rockbox/utils/imxtools/sbtools/sb.c
Dominik Riebeling 815b289cb3 imxtools: Replace use of "byte" with its underlying uint8_t.
libtomcrypt uses a macro "byte" which conflicts with this type. Since
the underlying type is uint8_t and there's no real benefit from using a
custom type use the actual underlying type.

Change-Id: I982c9b8bdcb657b99fa645a5235303af7afda25b
2020-10-18 19:08:32 +02:00

1376 lines
49 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2011 Amaury Pouly
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <ctype.h>
#include <stdarg.h>
#include "misc.h"
#include "crypto.h"
#include "sb.h"
#define ALIGN_DOWN(n, a) (((n)/(a))*(a))
#define ALIGN_UP(n, a) ALIGN_DOWN((n)+((a)-1),a)
static void fill_gaps(struct sb_file_t *sb)
{
for(int i = 0; i < sb->nr_sections; i++)
{
struct sb_section_t *sec = &sb->sections[i];
for(int j = 0; j < sec->nr_insts; j++)
{
struct sb_inst_t *inst = &sec->insts[j];
if(inst->inst != SB_INST_LOAD)
continue;
inst->padding_size = ROUND_UP(inst->size, BLOCK_SIZE) - inst->size;
/* emulate elftosb2 behaviour: generate 15 bytes (that's a safe maximum) */
inst->padding = xmalloc(15);
generate_random_data(inst->padding, 15);
}
}
}
static void compute_sb_offsets(struct sb_file_t *sb, void *u, generic_printf_t cprintf)
{
#define printf(c, ...) cprintf(u, false, c, __VA_ARGS__)
sb->image_size = 0;
/* sb header */
sb->image_size += sizeof(struct sb_header_t) / BLOCK_SIZE;
/* sections headers */
sb->image_size += sb->nr_sections * sizeof(struct sb_section_header_t) / BLOCK_SIZE;
/* key dictionary */
sb->image_size += g_nr_keys * sizeof(struct sb_key_dictionary_entry_t) / BLOCK_SIZE;
/* sections */
for(int i = 0; i < sb->nr_sections; i++)
{
struct sb_section_t *sec = &sb->sections[i];
/* we need to make sure section starts on the right alignment,
* and since each section starts with a boot tag, we need to ensure
* that the boot tag is at address X such that X+BLOCK_SIZE is a
* multiple of the alignment */
uint32_t alignment = sb->sections[i].alignment / BLOCK_SIZE;
sb->image_size = ALIGN_UP(sb->image_size + 1, alignment) - 1;
/* update padding of previous section */
if(i > 0)
sb->sections[i - 1].pad_size = sb->image_size -
sb->sections[i - 1].file_offset - sb->sections[i - 1].sec_size;
/* each section has a preliminary TAG command */
sb->image_size += 1;
sec->file_offset = sb->image_size;
/* compute section size */
sec->sec_size = 0;
sec->pad_size = 0;
char name[5];
sb_fill_section_name(name, sec->identifier);
printf(BLUE, "%s", sec->is_data ? "Data" : "Boot");
printf(GREEN, " Section ");
printf(YELLOW, "'%s'", name);
if(sec->is_cleartext)
printf(RED, " (cleartext)");
printf(OFF, "\n");
for(int j = 0; j < sec->nr_insts; j++)
{
struct sb_inst_t *inst = &sec->insts[j];
if(inst->inst == SB_INST_CALL || inst->inst == SB_INST_JUMP)
{
printf(RED, " %s", inst->inst == SB_INST_CALL ? "CALL" : "JUMP");
printf(OFF, " | "); printf(BLUE, "addr=0x%08x", inst->addr);
printf(OFF, " | "); printf(GREEN, "arg=0x%08x\n", inst->argument);
sec->sec_size += sizeof(struct sb_instruction_call_t) / BLOCK_SIZE;
}
else if(inst->inst == SB_INST_FILL)
{
printf(RED, " FILL");
printf(OFF, " | "); printf(BLUE, "addr=0x%08x", inst->addr);
printf(OFF, " | "); printf(GREEN, "len=0x%08x", inst->size);
printf(OFF, " | "); printf(YELLOW, "pattern=0x%08x\n", inst->pattern);
sec->sec_size += sizeof(struct sb_instruction_fill_t) / BLOCK_SIZE;
}
else if(inst->inst == SB_INST_LOAD)
{
printf(RED, " LOAD");
printf(OFF, " | "); printf(BLUE, "addr=0x%08x", inst->addr);
printf(OFF, " | "); printf(GREEN, "len=0x%08x\n", inst->size);
/* load header */
sec->sec_size += sizeof(struct sb_instruction_load_t) / BLOCK_SIZE;
/* data + alignment */
sec->sec_size += (inst->size + inst->padding_size) / BLOCK_SIZE;
}
else if(inst->inst == SB_INST_MODE)
{
printf(RED, " MODE");
printf(OFF, " | "); printf(BLUE, "mod=0x%08x\n", inst->addr);
sec->sec_size += sizeof(struct sb_instruction_mode_t) / BLOCK_SIZE;
}
else if(inst->inst == SB_INST_DATA)
{
printf(RED, " DATA");
printf(OFF, " | "); printf(BLUE, "size=0x%08x\n", inst->size);
sec->sec_size += ROUND_UP(inst->size, BLOCK_SIZE) / BLOCK_SIZE;
}
else if(inst->inst == SB_INST_NOP)
{
printf(RED, " NOOP\n");
sec->sec_size += sizeof(struct sb_instruction_nop_t) / BLOCK_SIZE;
}
else
{
cprintf(u, true, GREY, "die on inst %d\n", inst->inst);
}
}
sb->image_size += sec->sec_size;
}
/* final signature */
sb->image_size += 2;
#undef printf
}
uint64_t sb_generate_timestamp(void)
{
struct tm tm_base;
memset(&tm_base, 0, sizeof(tm_base));
/* 2000/1/1 0:00:00 */
tm_base.tm_mday = 1;
tm_base.tm_year = 100;
time_t t = time(NULL) - mktime(&tm_base);
return (uint64_t)t * 1000000L;
}
static uint16_t swap16(uint16_t t)
{
return (t << 8) | (t >> 8);
}
static void fix_version(struct sb_version_t *ver)
{
ver->major = swap16(ver->major);
ver->minor = swap16(ver->minor);
ver->revision = swap16(ver->revision);
}
static void produce_sb_header(struct sb_file_t *sb, struct sb_header_t *sb_hdr)
{
struct sha_1_params_t sha_1_params;
sb_hdr->signature[0] = 'S';
sb_hdr->signature[1] = 'T';
sb_hdr->signature[2] = 'M';
sb_hdr->signature[3] = 'P';
sb_hdr->major_ver = IMAGE_MAJOR_VERSION;
sb_hdr->minor_ver = sb->minor_version;
sb_hdr->flags = sb->flags;
sb_hdr->image_size = sb->image_size;
sb_hdr->header_size = sizeof(struct sb_header_t) / BLOCK_SIZE;
sb_hdr->first_boot_sec_id = sb->sections[sb->first_boot_sec].identifier;
sb_hdr->nr_keys = g_nr_keys;
sb_hdr->nr_sections = sb->nr_sections;
sb_hdr->sec_hdr_size = sizeof(struct sb_section_header_t) / BLOCK_SIZE;
sb_hdr->key_dict_off = sb_hdr->header_size +
sb_hdr->sec_hdr_size * sb_hdr->nr_sections;
sb_hdr->first_boot_tag_off = sb->sections[sb->first_boot_sec].file_offset - 1;
generate_random_data(sb_hdr->rand_pad0, sizeof(sb_hdr->rand_pad0));
generate_random_data(sb_hdr->rand_pad1, sizeof(sb_hdr->rand_pad1));
/* Version 1.0 has 6 bytes of random padding,
* Version 1.1 requires the last 4 bytes to be 'sgtl' */
if(sb->minor_version >= 1)
memcpy(&sb_hdr->rand_pad0[2], "sgtl", 4);
sb_hdr->timestamp = sb->timestamp;
sb_hdr->product_ver = sb->product_ver;
fix_version(&sb_hdr->product_ver);
sb_hdr->component_ver = sb->component_ver;
fix_version(&sb_hdr->component_ver);
sb_hdr->drive_tag = sb->drive_tag;
sha_1_init(&sha_1_params);
sha_1_update(&sha_1_params, &sb_hdr->signature[0],
sizeof(struct sb_header_t) - sizeof(sb_hdr->sha1_header));
sha_1_finish(&sha_1_params);
sha_1_output(&sha_1_params, sb_hdr->sha1_header);
}
static void produce_sb_section_header(struct sb_section_t *sec,
struct sb_section_header_t *sec_hdr)
{
sec_hdr->identifier = sec->identifier;
sec_hdr->offset = sec->file_offset;
sec_hdr->size = sec->sec_size;
sec_hdr->flags = (sec->is_data ? 0 : SECTION_BOOTABLE)
| (sec->is_cleartext ? SECTION_CLEARTEXT : 0)
| sec->other_flags;
}
static uint8_t instruction_checksum(struct sb_instruction_header_t *hdr)
{
uint8_t sum = 90;
uint8_t *ptr = (uint8_t *)hdr;
for(int i = 1; i < 16; i++)
sum += ptr[i];
return sum;
}
static void produce_section_tag_cmd(struct sb_section_t *sec,
struct sb_instruction_tag_t *tag, bool is_last)
{
tag->hdr.opcode = SB_INST_TAG;
tag->hdr.flags = is_last ? SB_INST_LAST_TAG : 0;
tag->identifier = sec->identifier;
/* there is a catch here: in the section header at the beginning of the SB
* file, we put the *useful* length of the section (without padding) but
* the bootloader will not use those and only use the TAG commande which
* need to give the *actual* length (with padding) */
tag->len = sec->sec_size + sec->pad_size;
tag->flags = (sec->is_data ? 0 : SECTION_BOOTABLE)
| (sec->is_cleartext ? SECTION_CLEARTEXT : 0)
| sec->other_flags;
tag->hdr.checksum = instruction_checksum(&tag->hdr);
}
void produce_sb_instruction(struct sb_inst_t *inst,
struct sb_instruction_common_t *cmd, void *u, generic_printf_t cprintf)
{
memset(cmd, 0, sizeof(struct sb_instruction_common_t));
cmd->hdr.opcode = inst->inst;
switch(inst->inst)
{
case SB_INST_CALL:
case SB_INST_JUMP:
cmd->addr = inst->addr;
cmd->data = inst->argument;
break;
case SB_INST_FILL:
cmd->addr = inst->addr;
cmd->len = inst->size;
cmd->data = inst->pattern;
break;
case SB_INST_LOAD:
cmd->addr = inst->addr;
cmd->len = inst->size;
cmd->data = crc_continue(crc(inst->data, inst->size),
inst->padding, inst->padding_size);
break;
case SB_INST_MODE:
cmd->data = inst->addr;
break;
case SB_INST_NOP:
break;
default:
if(g_debug)
cprintf(u, true, GREY, "die on invalid inst %d\n", inst->inst);
}
cmd->hdr.checksum = instruction_checksum(&cmd->hdr);
}
enum sb_error_t sb_write_file(struct sb_file_t *sb, const char *filename, void *u,
generic_printf_t cprintf)
{
#define printf(c, ...) cprintf(u, false, c, __VA_ARGS__)
struct crypto_key_t real_key;
real_key.method = CRYPTO_KEY;
uint8_t crypto_iv[16];
uint8_t (*cbc_macs)[16] = xmalloc(16 * g_nr_keys);
/* init CBC-MACs */
for(int i = 0; i < g_nr_keys; i++)
memset(cbc_macs[i], 0, 16);
/* fill gaps */
fill_gaps(sb);
/* find first bootable section */
sb->first_boot_sec = -1;
for(int i = 0; i < sb->nr_sections; i++)
if(!sb->sections[i].is_data)
{
sb->first_boot_sec = i;
break;
}
if(sb->first_boot_sec == -1)
{
cprintf(u, true, GREY, "Image contains no bootable section, I cannot handle that.\n");
return SB_ERROR;
}
/* compute section offsets */
compute_sb_offsets(sb, u, cprintf);
/* generate random real key */
generate_random_data(real_key.u.key, 16);
/* global SHA-1 */
struct sha_1_params_t file_sha1;
sha_1_init(&file_sha1);
/* produce and write header */
struct sb_header_t sb_hdr;
produce_sb_header(sb, &sb_hdr);
/* allocate image */
uint8_t *buf = xmalloc(sb_hdr.image_size * BLOCK_SIZE);
uint8_t *buf_p = buf;
#define write(p, sz) do { memcpy(buf_p, p, sz); buf_p += sz; } while(0)
#define check_crypto(expr) \
do { int err = expr; \
if(err != CRYPTO_ERROR_SUCCESS) { \
free(cbc_macs); \
cprintf(u, true, GREY, "Crypto error: %d\n", err); \
return SB_CRYPTO_ERROR; } } while(0)
sha_1_update(&file_sha1, (uint8_t *)&sb_hdr, sizeof(sb_hdr));
write(&sb_hdr, sizeof(sb_hdr));
memcpy(crypto_iv, &sb_hdr, 16);
/* update CBC-MACs */
for(int i = 0; i < g_nr_keys; i++)
{
check_crypto(crypto_setup(&g_key_array[i]));
check_crypto(crypto_apply((uint8_t *)&sb_hdr, NULL, sizeof(sb_hdr) / BLOCK_SIZE,
cbc_macs[i], &cbc_macs[i], true));
}
/* produce and write section headers */
for(int i = 0; i < sb_hdr.nr_sections; i++)
{
struct sb_section_header_t sb_sec_hdr;
produce_sb_section_header(&sb->sections[i], &sb_sec_hdr);
sha_1_update(&file_sha1, (uint8_t *)&sb_sec_hdr, sizeof(sb_sec_hdr));
write(&sb_sec_hdr, sizeof(sb_sec_hdr));
/* update CBC-MACs */
for(int j = 0; j < g_nr_keys; j++)
{
check_crypto(crypto_setup(&g_key_array[j]));
check_crypto(crypto_apply((uint8_t *)&sb_sec_hdr, NULL,
sizeof(sb_sec_hdr) / BLOCK_SIZE, cbc_macs[j], &cbc_macs[j], true));
}
}
/* produce key dictionary */
for(int i = 0; i < g_nr_keys; i++)
{
struct sb_key_dictionary_entry_t entry;
memcpy(entry.hdr_cbc_mac, cbc_macs[i], 16);
check_crypto(crypto_setup(&g_key_array[i]));
check_crypto(crypto_apply(real_key.u.key, entry.key, 1, crypto_iv, NULL, true));
write(&entry, sizeof(entry));
sha_1_update(&file_sha1, (uint8_t *)&entry, sizeof(entry));
}
/* HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK HACK */
/* Image crafting, don't use it unless you understand what you do */
if(sb->override_real_key)
memcpy(real_key.u.key, sb->real_key, 16);
if(sb->override_crypto_iv)
memcpy(crypto_iv, sb->crypto_iv, 16);
/* KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH KCAH */
if(g_debug)
{
printf(GREEN, "Real key: ");
for(int j = 0; j < 16; j++)
printf(YELLOW, "%02x", real_key.u.key[j]);
printf(OFF, "\n");
printf(GREEN, "IV : ");
for(int j = 0; j < 16; j++)
printf(YELLOW, "%02x", crypto_iv[j]);
printf(OFF, "\n");
}
/* the first section might not start right after the header, pad with
* random data */
unsigned init_gap = (sb->sections[0].file_offset - 1) * BLOCK_SIZE - (buf_p - buf);
if(init_gap > 0)
{
uint8_t *data = xmalloc(init_gap);
generate_random_data(data, init_gap);
sha_1_update(&file_sha1, data, init_gap);
write(data, init_gap);
free(data);
}
/* setup real key */
check_crypto(crypto_setup(&real_key));
/* produce sections data */
for(int i = 0; i< sb_hdr.nr_sections; i++)
{
/* produce tag command */
struct sb_instruction_tag_t tag_cmd;
produce_section_tag_cmd(&sb->sections[i], &tag_cmd, (i + 1) == sb_hdr.nr_sections);
if(g_nr_keys > 0)
{
check_crypto(crypto_apply((uint8_t *)&tag_cmd, (uint8_t *)&tag_cmd,
sizeof(tag_cmd) / BLOCK_SIZE, crypto_iv, NULL, true));
}
sha_1_update(&file_sha1, (uint8_t *)&tag_cmd, sizeof(tag_cmd));
write(&tag_cmd, sizeof(tag_cmd));
/* produce other commands */
uint8_t cur_cbc_mac[16];
memcpy(cur_cbc_mac, crypto_iv, 16);
for(int j = 0; j < sb->sections[i].nr_insts; j++)
{
struct sb_inst_t *inst = &sb->sections[i].insts[j];
/* command */
if(inst->inst != SB_INST_DATA)
{
struct sb_instruction_common_t cmd;
produce_sb_instruction(inst, &cmd, u, cprintf);
if(g_nr_keys > 0 && !sb->sections[i].is_cleartext)
{
check_crypto(crypto_apply((uint8_t *)&cmd, (uint8_t *)&cmd,
sizeof(cmd) / BLOCK_SIZE, cur_cbc_mac, &cur_cbc_mac, true));
}
sha_1_update(&file_sha1, (uint8_t *)&cmd, sizeof(cmd));
write(&cmd, sizeof(cmd));
}
/* data */
if(inst->inst == SB_INST_LOAD || inst->inst == SB_INST_DATA)
{
uint32_t sz = inst->size + inst->padding_size;
uint8_t *data = xmalloc(sz);
memcpy(data, inst->data, inst->size);
memcpy(data + inst->size, inst->padding, inst->padding_size);
if(g_nr_keys > 0 && !sb->sections[i].is_cleartext)
{
check_crypto(crypto_apply(data, data, sz / BLOCK_SIZE,
cur_cbc_mac, &cur_cbc_mac, true));
}
sha_1_update(&file_sha1, data, sz);
write(data, sz);
free(data);
}
}
/* pad section with random data or NOP */
uint32_t pad_size = sb->sections[i].pad_size;
if(sb->sections[i].is_data)
{
uint8_t *data = xmalloc(pad_size * BLOCK_SIZE);
generate_random_data(data, pad_size * BLOCK_SIZE);
sha_1_update(&file_sha1, data, pad_size * BLOCK_SIZE);
write(data, pad_size * BLOCK_SIZE);
free(data);
}
else
{
for(unsigned j = 0; j < pad_size; j++)
{
struct sb_instruction_nop_t cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.hdr.opcode = SB_INST_NOP;
cmd.hdr.checksum = instruction_checksum(&cmd.hdr);
if(g_nr_keys > 0 && !sb->sections[i].is_cleartext)
{
check_crypto(crypto_apply((uint8_t *)&cmd, (uint8_t *)&cmd,
sizeof(cmd) / BLOCK_SIZE, cur_cbc_mac, &cur_cbc_mac, true));
}
sha_1_update(&file_sha1, (uint8_t *)&cmd, sizeof(cmd));
write(&cmd, sizeof(cmd));
}
}
}
/* write file SHA-1 */
uint8_t final_sig[32];
sha_1_finish(&file_sha1);
sha_1_output(&file_sha1, final_sig);
generate_random_data(final_sig + 20, 12);
if(g_nr_keys > 0)
check_crypto(crypto_apply(final_sig, final_sig, 2, crypto_iv, NULL, true));
write(final_sig, 32);
free(cbc_macs);
if(buf_p - buf != sb_hdr.image_size * BLOCK_SIZE)
{
free(buf);
printf(GREY, "Internal error: SB image buffer was not entirely filled !\n");
printf(GREY, "Internal error: expected %u blocks, got %u\n",
(buf_p - buf) / BLOCK_SIZE, sb_hdr.image_size);
cprintf(u, true, GREY, "Internal error\n");
return SB_ERROR;
}
FILE *fd = fopen(filename, "wb");
if(fd == NULL)
return SB_OPEN_ERROR;
int cnt = fwrite(buf, sb_hdr.image_size * BLOCK_SIZE, 1, fd);
if(cnt != 1)
printf(GREY, "Write error: %m\n");
free(buf);
fclose(fd);
if(cnt != 1)
return SB_WRITE_ERROR;
return SB_SUCCESS;
#undef check_crypto
#undef printf
}
static struct sb_section_t *read_section(bool data_sec, uint32_t id, uint8_t *buf,
int size, const char *indent, void *u, generic_printf_t cprintf, enum sb_error_t *err)
{
#define printf(c, ...) cprintf(u, false, c, __VA_ARGS__)
#define fatal(e, ...) \
do { if(err) *err = e; \
cprintf(u, true, GREY, __VA_ARGS__); \
sb_free_section(*sec); \
free(sec); \
return NULL; } while(0)
struct sb_section_t *sec = xmalloc(sizeof(struct sb_section_t));
memset(sec, 0, sizeof(struct sb_section_t));
sec->identifier = id;
sec->is_data = data_sec;
sec->sec_size = ROUND_UP(size, BLOCK_SIZE) / BLOCK_SIZE;
if(data_sec)
{
sec->nr_insts = 1;
sec->insts = xmalloc(sizeof(struct sb_inst_t));
memset(sec->insts, 0, sizeof(struct sb_inst_t));
sec->insts->inst = SB_INST_DATA;
sec->insts->size = size;
sec->insts->data = memdup(buf, size);
return sec;
}
/* Pretty print the content */
int pos = 0;
while(pos < size)
{
struct sb_inst_t inst;
memset(&inst, 0, sizeof(inst));
struct sb_instruction_header_t *hdr = (struct sb_instruction_header_t *)&buf[pos];
inst.inst = hdr->opcode;
printf(OFF, "%s", indent);
uint8_t checksum = instruction_checksum(hdr);
if(checksum != hdr->checksum)
fatal(SB_CHECKSUM_ERROR, "Bad instruction checksum\n");
if(hdr->flags != 0)
{
printf(GREY, "[");
printf(BLUE, "f=%x", hdr->flags);
printf(GREY, "] ");
}
if(hdr->opcode == SB_INST_LOAD)
{
struct sb_instruction_load_t *load = (struct sb_instruction_load_t *)&buf[pos];
inst.size = load->len;
inst.addr = load->addr;
inst.data = memdup(load + 1, load->len);
printf(RED, "LOAD");
printf(OFF, " | ");
printf(BLUE, "addr=0x%08x", load->addr);
printf(OFF, " | ");
printf(GREEN, "len=0x%08x", load->len);
printf(OFF, " | ");
printf(YELLOW, "crc=0x%08x", load->crc);
/* data is padded to 16-byte boundary with random data and crc'ed with it */
uint32_t computed_crc = crc(&buf[pos + sizeof(struct sb_instruction_load_t)],
ROUND_UP(load->len, 16));
if(load->crc == computed_crc)
printf(RED, " Ok\n");
else
{
printf(RED, " Failed (crc=0x%08x)\n", computed_crc);
fatal(SB_CHECKSUM_ERROR, "Instruction data crc error\n");
}
pos += load->len + sizeof(struct sb_instruction_load_t);
}
else if(hdr->opcode == SB_INST_FILL)
{
struct sb_instruction_fill_t *fill = (struct sb_instruction_fill_t *)&buf[pos];
inst.pattern = fill->pattern;
inst.size = fill->len;
inst.addr = fill->addr;
printf(RED, "FILL");
printf(OFF, " | ");
printf(BLUE, "addr=0x%08x", fill->addr);
printf(OFF, " | ");
printf(GREEN, "len=0x%08x", fill->len);
printf(OFF, " | ");
printf(YELLOW, "pattern=0x%08x\n", fill->pattern);
pos += sizeof(struct sb_instruction_fill_t);
}
else if(hdr->opcode == SB_INST_CALL ||
hdr->opcode == SB_INST_JUMP)
{
int is_call = (hdr->opcode == SB_INST_CALL);
struct sb_instruction_call_t *call = (struct sb_instruction_call_t *)&buf[pos];
inst.addr = call->addr;
inst.argument = call->arg;
if(is_call)
printf(RED, "CALL");
else
printf(RED, "JUMP");
printf(OFF, " | ");
printf(BLUE, "addr=0x%08x", call->addr);
printf(OFF, " | ");
printf(GREEN, "arg=0x%08x\n", call->arg);
pos += sizeof(struct sb_instruction_call_t);
}
else if(hdr->opcode == SB_INST_MODE)
{
struct sb_instruction_mode_t *mode = (struct sb_instruction_mode_t *)hdr;
inst.argument = mode->mode;
printf(RED, "MODE");
printf(OFF, " | ");
printf(BLUE, "mod=0x%08x\n", mode->mode);
pos += sizeof(struct sb_instruction_mode_t);
}
else if(hdr->opcode == SB_INST_NOP)
{
printf(RED, "NOOP\n");
pos += sizeof(struct sb_instruction_mode_t);
}
else
{
fatal(SB_FORMAT_ERROR, "Unknown instruction %d at address 0x%08lx\n", hdr->opcode, (unsigned long)pos);
break;
}
sec->insts = augment_array(sec->insts, sizeof(struct sb_inst_t), sec->nr_insts++, &inst, 1);
pos = ROUND_UP(pos, BLOCK_SIZE);
}
return sec;
#undef printf
#undef fatal
}
void sb_fill_section_name(char name[5], uint32_t identifier)
{
name[0] = (identifier >> 24) & 0xff;
name[1] = (identifier >> 16) & 0xff;
name[2] = (identifier >> 8) & 0xff;
name[3] = identifier & 0xff;
for(int i = 0; i < 4; i++)
if(!isprint(name[i]))
name[i] = '_';
name[4] = 0;
}
static uint32_t guess_alignment(uint32_t off)
{
/* find greatest power of two which divides the offset */
if(off == 0)
return 1;
uint32_t a = 1;
while(off % (2 * a) == 0)
a *= 2;
return a;
}
struct sb_file_t *sb_read_file(const char *filename, unsigned flags, void *u,
generic_printf_t cprintf, enum sb_error_t *err)
{
return sb_read_file_ex(filename, 0, -1, flags, u, cprintf, err);
}
struct sb_file_t *sb_read_file_ex(const char *filename, size_t offset, size_t size,
unsigned flags, void *u, generic_printf_t cprintf, enum sb_error_t *err)
{
#define fatal(e, ...) \
do { if(err) *err = e; \
cprintf(u, true, GREY, __VA_ARGS__); \
free(buf); \
return NULL; } while(0)
FILE *f = fopen(filename, "rb");
void *buf = NULL;
if(f == NULL)
fatal(SB_OPEN_ERROR, "Cannot open file for reading\n");
fseek(f, 0, SEEK_END);
size_t read_size = ftell(f);
fseek(f, offset, SEEK_SET);
if(size != (size_t)-1)
read_size = size;
buf = xmalloc(read_size);
if(fread(buf, read_size, 1, f) != 1)
{
fclose(f);
fatal(SB_READ_ERROR, "Cannot read file\n");
}
fclose(f);
struct sb_file_t *ret = sb_read_memory(buf, read_size, flags, u, cprintf, err);
free(buf);
return ret;
#undef fatal
}
struct printer_t
{
void *user;
generic_printf_t cprintf;
const char *color;
bool error;
};
static void sb_printer(void *user, const char *fmt, ...)
{
struct printer_t *p = user;
va_list args;
va_start(args, fmt);
char buffer[1024];
vsnprintf(buffer, sizeof(buffer), fmt, args);
p->cprintf(p->user, p->error, p->color, "%s", buffer);
va_end(args);
}
struct sb_file_t *sb_read_memory(void *_buf, size_t filesize, unsigned flags, void *u,
generic_printf_t cprintf, enum sb_error_t *out_err)
{
struct sb_file_t *sb_file = NULL;
uint8_t *buf = _buf;
#define printf(c, ...) cprintf(u, false, c, __VA_ARGS__)
#define fatal(e, ...) \
do { if(out_err) *out_err = e; \
cprintf(u, true, GREY, __VA_ARGS__); \
free(cbcmacs); \
sb_free(sb_file); \
return NULL; } while(0)
struct printer_t printer = {.user = u, .cprintf = cprintf, .color = OFF, .error = false };
#define print_hex(c, p, len, nl) \
do { printer.color = c; print_hex(&printer, sb_printer, p, len, nl); } while(0)
#define check_crypto(expr) \
do { int err = expr; \
if(err != CRYPTO_ERROR_SUCCESS) \
fatal(SB_CRYPTO_ERROR, "Crypto error: %d\n", err); } while(0)
struct sha_1_params_t sha_1_params;
uint8_t (*cbcmacs)[16] = xmalloc(16 * g_nr_keys);
sb_file = xmalloc(sizeof(struct sb_file_t));
memset(sb_file, 0, sizeof(struct sb_file_t));
struct sb_header_t *sb_header = (struct sb_header_t *)buf;
sb_file->image_size = sb_header->image_size;
sb_file->minor_version = sb_header->minor_ver;
sb_file->flags = sb_header->flags;
sb_file->drive_tag = sb_header->drive_tag;
sb_file->first_boot_sec_id = sb_header->first_boot_sec_id;
if(memcmp(sb_header->signature, "STMP", 4) != 0)
fatal(SB_FORMAT_ERROR, "Bad signature\n");
if(sb_header->image_size * BLOCK_SIZE > filesize)
fatal(SB_FORMAT_ERROR, "File too small (should be at least %d bytes)\n",
sb_header->image_size * BLOCK_SIZE);
if(sb_header->header_size * BLOCK_SIZE != sizeof(struct sb_header_t))
fatal(SB_FORMAT_ERROR, "Bad header size\n");
if(sb_header->sec_hdr_size * BLOCK_SIZE != sizeof(struct sb_section_header_t))
fatal(SB_FORMAT_ERROR, "Bad section header size\n");
if(filesize > sb_header->image_size * BLOCK_SIZE)
{
printf(GREY, "[Restrict file size from %lu to %d bytes]\n", filesize,
sb_header->image_size * BLOCK_SIZE);
filesize = sb_header->image_size * BLOCK_SIZE;
}
printf(BLUE, "Basic info:\n");
printf(GREEN, " SB version: ");
printf(YELLOW, "%d.%d\n", sb_header->major_ver, sb_header->minor_ver);
printf(GREEN, " Header SHA-1: ");
uint8_t *hdr_sha1 = sb_header->sha1_header;
print_hex(YELLOW, hdr_sha1, 20, false);
/* Check SHA1 sum */
uint8_t computed_sha1[20];
sha_1_init(&sha_1_params);
sha_1_update(&sha_1_params, &sb_header->signature[0],
sizeof(struct sb_header_t) - sizeof(sb_header->sha1_header));
sha_1_finish(&sha_1_params);
sha_1_output(&sha_1_params, computed_sha1);
if(memcmp(hdr_sha1, computed_sha1, 20) == 0)
printf(RED, " Ok\n");
else
{
printf(RED, " Failed\n");
if(!(flags & SB_IGNORE_SHA1))
fatal(SB_FORMAT_ERROR, "Bad header checksum\n");
}
printf(GREEN, " Flags: ");
printf(YELLOW, "%x\n", sb_header->flags);
printf(GREEN, " Total file size : ");
printf(YELLOW, "%ld\n", filesize);
/* Sizes and offsets */
printf(BLUE, "Sizes and offsets:\n");
printf(GREEN, " # of encryption keys = ");
printf(YELLOW, "%d\n", sb_header->nr_keys);
printf(GREEN, " # of sections = ");
printf(YELLOW, "%d\n", sb_header->nr_sections);
/* Versions */
printf(BLUE, "Versions\n");
printf(GREEN, " Random 1: ");
print_hex(YELLOW, sb_header->rand_pad0, sizeof(sb_header->rand_pad0), true);
printf(GREEN, " Random 2: ");
print_hex(YELLOW, sb_header->rand_pad1, sizeof(sb_header->rand_pad1), true);
uint64_t micros = sb_header->timestamp;
time_t seconds = (micros / (uint64_t)1000000L);
struct tm tm_base;
memset(&tm_base, 0, sizeof(tm_base));
/* 2000/1/1 0:00:00 */
tm_base.tm_mday = 1;
tm_base.tm_year = 100;
seconds += mktime(&tm_base);
struct tm *time = gmtime(&seconds);
printf(GREEN, " Creation date/time = ");
printf(YELLOW, "%s", asctime(time));
sb_file->timestamp = sb_header->timestamp;
struct sb_version_t product_ver = sb_header->product_ver;
fix_version(&product_ver);
struct sb_version_t component_ver = sb_header->component_ver;
fix_version(&component_ver);
memcpy(&sb_file->product_ver, &product_ver, sizeof(product_ver));
memcpy(&sb_file->component_ver, &component_ver, sizeof(component_ver));
printf(GREEN, " Product version = ");
printf(YELLOW, "%X.%X.%X\n", product_ver.major, product_ver.minor, product_ver.revision);
printf(GREEN, " Component version = ");
printf(YELLOW, "%X.%X.%X\n", component_ver.major, component_ver.minor, component_ver.revision);
printf(GREEN, " Drive tag = ");
printf(YELLOW, "%x\n", sb_header->drive_tag);
printf(GREEN, " First boot tag offset = ");
printf(YELLOW, "%x\n", sb_header->first_boot_tag_off);
printf(GREEN, " First boot section ID = ");
printf(YELLOW, "0x%08x\n", sb_header->first_boot_sec_id);
/* encryption cbc-mac */
struct crypto_key_t real_key;
real_key.method = CRYPTO_KEY;
bool valid_key = false; /* false until a matching key was found */
if(sb_header->nr_keys > 0)
{
printf(BLUE, "Encryption keys\n");
for(int i = 0; i < g_nr_keys; i++)
{
printf(RED, " Key %d\n", i),
printf(GREEN, " Key: ");
printer.color = YELLOW;
print_key(&printer, sb_printer, &g_key_array[i], true);
printf(GREEN, " CBC-MAC: ");
/* check it */
uint8_t zero[16];
memset(zero, 0, 16);
check_crypto(crypto_setup(&g_key_array[i]));
check_crypto(crypto_apply(buf, NULL, sb_header->header_size +
sb_header->nr_sections, zero, &cbcmacs[i], true));
print_hex(YELLOW, cbcmacs[i], 16, true);
}
printf(BLUE, "DEK\n");
for(int i = 0; i < sb_header->nr_keys; i++)
{
printf(RED, " Entry %d\n", i);
uint32_t ofs = sizeof(struct sb_header_t)
+ sizeof(struct sb_section_header_t) * sb_header->nr_sections
+ sizeof(struct sb_key_dictionary_entry_t) * i;
struct sb_key_dictionary_entry_t *dict_entry =
(struct sb_key_dictionary_entry_t *)&buf[ofs];
/* cbc mac */
printf(GREEN, " Encrypted key: ");
print_hex(YELLOW, dict_entry->key, 16, true);
printf(GREEN, " CBC-MAC : ");
print_hex(YELLOW, dict_entry->hdr_cbc_mac, 16, false);
/* check it */
int idx = 0;
while(idx < g_nr_keys && memcmp(dict_entry->hdr_cbc_mac, cbcmacs[idx], 16) != 0)
idx++;
if(idx != g_nr_keys)
{
printf(RED, " Match\n");
/* decrypt */
uint8_t decrypted_key[16];
uint8_t iv[16];
memcpy(iv, buf, 16); /* uses the first 16-bytes of SHA-1 sig as IV */
check_crypto(crypto_setup(&g_key_array[idx]));
check_crypto(crypto_apply(dict_entry->key, decrypted_key, 1, iv, NULL, false));
printf(GREEN, " Decrypted key: ");
print_hex(YELLOW, decrypted_key, 16, false);
if(valid_key)
{
if(memcmp(real_key.u.key, decrypted_key, 16) == 0)
printf(RED, " Cross-Check Ok");
else
printf(RED, " Cross-Check Failed");
}
else
{
memcpy(real_key.u.key, decrypted_key, 16);
valid_key = true;
}
printf(OFF, "\n");
}
else
printf(RED, " Don't Match\n");
}
if(!valid_key)
{
if(g_force)
printf(GREY, " No valid key found\n");
else
fatal(SB_NO_VALID_KEY, "No valid key found\n");
}
if(getenv("SB_REAL_KEY") != 0)
{
char *env = getenv("SB_REAL_KEY");
if(!parse_key(&env, &real_key) || *env)
fatal(SB_ERROR, "Invalid SB_REAL_KEY\n");
/* assume the key is valid */
if(valid_key)
printf(GREY, " Overriding real key\n");
else
printf(GREY, " Assuming real key is ok\n");
valid_key = true;
}
printf(RED, " Summary:\n");
printf(GREEN, " Real key: ");
print_hex(YELLOW, real_key.u.key, 16, true);
printf(GREEN, " IV : ");
print_hex(YELLOW, buf, 16, true);
memcpy(sb_file->real_key, real_key.u.key, 16);
memcpy(sb_file->crypto_iv, buf, 16);
/* setup real key if needed */
check_crypto(crypto_setup(&real_key));
}
else
valid_key = true;
/* sections */
if(!(flags & SB_RAW_MODE))
{
sb_file->nr_sections = sb_header->nr_sections;
sb_file->sections = xmalloc(sb_file->nr_sections * sizeof(struct sb_section_t));
memset(sb_file->sections, 0, sb_file->nr_sections * sizeof(struct sb_section_t));
printf(BLUE, "Sections\n");
for(int i = 0; i < sb_header->nr_sections; i++)
{
uint32_t ofs = sb_header->header_size * BLOCK_SIZE + i * sizeof(struct sb_section_header_t);
struct sb_section_header_t *sec_hdr = (struct sb_section_header_t *)&buf[ofs];
char name[5];
sb_fill_section_name(name, sec_hdr->identifier);
int pos = sec_hdr->offset * BLOCK_SIZE;
int size = sec_hdr->size * BLOCK_SIZE;
int data_sec = !(sec_hdr->flags & SECTION_BOOTABLE);
int encrypted = !(sec_hdr->flags & SECTION_CLEARTEXT) && sb_header->nr_keys > 0;
printf(GREEN, " Section ");
printf(YELLOW, "'%s'\n", name);
printf(GREEN, " pos = ");
printf(YELLOW, "%8x - %8x\n", pos, pos+size);
printf(GREEN, " len = ");
printf(YELLOW, "%8x\n", size);
printf(GREEN, " flags = ");
printf(YELLOW, "%8x", sec_hdr->flags);
if(data_sec)
printf(RED, " Data Section");
else
printf(RED, " Boot Section");
if(encrypted)
printf(RED, " (Encrypted)");
printf(OFF, "\n");
/* skip it if we cannot decrypt it */
if(encrypted && !valid_key)
{
printf(GREY, " Skipping section content (no valid key)\n");
continue;
}
/* save it */
uint8_t *sec = xmalloc(size);
if(encrypted)
check_crypto(crypto_apply(buf + pos, sec, size / BLOCK_SIZE, buf, NULL, false));
else
memcpy(sec, buf + pos, size);
struct sb_section_t *s = read_section(data_sec, sec_hdr->identifier,
sec, size, " ", u, cprintf, out_err);
free(sec);
if(s)
{
s->other_flags = sec_hdr->flags & ~SECTION_STD_MASK;
s->is_cleartext = !encrypted;
s->alignment = guess_alignment(pos);
memcpy(&sb_file->sections[i], s, sizeof(struct sb_section_t));
free(s);
}
else
fatal(*out_err, "Error reading section\n");
}
}
else if(valid_key)
{
/* advanced raw mode */
printf(BLUE, "Commands\n");
uint32_t offset = sb_header->first_boot_tag_off * BLOCK_SIZE;
uint8_t iv[16];
const char *indent = " ";
while(true)
{
/* restart with IV */
memcpy(iv, buf, 16);
uint8_t cmd[BLOCK_SIZE];
if(sb_header->nr_keys > 0)
check_crypto(crypto_apply(buf + offset, cmd, 1, iv, &iv, false));
else
memcpy(cmd, buf + offset, BLOCK_SIZE);
struct sb_instruction_header_t *hdr = (struct sb_instruction_header_t *)cmd;
printf(OFF, "%s", indent);
uint8_t checksum = instruction_checksum(hdr);
if(checksum != hdr->checksum)
printf(GREY, "[Bad checksum]");
if(hdr->opcode == SB_INST_NOP)
{
printf(RED, "NOOP\n");
offset += BLOCK_SIZE;
}
else if(hdr->opcode == SB_INST_TAG)
{
struct sb_instruction_tag_t *tag = (struct sb_instruction_tag_t *)hdr;
printf(RED, "BTAG");
printf(OFF, " | ");
printf(BLUE, "sec=0x%08x", tag->identifier);
printf(OFF, " | ");
printf(GREEN, "cnt=0x%08x", tag->len);
printf(OFF, " | ");
printf(YELLOW, "flg=0x%08x", tag->flags);
if(tag->hdr.flags & SB_INST_LAST_TAG)
{
printf(OFF, " | ");
printf(RED, " Last section");
}
printf(OFF, "\n");
offset += sizeof(struct sb_instruction_tag_t);
char name[5];
sb_fill_section_name(name, tag->identifier);
int pos = offset;
int size = tag->len * BLOCK_SIZE;
int data_sec = !(tag->flags & SECTION_BOOTABLE);
int encrypted = !(tag->flags & SECTION_CLEARTEXT) && sb_header->nr_keys > 0;
printf(GREEN, "%sSection ", indent);
printf(YELLOW, "'%s'\n", name);
printf(GREEN, "%s pos = ", indent);
printf(YELLOW, "%8x - %8x\n", pos, pos+size);
printf(GREEN, "%s len = ", indent);
printf(YELLOW, "%8x\n", size);
printf(GREEN, "%s flags = ", indent);
printf(YELLOW, "%8x", tag->flags);
if(data_sec)
printf(RED, " Data Section");
else
printf(RED, " Boot Section");
if(encrypted)
printf(RED, " (Encrypted)");
printf(OFF, "\n");
/* skip it if we cannot decrypt it */
if(encrypted && !valid_key)
{
printf(GREY, " Skipping section content (no valid key)\n");
offset += size;
continue;
}
/* save it */
uint8_t *sec = xmalloc(size);
if(encrypted)
check_crypto(crypto_apply(buf + pos, sec, size / BLOCK_SIZE, buf, NULL, false));
else
memcpy(sec, buf + pos, size);
struct sb_section_t *s = read_section(data_sec, tag->identifier,
sec, size, " ", u, cprintf, out_err);
free(sec);
if(s)
{
s->other_flags = tag->flags & ~SECTION_STD_MASK;
s->is_cleartext = !encrypted;
s->alignment = guess_alignment(pos);
sb_file->sections = augment_array(sb_file->sections,
sizeof(struct sb_section_t), sb_file->nr_sections++,
s, 1);
free(s);
}
else
fatal(*out_err, "Error reading section\n");
/* last one ? */
if(tag->hdr.flags & SB_INST_LAST_TAG)
break;
offset += size;
}
else
{
fatal(SB_FORMAT_ERROR, "Unknown instruction %d at address 0x%08lx\n", hdr->opcode, (long)offset);
break;
}
}
}
else
{
printf(GREY, "Cannot read content in raw mode without a valid key\n");
}
/* final signature */
printf(BLUE, "Final signature:\n");
uint8_t decrypted_block[32];
if(sb_header->nr_keys > 0)
{
printf(GREEN, " Encrypted SHA-1:\n");
uint8_t *encrypted_block = &buf[filesize - 32];
printf(OFF, " ");
print_hex(YELLOW, encrypted_block, 16, true);
printf(OFF, " ");
print_hex(YELLOW, encrypted_block + 16, 16, true);
/* decrypt it */
check_crypto(crypto_apply(encrypted_block, decrypted_block, 2, buf, NULL, false));
}
else
memcpy(decrypted_block, &buf[filesize - 32], 32);
printf(GREEN, " File SHA-1:\n ");
print_hex(YELLOW, decrypted_block, 20, false);
/* check it */
sha_1_init(&sha_1_params);
sha_1_update(&sha_1_params, buf, filesize - 32);
sha_1_finish(&sha_1_params);
sha_1_output(&sha_1_params, computed_sha1);
if(memcmp(decrypted_block, computed_sha1, 20) == 0)
printf(RED, " Ok\n");
else if(flags & SB_IGNORE_SHA1)
{
/* some weird images produced by some buggy tools have wrong SHA-1,
* this probably gone unnoticed because the bootloader ignores the SHA-1
* anyway */
printf(RED, " Failed\n");
cprintf(u, true, GREY, "Warning: SHA-1 mismatch ignored per flags\n");
}
else
{
printf(RED, " Failed\n");
fatal(SB_CHECKSUM_ERROR, "File SHA-1 error\n");
}
free(cbcmacs);
return sb_file;
#undef printf
#undef fatal
#undef print_hex
}
void sb_generate_default_version(struct sb_version_t *ver)
{
ver->major = ver->minor = ver->revision = 0x999;
}
void sb_build_default_image(struct sb_file_t *sb)
{
sb->minor_version = IMAGE_MINOR_VERSION;
sb->timestamp = sb_generate_timestamp();
sb_generate_default_version(&sb->product_ver);
sb_generate_default_version(&sb->component_ver);
}
void sb_free_instruction(struct sb_inst_t inst)
{
free(inst.padding);
free(inst.data);
}
void sb_free_section(struct sb_section_t sec)
{
for(int j = 0; j < sec.nr_insts; j++)
sb_free_instruction(sec.insts[j]);
free(sec.insts);
}
void sb_free(struct sb_file_t *file)
{
if(!file) return;
for(int i = 0; i < file->nr_sections; i++)
sb_free_section(file->sections[i]);
free(file->sections);
free(file);
}
void sb_dump(struct sb_file_t *file, void *u, generic_printf_t cprintf)
{
#define printf(c, ...) cprintf(u, false, c, __VA_ARGS__)
struct printer_t printer = {.user = u, .cprintf = cprintf, .color = OFF, .error = false };
#define print_hex(c, p, len, nl) \
do { printer.color = c; print_hex(&printer, sb_printer, p, len, nl); } while(0)
#define TREE RED
#define HEADER GREEN
#define TEXT YELLOW
#define TEXT2 BLUE
#define SEP OFF
printf(BLUE, "SB File\n");
printf(TREE, "+-");
printf(HEADER, "Version: ");
printf(TEXT, "1.%d\n", file->minor_version);
printf(TREE, "+-");
printf(HEADER, "Flags: ");
printf(TEXT, "%x\n", file->flags);
printf(TREE, "+-");
printf(HEADER, "Drive Tag: ");
printf(TEXT, "%x\n", file->drive_tag);
printf(TREE, "+-");
printf(HEADER, "First Boot Section ID: ");
char name[5];
sb_fill_section_name(name, file->first_boot_sec_id);
printf(TEXT, "%08x (%s)\n", file->first_boot_sec_id, name);
printf(TREE, "+-");
printf(HEADER, "Timestamp: ");
printf(TEXT, "%#llx", file->timestamp);
{
uint64_t micros = file->timestamp;
time_t seconds = (micros / (uint64_t)1000000L);
struct tm tm_base;
memset(&tm_base, 0, sizeof(tm_base));
/* 2000/1/1 0:00:00 */
tm_base.tm_mday = 1;
tm_base.tm_year = 100;
seconds += mktime(&tm_base);
struct tm *time = gmtime(&seconds);
char *str = asctime(time);
str[strlen(str) - 1] = 0;
printf(TEXT2, " (%s)\n", str);
}
if(file->override_real_key)
{
printf(TREE, "+-");
printf(HEADER, "Real key: ");
print_hex(TEXT, file->real_key, 16, true);
}
if(file->override_crypto_iv)
{
printf(TREE, "+-");
printf(HEADER, "IV : ");
print_hex(TEXT, file->crypto_iv, 16, true);
}
printf(TREE, "+-");
printf(HEADER, "Product Version: ");
printf(TEXT, "%X.%X.%X\n", file->product_ver.major, file->product_ver.minor,
file->product_ver.revision);
printf(TREE, "+-");
printf(HEADER, "Component Version: ");
printf(TEXT, "%X.%X.%X\n", file->component_ver.major, file->component_ver.minor,
file->component_ver.revision);
for(int i = 0; i < file->nr_sections; i++)
{
struct sb_section_t *sec = &file->sections[i];
printf(TREE, "+-");
printf(HEADER, "Section\n");
printf(TREE,"| +-");
printf(HEADER, "Identifier: ");
sb_fill_section_name(name, sec->identifier);
printf(TEXT, "%08x (%s)\n", sec->identifier, name);
printf(TREE, "| +-");
printf(HEADER, "Type: ");
printf(TEXT, "%s (%s)\n", sec->is_data ? "Data Section" : "Boot Section",
sec->is_cleartext ? "Cleartext" : "Encrypted");
printf(TREE, "| +-");
printf(HEADER, "Alignment: ");
printf(TEXT, "%d (bytes)\n", sec->alignment);
printf(TREE, "| +-");
printf(HEADER, "Other Flags: ");
printf(TEXT, "%#x\n", sec->other_flags);
printf(TREE, "| +-");
printf(HEADER, "Instructions\n");
for(int j = 0; j < sec->nr_insts; j++)
{
struct sb_inst_t *inst = &sec->insts[j];
printf(TREE, "| | +-");
switch(inst->inst)
{
case SB_INST_DATA:
printf(HEADER, "DATA");
printf(SEP, " | ");
printf(TEXT, "size=0x%08x\n", inst->size);
break;
case SB_INST_CALL:
case SB_INST_JUMP:
printf(HEADER, "%s", inst->inst == SB_INST_CALL ? "CALL" : "JUMP");
printf(SEP, " | ");
printf(TEXT, "addr=0x%08x", inst->addr);
printf(SEP, " | ");
printf(TEXT2, "arg=0x%08x\n", inst->argument);
break;
case SB_INST_LOAD:
printf(HEADER, "LOAD");
printf(SEP, " | ");
printf(TEXT, "addr=0x%08x", inst->addr);
printf(SEP, " | ");
printf(TEXT2, "len=0x%08x\n", inst->size);
break;
case SB_INST_FILL:
printf(HEADER, "FILL");
printf(SEP, " | ");
printf(TEXT, "addr=0x%08x", inst->addr);
printf(SEP, " | ");
printf(TEXT2, "len=0x%08x", inst->size);
printf(SEP, " | ");
printf(TEXT2, "pattern=0x%08x\n", inst->pattern);
break;
case SB_INST_MODE:
printf(HEADER, "MODE");
printf(SEP, " | ");
printf(TEXT, "mod=0x%08x\n", inst->addr);
break;
case SB_INST_NOP:
printf(HEADER, "NOOP\n");
break;
default:
printf(GREY, "[Unknown instruction %x]\n", inst->inst);
}
}
}
#undef printf
#undef print_hex
}
void sb_get_zero_key(struct crypto_key_t *key)
{
key->method = CRYPTO_KEY;
memset(key->u.key, 0, sizeof(key->u.key));
}