_name;
/* Dualboot code for this model */
const unsigned char *dualboot;
/* Size of dualboot functions for this model */
int dualboot_size;
/* Model name used in the Rockbox header in ".sansa" files - these match the
-add parameter to the "scramble" tool */
const char *rb_model_name;
/* Model number used to initialise the checksum in the Rockbox header in
".sansa" files - these are the same as MODEL_NUMBER in config-target.h */
const int rb_model_num;
/* Number of keys needed to decrypt/encrypt */
int nr_keys;
/* Array of keys */
struct crypto_key_t *keys;
/* Dualboot load address */
uint32_t dualboot_addr;
/* Bootloader load address */
uint32_t bootloader_addr;
};
static const char *imx_fw_variant[] =
{
[VARIANT_DEFAULT] = "default",
[VARIANT_ZENXFI2_RECOVERY] = "ZEN X-Fi2 Recovery",
[VARIANT_ZENXFI2_NAND] = "ZEN X-Fi2 NAND",
[VARIANT_ZENXFI2_SD] = "ZEN X-Fi2 eMMC/SD",
[VARIANT_ZENXFISTYLE_RECOVERY] = "ZEN X-Fi Style Recovery",
[VARIANT_ZENSTYLE_RECOVERY] = "ZEN Style 100/300 Recovery",
};
static const struct imx_md5sum_t imx_sums[] =
{
/** Fuze+ */
{
/* Version 2.38.6 */
MODEL_FUZEPLUS, "c3e27620a877dc6b200b97dcb3e0ecc7", "2.38.6",
{ [VARIANT_DEFAULT] = { 0, 34652624 } }
},
/** Zen X-Fi2 */
{
/* Version 1.23.01 */
MODEL_ZENXFI2, "e37e2c24abdff8e624d0a29f79157850", "1.23.01",
{
[VARIANT_ZENXFI2_RECOVERY] = { 602128, 684192},
[VARIANT_ZENXFI2_NAND] = { 1286320, 42406608 },
[VARIANT_ZENXFI2_SD] = { 43692928, 42304208 }
}
},
{
/* Version 1.23.01e */
MODEL_ZENXFI2, "2beff2168212d332f13cfc36ca46989d", "1.23.01e",
{
[VARIANT_ZENXFI2_RECOVERY] = { 0x93010, 684192},
[VARIANT_ZENXFI2_NAND] = { 0x13a0b0, 42410704 },
[VARIANT_ZENXFI2_SD] = { 0x29ac380, 42304208 }
}
},
/** Zen X-Fi3 */
{
/* Version 1.00.15e */
MODEL_ZENXFI3, "658a24eeef5f7186ca731085d8822a87", "1.00.15e",
{ [VARIANT_DEFAULT] = {0, 18110576} }
},
{
/* Version 1.00.22e */
MODEL_ZENXFI3, "a5114cd45ea4554ec221f51a71083862", "1.00.22e",
{ [VARIANT_DEFAULT] = {0, 18110576} }
},
{
/* Version 1.00.25 */
MODEL_ZENXFI3, "a41a3a78f86a4ac2879d194c6d528059", "1.00.25",
{ [VARIANT_DEFAULT] = {0, 18110576 } }
},
{
/* Version 1.00.25e */
MODEL_ZENXFI3, "c180f57e2b2d62620f87a1d853f349ff", "1.00.25e",
{ [VARIANT_DEFAULT] = {0, 18110576 } }
},
/** Zen X-Fi Style */
{
/* Version 1.03.04e */
MODEL_ZENXFISTYLE, "32a731b7f714e9f99a95991003759c98", "1.03.04",
{
[VARIANT_DEFAULT] = {842960, 29876944},
[VARIANT_ZENXFISTYLE_RECOVERY] = {610272, 232688},
}
},
{
/* Version 1.03.04e */
MODEL_ZENXFISTYLE, "2c7ee52d9984d85dd39aa49b3331e66c", "1.03.04e",
{
[VARIANT_DEFAULT] = {842960, 29876944},
[VARIANT_ZENXFISTYLE_RECOVERY] = {610272, 232688},
}
},
{
/* Version 1.03.04e */
MODEL_ZENSTYLE, "dbebec8fe666412061d9740ff68605dd", "1.03.04e",
{
[VARIANT_DEFAULT] = {758848, 6641344},
[VARIANT_ZENSTYLE_RECOVERY] = {610272, 148576},
}
},
/** Sony NWZ-E370 */
{
/* Version 1.00.00 */
MODEL_NWZE370, "a615fdb70b3e1bfb0355a5bc2bf237ab", "1.00.00",
{ [VARIANT_DEFAULT] = {0, 16056320 } }
},
{
/* Version 1.00.01 */
MODEL_NWZE370, "ee83f3c6026cbcc07097867f06fd585f", "1.00.01",
{ [VARIANT_DEFAULT] = {0, 16515072 } }
},
/** Sony NWZ-E360 */
{
/* Version 1.00.00 */
MODEL_NWZE360, "d0047f8a87d456a0032297b3c802a1ff", "1.00.00",
{ [VARIANT_DEFAULT] = {0, 20652032 } }
},
/** Sony NWZ-E380 */
{
/* Version 1.00.00 */
MODEL_NWZE370, "412f8ccd453195c0bebcc1fd8376322f", "1.00.00",
{ [VARIANT_DEFAULT] = {0, 16429056 } }
}
};
static struct crypto_key_t zero_key =
{
.method = CRYPTO_KEY,
.u.key = {0}
};
static const struct imx_model_desc_t imx_models[] =
{
[MODEL_FUZEPLUS] = {"Fuze+", dualboot_fuzeplus, sizeof(dualboot_fuzeplus), "fuz+", 72,
1, &zero_key, 0, 0x40000000 },
[MODEL_ZENXFI2] = {"Zen X-Fi2", dualboot_zenxfi2, sizeof(dualboot_zenxfi2), "zxf2", 82,
1, &zero_key, 0, 0x40000000 },
[MODEL_ZENXFI3] = {"Zen X-Fi3", dualboot_zenxfi3, sizeof(dualboot_zenxfi3), "zxf3", 83,
1, &zero_key, 0, 0x40000000 },
[MODEL_ZENXFISTYLE] = {"Zen X-Fi Style", dualboot_zenxfistyle, sizeof(dualboot_zenxfistyle), "zxfs", 94,
1, &zero_key, 0, 0x40000000 },
[MODEL_ZENSTYLE] = {"Zen Style 100/300", NULL, 0, "", -1,
1, &zero_key, 0, 0x40000000 },
[MODEL_NWZE370] = {"NWZ-E370", dualboot_nwze370, sizeof(dualboot_nwze370), "e370", 88,
1, &zero_key, 0, 0x40000000 },
[MODEL_NWZE360] = {"NWZ-E360", dualboot_nwze360, sizeof(dualboot_nwze360), "e360", 89,
1, &zero_key, 0, 0x40000000 },
};
#define NR_IMX_SUMS (sizeof(imx_sums) / sizeof(imx_sums[0]))
#define NR_IMX_MODELS (sizeof(imx_models) / sizeof(imx_models[0]))
#define MAGIC_ROCK 0x726f636b /* 'rock' */
#define MAGIC_RECOVERY 0xfee1dead
#define MAGIC_NORMAL 0xcafebabe
#define MAGIC_CHARGE 0x67726863 /* 'chrg' */
static int rb_fw_get_sb_inst_count(struct rb_fw_t *fw)
{
return fw->nr_insts;
}
/* fill sb instruction for the firmware, fill fill rb_fw_get_sb_inst_count() instructions */
static void rb_fw_fill_sb(struct rb_fw_t *fw, struct sb_inst_t *inst,
uint32_t entry_arg)
{
memcpy(inst, fw->insts, fw->nr_insts * sizeof(struct sb_inst_t));
/* copy data if needed */
for(int i = 0; i < fw->nr_insts; i++)
if(fw->insts[i].inst == SB_INST_LOAD)
fw->insts[i].data = memdup(fw->insts[i].data, fw->insts[i].size);
/* replace call argument of the entry point */
inst[fw->entry_idx].argument = entry_arg;
}
static enum imx_error_t patch_std_zero_host_play(int jump_before, int model,
enum imx_output_type_t type, struct sb_file_t *sb_file, struct rb_fw_t boot_fw)
{
/* We assume the file has three boot sections: ____, host, play and one
* resource section rsrc.
*
* Dual Boot:
* ----------
* We patch the file by inserting the dualboot code before the <jump_before>th
* call in the ____ section. We give it as argument the section name 'rock'
* and add a section called 'rock' after rsrc which contains the bootloader.
*
* Single Boot & Recovery:
* -----------------------
* We patch the file by inserting the bootloader code after the <jump_before>th
* call in the ____ section and get rid of everything else. In recovery mode,
* we give 0xfee1dead as argument */
/* Do not override real key and IV */
sb_file->override_crypto_iv = false;
sb_file->override_real_key = false;
/* used to manipulate entries */
int nr_boot_inst = rb_fw_get_sb_inst_count(&boot_fw);
/* first locate the good instruction */
struct sb_section_t *sec = &sb_file->sections[0];
int jump_idx = 0;
while(jump_idx < sec->nr_insts && jump_before > 0)
if(sec->insts[jump_idx++].inst == SB_INST_CALL)
jump_before--;
if(jump_idx == sec->nr_insts)
{
printf("[ERR] Cannot locate call in section ____\n");
return IMX_DONT_KNOW_HOW_TO_PATCH;
}
if(type == IMX_DUALBOOT)
{
/* create a new instruction array with a hole for two instructions */
struct sb_inst_t *new_insts = xmalloc(sizeof(struct sb_inst_t) * (sec->nr_insts + 2));
memcpy(new_insts, sec->insts, sizeof(struct sb_inst_t) * jump_idx);
memcpy(new_insts + jump_idx + 2, sec->insts + jump_idx,
sizeof(struct sb_inst_t) * (sec->nr_insts - jump_idx));
/* first instruction is be a load */
struct sb_inst_t *load = &new_insts[jump_idx];
memset(load, 0, sizeof(struct sb_inst_t));
load->inst = SB_INST_LOAD;
load->size = imx_models[model].dualboot_size;
load->addr = imx_models[model].dualboot_addr;
/* duplicate memory because it will be free'd */
load->data = memdup(imx_models[model].dualboot, imx_models[model].dualboot_size);
/* second instruction is a call */
struct sb_inst_t *call = &new_insts[jump_idx + 1];
memset(call, 0, sizeof(struct sb_inst_t));
call->inst = SB_INST_CALL;
call->addr = imx_models[model].dualboot_addr;
call->argument = MAGIC_ROCK;
/* free old instruction array */
free(sec->insts);
sec->insts = new_insts;
sec->nr_insts += 2;
/* create a new section */
struct sb_section_t rock_sec;
memset(&rock_sec, 0, sizeof(rock_sec));
/* section can have any number of instructions */
rock_sec.identifier = MAGIC_ROCK;
rock_sec.alignment = BLOCK_SIZE;
rock_sec.nr_insts = nr_boot_inst;
rock_sec.insts = xmalloc(nr_boot_inst * sizeof(struct sb_inst_t));
rb_fw_fill_sb(&boot_fw, rock_sec.insts, MAGIC_NORMAL);
sb_file->sections = augment_array(sb_file->sections,
sizeof(struct sb_section_t), sb_file->nr_sections,
&rock_sec, 1);
sb_file->nr_sections++;
return IMX_SUCCESS;
}
else if(type == IMX_SINGLEBOOT || type == IMX_RECOVERY)
{
bool recovery = type == IMX_RECOVERY;
/* remove everything after the call and add instructions for firmware */
struct sb_inst_t *new_insts = xmalloc(sizeof(struct sb_inst_t) * (jump_idx + nr_boot_inst));
memcpy(new_insts, sec->insts, sizeof(struct sb_inst_t) * jump_idx);
for(int i = jump_idx; i < sec->nr_insts; i++)
sb_free_instruction(sec->insts[i]);
rb_fw_fill_sb(&boot_fw, &new_insts[jump_idx], recovery ? MAGIC_RECOVERY : MAGIC_NORMAL);
free(sec->insts);
sec->insts = new_insts;
sec->nr_insts = jump_idx + nr_boot_inst;
/* remove all other sections */
for(int i = 1; i < sb_file->nr_sections; i++)
sb_free_section(sb_file->sections[i]);
struct sb_section_t *new_sec = xmalloc(sizeof(struct sb_section_t));
memcpy(new_sec, &sb_file->sections[0], sizeof(struct sb_section_t));
free(sb_file->sections);
sb_file->sections = new_sec;
sb_file->nr_sections = 1;
return IMX_SUCCESS;
}
else if(type == IMX_CHARGE)
{
/* throw away everything except the dualboot stub with a special argument */
struct sb_inst_t *new_insts = xmalloc(sizeof(struct sb_inst_t) * 2);
/* first instruction is be a load */
struct sb_inst_t *load = &new_insts[0];
memset(load, 0, sizeof(struct sb_inst_t));
load->inst = SB_INST_LOAD;
load->size = imx_models[model].dualboot_size;
load->addr = imx_models[model].dualboot_addr;
/* duplicate memory because it will be free'd */
load->data = memdup(imx_models[model].dualboot, imx_models[model].dualboot_size);
/* second instruction is a call */
struct sb_inst_t *call = &new_insts[1];
memset(call, 0, sizeof(struct sb_inst_t));
call->inst = SB_INST_CALL;
call->addr = imx_models[model].dualboot_addr;
call->argument = MAGIC_CHARGE;
/* free old instruction array */
free(sec->insts);
sec->insts = new_insts;
sec->nr_insts = 2;
/* remove all other sections */
for(int i = 1; i < sb_file->nr_sections; i++)
sb_free_section(sb_file->sections[i]);
struct sb_section_t *new_sec = xmalloc(sizeof(struct sb_section_t));
memcpy(new_sec, &sb_file->sections[0], sizeof(struct sb_section_t));
free(sb_file->sections);
sb_file->sections = new_sec;
sb_file->nr_sections = 1;
return IMX_SUCCESS;
}
else
{
printf("[ERR] Bad output type !\n");
return IMX_DONT_KNOW_HOW_TO_PATCH;
}
}
static enum imx_error_t parse_subversion(const char *s, const char *end, uint16_t *ver)
{
int len = (end == NULL) ? strlen(s) : end - s;
if(len > 4)
{
printf("[ERR] Bad subversion override '%s' (too long)\n", s);
return IMX_ERROR;
}
*ver = 0;
for(int i = 0; i < len; i++)
{
if(!isdigit(s[i]))
{
printf("[ERR] Bad subversion override '%s' (not a digit)\n", s);
return IMX_ERROR;
}
*ver = *ver << 4 | (s[i] - '0');
}
return IMX_SUCCESS;
}
static enum imx_error_t parse_version(const char *s, struct sb_version_t *ver)
{
const char *dot1 = strchr(s, '.');
if(dot1 == NULL)
{
printf("[ERR] Bad version override '%s' (missing dot)\n", s);
return IMX_ERROR;
}
const char *dot2 = strchr(dot1 + 1, '.');
if(dot2 == NULL)
{
printf("[ERR] Bad version override '%s' (missing second dot)\n", s);
return IMX_ERROR;
}
enum imx_error_t ret = parse_subversion(s, dot1, &ver->major);
if(ret != IMX_SUCCESS) return ret;
ret = parse_subversion(dot1 + 1, dot2, &ver->minor);
if(ret != IMX_SUCCESS) return ret;
ret = parse_subversion(dot2 + 1, NULL, &ver->revision);
if(ret != IMX_SUCCESS) return ret;
return IMX_SUCCESS;
}
static enum imx_error_t patch_firmware(enum imx_model_t model,
enum imx_firmware_variant_t variant, enum imx_output_type_t type,
struct sb_file_t *sb_file, struct rb_fw_t boot_fw,
const char *force_version)
{
if(force_version)
{
enum imx_error_t err = parse_version(force_version, &sb_file->product_ver);
if(err != IMX_SUCCESS) return err;
err = parse_version(force_version, &sb_file->component_ver);
if(err != IMX_SUCCESS) return err;
}
switch(model)
{
case MODEL_FUZEPLUS:
/* The Fuze+ uses the standard ____, host, play sections, patch after third
* call in ____ section */
return patch_std_zero_host_play(3, model, type, sb_file, boot_fw);
case MODEL_ZENXFI3:
/* The ZEN X-Fi3 uses the standard ____, hSst, pSay sections, patch after third
* call in ____ section. Although sections names use the S variant, they are standard. */
return patch_std_zero_host_play(3, model, type, sb_file, boot_fw);
case MODEL_NWZE360:
case MODEL_NWZE370:
/* The NWZ-E360/E370 uses the standard ____, host, play sections, patch after first
* call in ____ section. */
return patch_std_zero_host_play(1, model, type, sb_file, boot_fw);
case MODEL_ZENXFI2:
/* The ZEN X-Fi2 has two types of firmware: recovery and normal.
* Normal uses the standard ___, host, play sections and recovery only ____ */
switch(variant)
{
case VARIANT_ZENXFI2_RECOVERY:
case VARIANT_ZENXFI2_NAND:
case VARIANT_ZENXFI2_SD:
return patch_std_zero_host_play(1, model, type, sb_file, boot_fw);
default:
return IMX_DONT_KNOW_HOW_TO_PATCH;
}
break;
case MODEL_ZENXFISTYLE:
/* The ZEN X-Fi Style uses the standard ____, host, play sections, patch after first
* call in ____ section. */
return patch_std_zero_host_play(1, model, type, sb_file, boot_fw);
default:
return IMX_DONT_KNOW_HOW_TO_PATCH;
}
}
static uint32_t get_uint32be(unsigned char *p)
{
return (p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3];
}
void dump_imx_dev_info(const char *prefix)
{
printf("%smkimxboot models:\n", prefix);
for(int i = 0; i < NR_IMX_MODELS; i++)
{
printf("%s %s: idx=%d rb_model=%s rb_num=%d\n", prefix,
imx_models[i].model_name, i, imx_models[i].rb_model_name,
imx_models[i].rb_model_num);
}
printf("%smkimxboot variants:\n", prefix);
for(int i = 0; i < VARIANT_COUNT; i++)
{
printf("%s %d: %s\n", prefix, i, imx_fw_variant[i]);
}
printf("%smkimxboot mapping:\n", prefix);
for(int i = 0; i < NR_IMX_SUMS; i++)
{
printf("%s md5sum=%s -> idx=%d, ver=%s\n", prefix, imx_sums[i].md5sum,
imx_sums[i].model, imx_sums[i].version);
for(int j = 0; j < VARIANT_COUNT; j++)
if(imx_sums[i].fw_variants[j].size)
printf("%s variant=%d -> offset=%#x size=%#x\n", prefix,
j, (unsigned)imx_sums[i].fw_variants[j].offset,
(unsigned)imx_sums[i].fw_variants[j].size);
}
}
/* find an entry into imx_sums which matches the MD5 sum of a file */
static enum imx_error_t find_model_by_md5sum(uint8_t file_md5sum[16], int *md5_idx)
{
int i = 0;
while(i < NR_IMX_SUMS)
{
uint8_t md5[20];
if(strlen(imx_sums[i].md5sum) != 32)
{
printf("[INFO] Invalid MD5 sum in imx_sums\n");
return IMX_ERROR;
}
for(int j = 0; j < 16; j++)
{
byte a, b;
if(convxdigit(imx_sums[i].md5sum[2 * j], &a) || convxdigit(imx_sums[i].md5sum[2 * j + 1], &b))
{
printf("[ERR][INTERNAL] Bad checksum format: %s\n", imx_sums[i].md5sum);
return IMX_ERROR;
}
md5[j] = (a << 4) | b;
}
if(memcmp(file_md5sum, md5, 16) == 0)
break;
i++;
}
if(i == NR_IMX_SUMS)
{
printf("[ERR] MD5 sum doesn't match any known file\n");
return IMX_NO_MATCH;
}
*md5_idx = i;
return IMX_SUCCESS;
}
/* read a file to a buffer */
static enum imx_error_t read_file(const char *file, void **buffer, size_t *size)
{
FILE *f = fopen(file, "rb");
if(f == NULL)
{
printf("[ERR] Cannot open file '%s' for reading: %m\n", file);
return IMX_OPEN_ERROR;
}
fseek(f, 0, SEEK_END);
*size = ftell(f);
fseek(f, 0, SEEK_SET);
*buffer = xmalloc(*size);
if(fread(*buffer, *size, 1, f) != 1)
{
free(*buffer);
fclose(f);
printf("[ERR] Cannot read file '%s': %m\n", file);
return IMX_READ_ERROR;
}
fclose(f);
return IMX_SUCCESS;
}
/* write a file from a buffer */
static enum imx_error_t write_file(const char *file, void *buffer, size_t size)
{
FILE *f = fopen(file, "wb");
if(f == NULL)
{
printf("[ERR] Cannot open file '%s' for writing: %m\n", file);
return IMX_OPEN_ERROR;
}
if(fwrite(buffer, size, 1, f) != 1)
{
fclose(f);
printf("[ERR] Cannot write file '%s': %m\n", file);
return IMX_WRITE_ERROR;
}
fclose(f);
return IMX_SUCCESS;
}
/* compute MD5 sum of a buffer */
static enum imx_error_t compute_md5sum_buf(void *buf, size_t sz, uint8_t file_md5sum[16])
{
md5_context ctx;
md5_starts(&ctx);
md5_update(&ctx, buf, sz);
md5_finish(&ctx, file_md5sum);
return IMX_SUCCESS;
}
/* compute MD5 of a file */
static enum imx_error_t compute_md5sum(const char *file, uint8_t file_md5sum[16])
{
void *buf;
size_t sz;
enum imx_error_t err = read_file(file, &buf, &sz);
if(err != IMX_SUCCESS)
return err;
compute_md5sum_buf(buf, sz, file_md5sum);
free(buf);
return IMX_SUCCESS;
}
static enum imx_error_t load_sb_file(const char *file, int md5_idx,
struct imx_option_t opt, struct sb_file_t **sb_file)
{
if(imx_sums[md5_idx].fw_variants[opt.fw_variant].size == 0)
{
printf("[ERR] Input file does not contain variant '%s'\n", imx_fw_variant[opt.fw_variant]);
return IMX_VARIANT_MISMATCH;
}
enum imx_model_t model = imx_sums[md5_idx].model;
enum sb_error_t err;
g_debug = opt.debug;
clear_keys();
add_keys(imx_models[model].keys, imx_models[model].nr_keys);
*sb_file = sb_read_file_ex(file, imx_sums[md5_idx].fw_variants[opt.fw_variant].offset,
imx_sums[md5_idx].fw_variants[opt.fw_variant].size, false, NULL, generic_std_printf, &err);
if(*sb_file == NULL)
{
clear_keys();
return IMX_FIRST_SB_ERROR + err;
}
return IMX_SUCCESS;
}
/* Load a rockbox firwmare from a buffer. Data is copied. Assume firmware is
* using our scramble format. */
static enum imx_error_t rb_fw_load_buf_scramble(struct rb_fw_t *fw, uint8_t *buf,
size_t sz, enum imx_model_t model)
{
if(sz < 8)
{
printf("[ERR] Bootloader file is too small to be valid\n");
return IMX_BOOT_INVALID;
}
/* check model name */
uint8_t *name = buf + 4;
if(memcmp(name, imx_models[model].rb_model_name, 4) != 0)
{
printf("[ERR] Bootloader model doesn't match found model for input file\n");
return IMX_BOOT_MISMATCH;
}
/* check checksum */
uint32_t sum = imx_models[model].rb_model_num;
for(int i = 8; i < sz; i++)
sum += buf[i];
if(sum != get_uint32be(buf))
{
printf("[ERR] Bootloader checksum mismatch\n");
return IMX_BOOT_CHECKSUM_ERROR;
}
/* two instructions: load and jump */
fw->nr_insts = 2;
fw->entry_idx = 1;
fw->insts = xmalloc(fw->nr_insts * sizeof(struct sb_inst_t));
memset(fw->insts, 0, fw->nr_insts * sizeof(struct sb_inst_t));
fw->insts[0].inst = SB_INST_LOAD;
fw->insts[0].addr = imx_models[model].bootloader_addr;
fw->insts[0].size = sz - 8;
fw->insts[0].data = memdup(buf + 8, sz - 8);
fw->insts[1].inst = SB_INST_JUMP;
fw->insts[1].addr = imx_models[model].bootloader_addr;
return IMX_SUCCESS;
}
struct elf_user_t
{
void *buf;
size_t sz;
};
static bool elf_read(void *user, uint32_t addr, void *buf, size_t count)
{
struct elf_user_t *u = user;
if(addr + count <= u->sz)
{
memcpy(buf, u->buf + addr, count);
return true;
}
else
return false;
}
/* Load a rockbox firwmare from a buffer. Data is copied. Assume firmware is
* using ELF format. */
static enum imx_error_t rb_fw_load_buf_elf(struct rb_fw_t *fw, uint8_t *buf,
size_t sz, enum imx_model_t model)
{
struct elf_params_t elf;
struct elf_user_t user;
user.buf = buf;
user.sz = sz;
elf_init(&elf);
if(!elf_read_file(&elf, elf_read, generic_std_printf, &user))
{
elf_release(&elf);
printf("[ERR] Error parsing ELF file\n");
return IMX_BOOT_INVALID;
}
fw->nr_insts = elf_get_nr_sections(&elf) + 1;
fw->insts = xmalloc(fw->nr_insts * sizeof(struct sb_inst_t));
fw->entry_idx = fw->nr_insts - 1;
memset(fw->insts, 0, fw->nr_insts * sizeof(struct sb_inst_t));
struct elf_section_t *sec = elf.first_section;
for(int i = 0; sec; i++, sec = sec->next)
{
fw->insts[i].addr = elf_translate_virtual_address(&elf, sec->addr);
fw->insts[i].size = sec->size;
if(sec->type == EST_LOAD)
{
fw->insts[i].inst = SB_INST_LOAD;
fw->insts[i].data = memdup(sec->section, sec->size);
}
else if(sec->type == EST_FILL)
{
fw->insts[i].inst = SB_INST_FILL;
fw->insts[i].pattern = sec->pattern;
}
else
{
printf("[WARN] Warning parsing ELF file: unsupported section type mapped to NOP!\n");
fw->insts[i].inst = SB_INST_NOP;
}
}
fw->insts[fw->nr_insts - 1].inst = SB_INST_JUMP;
if(!elf_get_start_addr(&elf, &fw->insts[fw->nr_insts - 1].addr))
{
elf_release(&elf);
printf("[ERROR] Error parsing ELF file: it has no entry point!\n");
return IMX_BOOT_INVALID;
}
elf_release(&elf);
return IMX_SUCCESS;
}
/* Load a rockbox firwmare from a buffer. Data is copied. */
static enum imx_error_t rb_fw_load_buf(struct rb_fw_t *fw, uint8_t *buf,
size_t sz, enum imx_model_t model)
{
/* detect file format */
if(sz >= 4 && buf[0] == 0x7f && memcmp(buf + 1, "ELF", 3) == 0)
return rb_fw_load_buf_elf(fw, buf, sz, model);
else
return rb_fw_load_buf_scramble(fw, buf, sz, model);
}
/* load a rockbox firmware from a file. */
static enum imx_error_t rb_fw_load(struct rb_fw_t *fw, const char *file,
enum imx_model_t model)
{
void *buf;
size_t sz;
int ret = read_file(file, &buf, &sz);
if(ret == IMX_SUCCESS)
{
ret = rb_fw_load_buf(fw, buf, sz, model);
free(buf);
}
return ret;
}
/* free rockbox firmware */
static void rb_fw_free(struct rb_fw_t *fw)
{
for(int i = 0; i < fw->nr_insts; i++)
sb_free_instruction(fw->insts[i]);
free(fw->insts);
memset(fw, 0, sizeof(struct rb_fw_t));
}
enum imx_error_t mkimxboot(const char *infile, const char *bootfile,
const char *outfile, struct imx_option_t opt)
{
/* sanity check */
if(opt.fw_variant > VARIANT_COUNT)
return IMX_ERROR;
/* Dump tables */
dump_imx_dev_info("[INFO] ");
/* compute MD5 sum of the file */
uint8_t file_md5sum[16];
enum imx_error_t ret = compute_md5sum(infile, file_md5sum);
if(ret != IMX_SUCCESS)
return ret;
printf("[INFO] MD5 sum of the file: ");
print_hex(NULL, misc_std_printf, file_md5sum, 16, true);
/* find model */
int md5_idx;
ret = find_model_by_md5sum(file_md5sum, &md5_idx);
if(ret != IMX_SUCCESS)
return ret;
enum imx_model_t model = imx_sums[md5_idx].model;
printf("[INFO] File is for model %d (%s, version %s)\n", model,
imx_models[model].model_name, imx_sums[md5_idx].version);
/* load rockbox file */
struct rb_fw_t boot_fw;
ret = rb_fw_load(&boot_fw, bootfile, model);
if(ret != IMX_SUCCESS)
return ret;
/* load OF file */
struct sb_file_t *sb_file;
ret = load_sb_file(infile, md5_idx, opt, &sb_file);
if(ret != IMX_SUCCESS)
{
rb_fw_free(&boot_fw);
return ret;
}
/* produce file */
ret = patch_firmware(model, opt.fw_variant, opt.output,
sb_file, boot_fw, opt.force_version);
if(ret == IMX_SUCCESS)
ret = sb_write_file(sb_file, outfile, NULL, generic_std_printf);
clear_keys();
rb_fw_free(&boot_fw);
sb_free(sb_file);
return ret;
}
enum imx_error_t extract_firmware(const char *infile,
enum imx_firmware_variant_t fw_variant, const char *outfile)
{
/* sanity check */
if(fw_variant > VARIANT_COUNT)
return IMX_ERROR;
/* dump tables */
dump_imx_dev_info("[INFO] ");
/* compute MD5 sum of the file */
void *buf;
size_t sz;
uint8_t file_md5sum[16];
int ret = read_file(infile, &buf, &sz);
if(ret != IMX_SUCCESS)
return ret;
ret = compute_md5sum_buf(buf, sz, file_md5sum);
if(ret != IMX_SUCCESS)
{
free(buf);
return ret;
}
printf("[INFO] MD5 sum of the file: ");
print_hex(NULL, misc_std_printf, file_md5sum, 16, true);
/* find model */
int md5_idx;
ret = find_model_by_md5sum(file_md5sum, &md5_idx);
if(ret != IMX_SUCCESS)
{
free(buf);
return ret;
}
enum imx_model_t model = imx_sums[md5_idx].model;
printf("[INFO] File is for model %d (%s, version %s)\n", model,
imx_models[model].model_name, imx_sums[md5_idx].version);
/* extract firmware */
if(imx_sums[md5_idx].fw_variants[fw_variant].size == 0)
{
printf("[ERR] Input file does not contain variant '%s'\n", imx_fw_variant[fw_variant]);
free(buf);
return IMX_VARIANT_MISMATCH;
}
ret = write_file(outfile,
buf + imx_sums[md5_idx].fw_variants[fw_variant].offset,
imx_sums[md5_idx].fw_variants[fw_variant].size);
free(buf);
return ret;
}