rockbox/firmware/target/mips/ingenic_jz47xx/usb-jz4740.c
Rafaël Carré f016893aaa onda: remove now inlined USB_INIT_GPIO()
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@31500 a1c6a512-1295-4272-9138-f99709370657
2011-12-31 18:50:45 +00:00

865 lines
22 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2008 by Maurus Cuelenaere
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
/*#define LOGF_ENABLE*/
#include "logf.h"
#include "system.h"
#include "usb_ch9.h"
#include "usb_drv.h"
#include "usb_core.h"
#include "jz4740.h"
#include "thread.h"
/*
The Jz4740 USB controller is called MUSBHSFC in the datasheet.
It also seems to be a more generic controller, with support for
up to 15 endpoints (the Jz4740 only has 5).
*/
#define EP_BUF_LEFT(ep) ((ep)->length - (ep)->sent)
#define EP_PTR(ep) ((void*)((unsigned int)(ep)->buf + (ep)->sent))
#define EP_NUMBER(ep) (((int)(ep) - (int)&endpoints[0])/sizeof(struct usb_endpoint))
#define EP_NUMBER2(ep) (EP_NUMBER((ep))/2)
#define TOTAL_EP() (sizeof(endpoints)/sizeof(struct usb_endpoint))
#define EP_IS_IN(ep) (EP_NUMBER((ep))%2)
enum ep_type
{
ep_control,
ep_bulk,
ep_interrupt,
ep_isochronous
};
struct usb_endpoint
{
void *buf;
size_t length;
union
{
size_t sent;
size_t received;
};
bool busy;
const enum ep_type type;
const bool use_dma;
const long fifo_addr;
unsigned short fifo_size;
bool wait;
struct semaphore complete;
};
static unsigned char ep0_rx_buf[64];
static struct usb_endpoint endpoints[] =
{
{ .type = ep_control, .fifo_addr = USB_FIFO_EP0, .fifo_size = 64 },
{ .type = ep_control, .fifo_addr = USB_FIFO_EP0, .buf = &ep0_rx_buf },
{ .type = ep_bulk, .fifo_addr = USB_FIFO_EP1, .fifo_size = 512 },
{ .type = ep_bulk, .fifo_addr = USB_FIFO_EP1, .fifo_size = 512 },
{ .type = ep_interrupt, .fifo_addr = USB_FIFO_EP2, .fifo_size = 64 },
};
static inline void select_endpoint(int ep)
{
REG_USB_REG_INDEX = ep;
}
static void readFIFO(struct usb_endpoint *ep, unsigned int size)
{
logf("%s(EP%d, %d)", __func__, EP_NUMBER2(ep), size);
register unsigned char *ptr = (unsigned char*)EP_PTR(ep);
register unsigned int *ptr32 = (unsigned int*)ptr;
register unsigned int s = size >> 2;
register unsigned int x;
if(size > 0)
{
if( ((unsigned int)ptr & 3) == 0 )
{
while(s--)
*ptr32++ = REG32(ep->fifo_addr);
ptr = (unsigned char*)ptr32;
}
else
{
while(s--)
{
x = REG32(ep->fifo_addr);
*ptr++ = x & 0xFF; x >>= 8;
*ptr++ = x & 0xFF; x >>= 8;
*ptr++ = x & 0xFF; x >>= 8;
*ptr++ = x;
}
}
s = size & 3;
while(s--)
*ptr++ = REG8(ep->fifo_addr);
}
}
static void writeFIFO(struct usb_endpoint *ep, size_t size)
{
logf("%s(EP%d, %d)", __func__, EP_NUMBER2(ep), size);
register unsigned int *d32 = (unsigned int *)EP_PTR(ep);
register size_t s = size >> 2;
if(size > 0)
{
while (s--)
REG32(ep->fifo_addr) = *d32++;
if( (s = size & 3) )
{
register unsigned char *d8 = (unsigned char *)d32;
while (s--)
REG8(ep->fifo_addr) = *d8++;
}
}
}
static void flushFIFO(struct usb_endpoint *ep)
{
logf("%s(%d)", __func__, EP_NUMBER(ep));
switch (ep->type)
{
case ep_control:
break;
case ep_bulk:
case ep_interrupt:
case ep_isochronous:
if(EP_IS_IN(ep))
REG_USB_REG_INCSR |= (USB_INCSR_FF | USB_INCSR_CDT);
else
REG_USB_REG_OUTCSR |= (USB_OUTCSR_FF | USB_OUTCSR_CDT);
break;
}
}
static inline void ep_transfer_completed(struct usb_endpoint* ep)
{
ep->sent = 0;
ep->length = 0;
ep->buf = NULL;
ep->busy = false;
if(ep->wait)
semaphore_release(&ep->complete);
}
static void EP0_send(void)
{
struct usb_endpoint* ep = &endpoints[0];
unsigned int length;
unsigned char csr0;
select_endpoint(0);
csr0 = REG_USB_REG_CSR0;
if(ep->sent == 0)
length = MIN(ep->length, ep->fifo_size);
else
length = MIN(EP_BUF_LEFT(ep), ep->fifo_size);
writeFIFO(ep, length);
ep->sent += length;
if(ep->sent >= ep->length)
{
REG_USB_REG_CSR0 = (csr0 | USB_CSR0_INPKTRDY | USB_CSR0_DATAEND); /* Set data end! */
usb_core_transfer_complete(0, USB_DIR_IN, 0, ep->sent);
ep_transfer_completed(ep);
}
else
REG_USB_REG_CSR0 = (csr0 | USB_CSR0_INPKTRDY);
}
static void EP0_handler(void)
{
logf("%s()", __func__);
unsigned char csr0;
struct usb_endpoint *ep_send = &endpoints[0];
struct usb_endpoint *ep_recv = &endpoints[1];
/* Read CSR0 */
select_endpoint(0);
csr0 = REG_USB_REG_CSR0;
/* Check for SentStall:
This bit is set when a STALL handshake is transmitted. The CPU should clear this bit.
*/
if(csr0 & USB_CSR0_SENTSTALL)
{
REG_USB_REG_CSR0 = csr0 & ~USB_CSR0_SENTSTALL;
return;
}
/* Check for SetupEnd:
This bit will be set when a control transaction ends before the DataEnd bit has been set.
An interrupt will be generated and the FIFO flushed at this time.
The bit is cleared by the CPU writing a 1 to the ServicedSetupEnd bit.
*/
if(csr0 & USB_CSR0_SETUPEND)
{
REG_USB_REG_CSR0 = csr0 | USB_CSR0_SVDSETUPEND;
return;
}
/* Call relevant routines for endpoint 0 state */
if(ep_send->busy)
EP0_send();
else if(csr0 & USB_CSR0_OUTPKTRDY) /* There is a packet in the fifo */
{
readFIFO(ep_recv, REG_USB_REG_COUNT0);
REG_USB_REG_CSR0 = csr0 | USB_CSR0_SVDOUTPKTRDY; /* clear OUTPKTRDY bit */
usb_core_control_request((struct usb_ctrlrequest*)ep_recv->buf);
}
}
static void EPIN_handler(unsigned int endpoint)
{
struct usb_endpoint* ep = &endpoints[endpoint*2];
unsigned int length, csr;
select_endpoint(endpoint);
csr = REG_USB_REG_INCSR;
logf("%s(%d): 0x%x", __func__, endpoint, csr);
if(!ep->busy)
{
logf("Entered EPIN handler without work!");
return;
}
if(csr & USB_INCSR_SENTSTALL)
{
REG_USB_REG_INCSR = csr & ~USB_INCSR_SENTSTALL;
return;
}
if(ep->use_dma)
return;
if(csr & USB_INCSR_FFNOTEMPT)
{
logf("FIFO is not empty! 0x%x", csr);
return;
}
logf("EP%d: %d -> %d", endpoint, ep->sent, ep->length);
if(ep->sent == 0)
length = MIN(ep->length, ep->fifo_size);
else
length = MIN(EP_BUF_LEFT(ep), ep->fifo_size);
writeFIFO(ep, length);
REG_USB_REG_INCSR = csr | USB_INCSR_INPKTRDY;
ep->sent += length;
if(ep->sent >= ep->length)
{
usb_core_transfer_complete(endpoint, USB_DIR_IN, 0, ep->sent);
ep_transfer_completed(ep);
logf("sent complete");
}
}
static void EPOUT_handler(unsigned int endpoint)
{
struct usb_endpoint* ep = &endpoints[endpoint*2+1];
unsigned int size, csr;
if(!ep->busy)
{
logf("Entered EPOUT handler without work!");
return;
}
select_endpoint(endpoint);
while((csr = REG_USB_REG_OUTCSR) & (USB_OUTCSR_SENTSTALL|USB_OUTCSR_OUTPKTRDY))
{
logf("%s(%d): 0x%x", __func__, endpoint, csr);
if(csr & USB_OUTCSR_SENTSTALL)
{
logf("stall sent, flushing fifo..");
flushFIFO(ep);
REG_USB_REG_OUTCSR = csr & ~USB_OUTCSR_SENTSTALL;
return;
}
if(ep->use_dma)
return;
if(csr & USB_OUTCSR_OUTPKTRDY) /* There is a packet in the fifo */
{
size = REG_USB_REG_OUTCOUNT;
readFIFO(ep, size);
ep->received += size;
/*if(csr & USB_OUTCSR_FFFULL)
csr &= ~USB_OUTCSR_FFFULL;*/
REG_USB_REG_OUTCSR = csr & ~USB_OUTCSR_OUTPKTRDY;
logf("received: %d max length: %d", ep->received, ep->length);
if(size < ep->fifo_size || ep->received >= ep->length)
{
usb_core_transfer_complete(endpoint, USB_DIR_OUT, 0, ep->received);
ep_transfer_completed(ep);
logf("receive transfer_complete");
}
}
}
}
static void EPDMA_handler(int number)
{
int endpoint = -1;
unsigned int size = 0;
if(number == USB_INTR_DMA_BULKIN)
endpoint = (REG_USB_REG_CNTL1 >> 4) & 0xF;
else if(number == USB_INTR_DMA_BULKOUT)
endpoint = (REG_USB_REG_CNTL2 >> 4) & 0xF;
struct usb_endpoint* ep = &endpoints[endpoint];
logf("DMA_BULK%d %d", number, endpoint);
if(number == USB_INTR_DMA_BULKIN)
size = (unsigned int)ep->buf - REG_USB_REG_ADDR1;
else if(number == USB_INTR_DMA_BULKOUT)
size = (unsigned int)ep->buf - REG_USB_REG_ADDR2;
if(number == USB_INTR_DMA_BULKOUT)
{
/* Disable DMA */
REG_USB_REG_CNTL2 = 0;
__dcache_invalidate_all();
select_endpoint(endpoint);
/* Read out last packet manually */
unsigned int lpack_size = REG_USB_REG_OUTCOUNT;
if(lpack_size > 0)
{
ep->buf += ep->length - lpack_size;
readFIFO(ep, lpack_size);
REG_USB_REG_OUTCSR &= ~USB_OUTCSR_OUTPKTRDY;
}
}
else if(number == USB_INTR_DMA_BULKIN && size % ep->fifo_size)
{
/* If the last packet is less than MAXP, set INPKTRDY manually */
REG_USB_REG_INCSR |= USB_INCSR_INPKTRDY;
}
usb_core_transfer_complete(endpoint, EP_IS_IN(ep) ? USB_DIR_IN : USB_DIR_OUT,
0, ep->length);
ep_transfer_completed(ep);
}
static void setup_endpoint(struct usb_endpoint *ep)
{
int csr, csrh;
select_endpoint(EP_NUMBER2(ep));
ep->busy = false;
ep->wait = false;
ep->sent = 0;
ep->length = 0;
if(ep->type == ep_bulk)
{
if(REG_USB_REG_POWER & USB_POWER_HSMODE)
ep->fifo_size = 512;
else
ep->fifo_size = 64;
}
if(EP_IS_IN(ep))
{
csr = (USB_INCSR_FF | USB_INCSR_CDT);
csrh = USB_INCSRH_MODE;
if(ep->use_dma)
csrh |= (USB_INCSRH_DMAREQENAB | USB_INCSRH_AUTOSET | USB_INCSRH_DMAREQMODE);
if(ep->type == ep_interrupt)
csrh |= USB_INCSRH_FRCDATATOG;
REG_USB_REG_INMAXP = ep->fifo_size;
REG_USB_REG_INCSR = csr;
REG_USB_REG_INCSRH = csrh;
REG_USB_REG_INTRINE |= USB_INTR_EP(EP_NUMBER2(ep));
}
else
{
csr = (USB_OUTCSR_FF | USB_OUTCSR_CDT);
csrh = 0;
if(ep->type == ep_interrupt)
csrh |= USB_OUTCSRH_DNYT;
if(ep->use_dma)
csrh |= (USB_OUTCSRH_DMAREQENAB | USB_OUTCSRH_AUTOCLR | USB_OUTCSRH_DMAREQMODE);
REG_USB_REG_OUTMAXP = ep->fifo_size;
REG_USB_REG_OUTCSR = csr;
REG_USB_REG_OUTCSRH = csrh;
REG_USB_REG_INTROUTE |= USB_INTR_EP(EP_NUMBER2(ep));
}
}
static void udc_reset(void)
{
/* From the datasheet:
When a reset condition is detected on the USB, the controller performs the following actions:
* Sets FAddr to 0.
* Sets Index to 0.
* Flushes all endpoint FIFOs.
* Clears all control/status registers.
* Enables all endpoint interrupts.
* Generates a Reset interrupt.
*/
logf("%s()", __func__);
unsigned int i;
/* Disable interrupts */
REG_USB_REG_INTRINE = 0;
REG_USB_REG_INTROUTE = 0;
REG_USB_REG_INTRUSBE = 0;
/* Disable DMA */
REG_USB_REG_CNTL1 = 0;
REG_USB_REG_CNTL2 = 0;
/* High speed, softconnect and suspend/resume */
REG_USB_REG_POWER = (USB_POWER_SOFTCONN | USB_POWER_HSENAB | USB_POWER_SUSPENDM);
/* Reset EP0 */
select_endpoint(0);
REG_USB_REG_CSR0 = (USB_CSR0_SVDOUTPKTRDY | USB_CSR0_SVDSETUPEND);
/* Reset other endpoints */
for(i=2; i<TOTAL_EP(); i++)
setup_endpoint(&endpoints[i]);
/* Enable interrupts */
REG_USB_REG_INTRINE |= USB_INTR_EP0;
REG_USB_REG_INTRUSBE |= USB_INTR_RESET;
usb_core_bus_reset();
}
/* Interrupt handler */
void UDC(void)
{
/* Read interrupt registers */
unsigned char intrUSB = REG_USB_REG_INTRUSB & 0x07; /* Mask SOF */
unsigned short intrIn = REG_USB_REG_INTRIN;
unsigned short intrOut = REG_USB_REG_INTROUT;
unsigned char intrDMA = REG_USB_REG_INTR;
logf("%x %x %x %x", intrUSB, intrIn, intrOut, intrDMA);
/* EPIN & EPOUT are all handled in DMA */
if(intrIn & USB_INTR_EP0)
EP0_handler();
if(intrIn & USB_INTR_INEP1)
EPIN_handler(1);
if(intrIn & USB_INTR_INEP2)
EPIN_handler(2);
if(intrOut & USB_INTR_OUTEP1)
EPOUT_handler(1);
if(intrOut & USB_INTR_OUTEP2)
EPOUT_handler(2);
if(intrUSB & USB_INTR_RESET)
udc_reset();
if(intrUSB & USB_INTR_SUSPEND)
{
logf("USB suspend");
}
if(intrUSB & USB_INTR_RESUME)
{
logf("USB resume");
}
if(intrDMA & USB_INTR_DMA_BULKIN)
EPDMA_handler(USB_INTR_DMA_BULKIN);
if(intrDMA & USB_INTR_DMA_BULKOUT)
EPDMA_handler(USB_INTR_DMA_BULKOUT);
}
bool usb_drv_stalled(int endpoint, bool in)
{
endpoint &= 0x7F;
logf("%s(%d, %s)", __func__, endpoint, in?"IN":"OUT");
select_endpoint(endpoint);
if(endpoint == EP_CONTROL)
return (REG_USB_REG_CSR0 & USB_CSR0_SENDSTALL) != 0;
else
{
if(in)
return (REG_USB_REG_INCSR & USB_INCSR_SENDSTALL) != 0;
else
return (REG_USB_REG_OUTCSR & USB_OUTCSR_SENDSTALL) != 0;
}
}
void usb_drv_stall(int endpoint, bool stall, bool in)
{
endpoint &= 0x7F;
logf("%s(%d,%s,%s)", __func__, endpoint, stall?"Y":"N", in?"IN":"OUT");
select_endpoint(endpoint);
if(endpoint == EP_CONTROL)
{
if(stall)
REG_USB_REG_CSR0 |= USB_CSR0_SENDSTALL;
else
REG_USB_REG_CSR0 &= ~USB_CSR0_SENDSTALL;
}
else
{
if(in)
{
if(stall)
REG_USB_REG_INCSR |= USB_INCSR_SENDSTALL;
else
REG_USB_REG_INCSR = (REG_USB_REG_INCSR & ~USB_INCSR_SENDSTALL) | USB_INCSR_CDT;
}
else
{
if(stall)
REG_USB_REG_OUTCSR |= USB_OUTCSR_SENDSTALL;
else
REG_USB_REG_OUTCSR = (REG_USB_REG_OUTCSR & ~USB_OUTCSR_SENDSTALL) | USB_OUTCSR_CDT;
}
}
}
#define GPIO_UDC_DETE (32 * 3 + 28) /* A18 = ADP_CHK */
#define IRQ_GPIO_UDC_DETE (IRQ_GPIO_0 + GPIO_UDC_DETE)
#ifndef ONDA_VX767
# define USB_GPIO_IRQ GPIO124
#endif
int usb_detect(void)
{
return (__gpio_get_pin(GPIO_UDC_DETE) == 1)
? USB_INSERTED : USB_EXTRACTED;
}
void usb_init_device(void)
{
#ifdef ONDA_VX767
REG_GPIO_PXFUNS(3) = 0x10000000;
REG_GPIO_PXSELS(3) = 0x10000000;
REG_GPIO_PXPES(3) = 0x10000000;
__gpio_as_input(GPIO_UDC_DETE);
#else
REG_GPIO_PXPES(3) = 0x10000000;
__gpio_as_irq_rise_edge(GPIO_UDC_DETE);
#endif
#ifdef USB_GPIO_IRQ
system_enable_irq(IRQ_GPIO_UDC_DETE);
#endif
system_enable_irq(IRQ_UDC);
for(unsigned i=0; i<TOTAL_EP(); i++)
semaphore_init(&endpoints[i].complete, 1, 0);
}
#ifdef USB_GPIO_IRQ
static unsigned long last_tick;
void USB_GPIO_IRQ(void)
{
/* Prevent enabled-disabled bouncing */
if(current_tick - last_tick > HZ/16)
{
usb_status_event(usb_detect());
last_tick = current_tick;
}
}
#endif
void usb_enable(bool on)
{
if(on)
usb_core_init();
else
usb_core_exit();
}
void usb_attach(void)
{
usb_enable(true);
}
void usb_drv_init(void)
{
logf("%s()", __func__);
/* Set this bit to allow the UDC entering low-power mode when
* there are no actions on the USB bus.
* UDC still works during this bit was set.
*/
//__cpm_stop_udc();
__cpm_start_udc();
/* Enable the USB PHY */
REG_CPM_SCR |= CPM_SCR_USBPHY_ENABLE;
/* Dis- and reconnect from USB */
REG_USB_REG_POWER &= ~USB_POWER_SOFTCONN;
REG_USB_REG_POWER |= USB_POWER_SOFTCONN;
udc_reset();
}
void usb_drv_exit(void)
{
logf("%s()", __func__);
/* Disable interrupts */
REG_USB_REG_INTRINE = 0;
REG_USB_REG_INTROUTE = 0;
REG_USB_REG_INTRUSBE = 0;
/* Disable DMA */
REG_USB_REG_CNTL1 = 0;
REG_USB_REG_CNTL2 = 0;
/* Disconnect from USB */
REG_USB_REG_POWER &= ~USB_POWER_SOFTCONN;
/* Disable the USB PHY */
REG_CPM_SCR &= ~CPM_SCR_USBPHY_ENABLE;
__cpm_stop_udc();
}
void usb_drv_set_address(int address)
{
logf("%s(%d)", __func__, address);
REG_USB_REG_FADDR = address;
}
static void usb_drv_send_internal(struct usb_endpoint* ep, void* ptr, int length, bool blocking)
{
if(ep->type == ep_control && ptr == NULL && length == 0)
return; /* ACK request, handled in the ISR */
int flags = disable_irq_save();
ep->buf = ptr;
ep->sent = 0;
ep->length = length;
ep->busy = true;
if(blocking)
ep->wait = true;
if(ep->type == ep_control)
{
EP0_send();
}
else
{
if(ep->use_dma)
{
//dma_cache_wback_inv((unsigned long)ptr, length);
__dcache_writeback_all();
REG_USB_REG_ADDR1 = PHYSADDR((unsigned long)ptr);
REG_USB_REG_COUNT1 = length;
REG_USB_REG_CNTL1 = (USB_CNTL_INTR_EN | USB_CNTL_MODE_1 |
USB_CNTL_DIR_IN | USB_CNTL_ENA |
USB_CNTL_EP(EP_NUMBER2(ep)) | USB_CNTL_BURST_16);
}
else
EPIN_handler(EP_NUMBER2(ep));
}
restore_irq(flags);
if(blocking)
{
semaphore_wait(&ep->complete, TIMEOUT_BLOCK);
ep->wait = false;
}
}
int usb_drv_send_nonblocking(int endpoint, void* ptr, int length)
{
logf("%s(%d, 0x%x, %d)", __func__, endpoint, (int)ptr, length);
usb_drv_send_internal(&endpoints[(endpoint & 0x7F)*2], ptr, length, false);
return 0;
}
int usb_drv_send(int endpoint, void* ptr, int length)
{
logf("%s(%d, 0x%x, %d)", __func__, endpoint, (int)ptr, length);
usb_drv_send_internal(&endpoints[(endpoint & 0x7F)*2], ptr, length, true);
return 0;
}
int usb_drv_recv(int endpoint, void* ptr, int length)
{
int flags;
struct usb_endpoint *ep;
endpoint &= 0x7F;
logf("%s(%d, 0x%x, %d)", __func__, endpoint, (int)ptr, length);
if(endpoint == EP_CONTROL)
return 0; /* all EP0 OUT transactions are handled within the ISR */
else
{
flags = disable_irq_save();
ep = &endpoints[endpoint*2+1];
ep->buf = ptr;
ep->received = 0;
ep->length = length;
ep->busy = true;
if(ep->use_dma)
{
//dma_cache_wback_inv((unsigned long)ptr, length);
__dcache_writeback_all();
REG_USB_REG_ADDR2 = PHYSADDR((unsigned long)ptr);
REG_USB_REG_COUNT2 = length;
REG_USB_REG_CNTL2 = (USB_CNTL_INTR_EN | USB_CNTL_MODE_1 |
USB_CNTL_ENA | USB_CNTL_EP(endpoint) |
USB_CNTL_BURST_16);
}
else
EPOUT_handler(endpoint);
restore_irq(flags);
return 0;
}
}
void usb_drv_set_test_mode(int mode)
{
logf("%s(%d)", __func__, mode);
switch(mode)
{
case 0:
REG_USB_REG_TESTMODE &= ~USB_TEST_ALL;
break;
case 1:
REG_USB_REG_TESTMODE |= USB_TEST_J;
break;
case 2:
REG_USB_REG_TESTMODE |= USB_TEST_K;
break;
case 3:
REG_USB_REG_TESTMODE |= USB_TEST_SE0NAK;
break;
case 4:
REG_USB_REG_TESTMODE |= USB_TEST_PACKET;
break;
}
}
int usb_drv_port_speed(void)
{
return (REG_USB_REG_POWER & USB_POWER_HSMODE) ? 1 : 0;
}
void usb_drv_cancel_all_transfers(void)
{
logf("%s()", __func__);
unsigned int i, flags;
flags = disable_irq_save();
for(i=0; i<TOTAL_EP(); i++)
{
if(i != 1) /* ep0 out needs special handling */
endpoints[i].buf = NULL;
endpoints[i].sent = 0;
endpoints[i].length = 0;
select_endpoint(i/2);
flushFIFO(&endpoints[i]);
}
restore_irq(flags);
}
void usb_drv_release_endpoint(int ep)
{
(void)ep;
logf("%s(%d, %s)", __func__, (ep & 0x7F), (ep >> 7) ? "IN" : "OUT");
}
int usb_drv_request_endpoint(int type, int dir)
{
logf("%s(%d, %s)", __func__, type, (dir == USB_DIR_IN) ? "IN" : "OUT");
dir &= USB_ENDPOINT_DIR_MASK;
type &= USB_ENDPOINT_XFERTYPE_MASK;
/* There are only 3+2 endpoints, so hardcode this ... */
switch(type)
{
case USB_ENDPOINT_XFER_BULK:
if(dir == USB_DIR_IN)
return (1 | USB_DIR_IN);
else
return (1 | USB_DIR_OUT);
case USB_ENDPOINT_XFER_INT:
if(dir == USB_DIR_IN)
return (2 | USB_DIR_IN);
default:
return -1;
}
}