rockbox/firmware/target/mips/ingenic_jz47xx/ata-nand-jz4740.c
Rafaël Carré 66149b454b ingenic_jz: remove ata-nand-target.h
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@31616 a1c6a512-1295-4272-9138-f99709370657
2012-01-07 22:11:24 +00:00

757 lines
20 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2008 by Maurus Cuelenaere
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "jz4740.h"
#include "nand.h"
#include "nand_id.h"
#include "system.h"
#include "panic.h"
#include "kernel.h"
#include "storage.h"
#include "string.h"
/*#define LOGF_ENABLE*/
#include "logf.h"
//#define USE_DMA
//#define USE_ECC
/*
* Standard NAND flash commands
*/
#define NAND_CMD_READ0 0
#define NAND_CMD_READ1 1
#define NAND_CMD_RNDOUT 5
#define NAND_CMD_PAGEPROG 0x10
#define NAND_CMD_READOOB 0x50
#define NAND_CMD_ERASE1 0x60
#define NAND_CMD_STATUS 0x70
#define NAND_CMD_STATUS_MULTI 0x71
#define NAND_CMD_SEQIN 0x80
#define NAND_CMD_RNDIN 0x85
#define NAND_CMD_READID 0x90
#define NAND_CMD_ERASE2 0xd0
#define NAND_CMD_RESET 0xff
/* Extended commands for large page devices */
#define NAND_CMD_READSTART 0x30
#define NAND_CMD_RNDOUTSTART 0xE0
#define NAND_CMD_CACHEDPROG 0x15
/* Status bits */
#define NAND_STATUS_FAIL 0x01
#define NAND_STATUS_FAIL_N1 0x02
#define NAND_STATUS_TRUE_READY 0x20
#define NAND_STATUS_READY 0x40
#define NAND_STATUS_WP 0x80
/*
* NAND parameter struct
*/
struct nand_param
{
unsigned int bus_width; /* data bus width: 8-bit/16-bit */
unsigned int row_cycle; /* row address cycles: 2/3 */
unsigned int page_size; /* page size in bytes: 512/2048/4096 */
unsigned int oob_size; /* oob size in bytes: 16/64/128 */
unsigned int page_per_block; /* pages per block: 32/64/128 */
};
/*
* jz4740_nand.c
*
* NAND read routine for JZ4740
*
* Copyright (c) 2005-2008 Ingenic Semiconductor Inc.
*
*/
static volatile unsigned long nand_address;
#define NAND_DATAPORT (nand_address)
#define NAND_ADDRPORT (nand_address+0x10000)
#define NAND_COMMPORT (nand_address+0x08000)
#define ECC_BLOCK 512
#define ECC_POS 6
#define PAR_SIZE 9
#define __nand_cmd(n) (REG8(NAND_COMMPORT) = (n))
#define __nand_addr(n) (REG8(NAND_ADDRPORT) = (n))
#define __nand_data8() (REG8(NAND_DATAPORT))
#define __nand_data16() (REG16(NAND_DATAPORT))
#define __nand_ecc_rs_encoding() \
(REG_EMC_NFECR = EMC_NFECR_ECCE | EMC_NFECR_ERST | EMC_NFECR_RS | EMC_NFECR_RS_ENCODING)
#define __nand_ecc_rs_decoding() \
(REG_EMC_NFECR = EMC_NFECR_ECCE | EMC_NFECR_ERST | EMC_NFECR_RS | EMC_NFECR_RS_DECODING)
#define __nand_ecc_disable() (REG_EMC_NFECR &= ~EMC_NFECR_ECCE)
#define __nand_ecc_encode_sync() while (!(REG_EMC_NFINTS & EMC_NFINTS_ENCF))
#define __nand_ecc_decode_sync() while (!(REG_EMC_NFINTS & EMC_NFINTS_DECF))
/*--------------------------------------------------------------*/
static struct nand_info* chip_info = NULL;
static struct nand_info* banks[4];
static unsigned int nr_banks = 1;
static unsigned long bank_size;
static struct nand_param internal_param;
static struct mutex nand_mtx;
#ifdef USE_DMA
static struct mutex nand_dma_mtx;
static struct semaphore nand_dma_complete;
#endif
static unsigned char temp_page[4096]; /* Max page size */
static inline void jz_nand_wait_ready(void)
{
register unsigned int timeout = 1000;
while ((REG_GPIO_PXPIN(2) & 0x40000000) && timeout--);
while (!(REG_GPIO_PXPIN(2) & 0x40000000));
}
#ifndef USE_DMA
static inline void jz_nand_read_buf16(void *buf, int count)
{
register int i;
register unsigned short *p = (unsigned short *)buf;
for (i = 0; i < count; i += 2)
*p++ = __nand_data16();
}
static inline void jz_nand_read_buf8(void *buf, int count)
{
register int i;
register unsigned char *p = (unsigned char *)buf;
for (i = 0; i < count; i++)
*p++ = __nand_data8();
}
#else
static void jz_nand_write_dma(void *source, unsigned int len, int bw)
{
mutex_lock(&nand_dma_mtx);
if(((unsigned int)source < 0xa0000000) && len)
dma_cache_wback_inv((unsigned long)source, len);
dma_enable();
REG_DMAC_DCCSR(DMA_NAND_CHANNEL) = DMAC_DCCSR_NDES;
REG_DMAC_DSAR(DMA_NAND_CHANNEL) = PHYSADDR((unsigned long)source);
REG_DMAC_DTAR(DMA_NAND_CHANNEL) = PHYSADDR((unsigned long)NAND_DATAPORT);
REG_DMAC_DTCR(DMA_NAND_CHANNEL) = len / 16;
REG_DMAC_DRSR(DMA_NAND_CHANNEL) = DMAC_DRSR_RS_AUTO;
REG_DMAC_DCMD(DMA_NAND_CHANNEL) = (DMAC_DCMD_SAI| DMAC_DCMD_DAI | DMAC_DCMD_SWDH_32 | DMAC_DCMD_DS_16BYTE |
(bw == 8 ? DMAC_DCMD_DWDH_8 : DMAC_DCMD_DWDH_16));
REG_DMAC_DCCSR(DMA_NAND_CHANNEL) |= DMAC_DCCSR_EN; /* Enable DMA channel */
#if 1
while( REG_DMAC_DTCR(DMA_NAND_CHANNEL) )
yield();
#else
REG_DMAC_DCMD(DMA_NAND_CHANNEL) |= DMAC_DCMD_TIE; /* Enable DMA interrupt */
semaphore_wait(&nand_dma_complete, TIMEOUT_BLOCK);
#endif
REG_DMAC_DCCSR(DMA_NAND_CHANNEL) &= ~DMAC_DCCSR_EN; /* Disable DMA channel */
dma_disable();
mutex_unlock(&nand_dma_mtx);
}
static void jz_nand_read_dma(void *target, unsigned int len, int bw)
{
mutex_lock(&nand_dma_mtx);
if(((unsigned int)target < 0xa0000000) && len)
dma_cache_wback_inv((unsigned long)target, len);
dma_enable();
REG_DMAC_DCCSR(DMA_NAND_CHANNEL) = DMAC_DCCSR_NDES ;
REG_DMAC_DSAR(DMA_NAND_CHANNEL) = PHYSADDR((unsigned long)NAND_DATAPORT);
REG_DMAC_DTAR(DMA_NAND_CHANNEL) = PHYSADDR((unsigned long)target);
REG_DMAC_DTCR(DMA_NAND_CHANNEL) = len / 4;
REG_DMAC_DRSR(DMA_NAND_CHANNEL) = DMAC_DRSR_RS_AUTO;
REG_DMAC_DCMD(DMA_NAND_CHANNEL) = (DMAC_DCMD_SAI| DMAC_DCMD_DAI | DMAC_DCMD_DWDH_32 | DMAC_DCMD_DS_32BIT |
(bw == 8 ? DMAC_DCMD_SWDH_8 : DMAC_DCMD_SWDH_16));
REG_DMAC_DCCSR(DMA_NAND_CHANNEL) |= DMAC_DCCSR_EN; /* Enable DMA channel */
#if 1
while( REG_DMAC_DTCR(DMA_NAND_CHANNEL) )
yield();
#else
REG_DMAC_DCMD(DMA_NAND_CHANNEL) |= DMAC_DCMD_TIE; /* Enable DMA interrupt */
semaphore_wait(&nand_dma_complete, TIMEOUT_BLOCK);
#endif
//REG_DMAC_DCCSR(DMA_NAND_CHANNEL) &= ~DMAC_DCCSR_EN; /* Disable DMA channel */
dma_disable();
mutex_unlock(&nand_dma_mtx);
}
void DMA_CALLBACK(DMA_NAND_CHANNEL)(void)
{
if (REG_DMAC_DCCSR(DMA_NAND_CHANNEL) & DMAC_DCCSR_HLT)
REG_DMAC_DCCSR(DMA_NAND_CHANNEL) &= ~DMAC_DCCSR_HLT;
if (REG_DMAC_DCCSR(DMA_NAND_CHANNEL) & DMAC_DCCSR_AR)
REG_DMAC_DCCSR(DMA_NAND_CHANNEL) &= ~DMAC_DCCSR_AR;
if (REG_DMAC_DCCSR(DMA_NAND_CHANNEL) & DMAC_DCCSR_CT)
REG_DMAC_DCCSR(DMA_NAND_CHANNEL) &= ~DMAC_DCCSR_CT;
if (REG_DMAC_DCCSR(DMA_NAND_CHANNEL) & DMAC_DCCSR_TT)
REG_DMAC_DCCSR(DMA_NAND_CHANNEL) &= ~DMAC_DCCSR_TT;
semaphore_release(&nand_dma_complete);
}
#endif /* USE_DMA */
static inline void jz_nand_read_buf(void *buf, int count, int bw)
{
#ifdef USE_DMA
if (bw == 8)
jz_nand_read_dma(buf, count, 8);
else
jz_nand_read_dma(buf, count, 16);
#else
if (bw == 8)
jz_nand_read_buf8(buf, count);
else
jz_nand_read_buf16(buf, count);
#endif
}
#ifdef USE_ECC
/*
* Correct 1~9-bit errors in 512-bytes data
*/
static void jz_rs_correct(unsigned char *dat, int idx, int mask)
{
int i, j;
unsigned short d, d1, dm;
i = (idx * 9) >> 3;
j = (idx * 9) & 0x7;
i = (j == 0) ? (i - 1) : i;
j = (j == 0) ? 7 : (j - 1);
if (i > 512)
return;
if (i == 512)
d = dat[i - 1];
else
d = (dat[i] << 8) | dat[i - 1];
d1 = (d >> j) & 0x1ff;
d1 ^= mask;
dm = ~(0x1ff << j);
d = (d & dm) | (d1 << j);
dat[i - 1] = d & 0xff;
if (i < 512)
dat[i] = (d >> 8) & 0xff;
}
#endif
/*
* Read oob
*/
static int jz_nand_read_oob(unsigned long page_addr, unsigned char *buf, int size)
{
struct nand_param *nandp = &internal_param;
int page_size, row_cycle, bus_width;
int col_addr;
page_size = nandp->page_size;
row_cycle = nandp->row_cycle;
bus_width = nandp->bus_width;
if (page_size >= 2048)
col_addr = page_size;
else
col_addr = 0;
if (page_size >= 2048)
/* Send READ0 command */
__nand_cmd(NAND_CMD_READ0);
else
/* Send READOOB command */
__nand_cmd(NAND_CMD_READOOB);
/* Send column address */
__nand_addr(col_addr & 0xff);
if (page_size >= 2048)
__nand_addr((col_addr >> 8) & 0xff);
/* Send page address */
__nand_addr(page_addr & 0xff);
__nand_addr((page_addr >> 8) & 0xff);
if (row_cycle == 3)
__nand_addr((page_addr >> 16) & 0xff);
/* Send READSTART command for 2048 ps NAND */
if (page_size >= 2048)
__nand_cmd(NAND_CMD_READSTART);
/* Wait for device ready */
jz_nand_wait_ready();
/* Read oob data */
jz_nand_read_buf(buf, size, bus_width);
return 0;
}
/*
* nand_read_page()
*
* Input:
*
* block - block number: 0, 1, 2, ...
* page - page number within a block: 0, 1, 2, ...
* dst - pointer to target buffer
*/
static int jz_nand_read_page(unsigned long page_addr, unsigned char *dst)
{
struct nand_param *nandp = &internal_param;
int page_size, oob_size, page_per_block;
int row_cycle, bus_width, ecc_count;
int i;
#ifdef USE_ECC
int j;
#endif
unsigned char *data_buf;
unsigned char oob_buf[nandp->oob_size];
if(nand_address == 0)
return -1;
page_size = nandp->page_size;
oob_size = nandp->oob_size;
page_per_block = nandp->page_per_block;
row_cycle = nandp->row_cycle;
bus_width = nandp->bus_width;
/*
* Read oob data
*/
jz_nand_read_oob(page_addr, oob_buf, oob_size);
/*
* Read page data
*/
/* Send READ0 command */
__nand_cmd(NAND_CMD_READ0);
/* Send column address */
__nand_addr(0);
if (page_size >= 2048)
__nand_addr(0);
/* Send page address */
__nand_addr(page_addr & 0xff);
__nand_addr((page_addr >> 8) & 0xff);
if (row_cycle >= 3)
__nand_addr((page_addr >> 16) & 0xff);
/* Send READSTART command for 2048 ps NAND */
if (page_size >= 2048)
__nand_cmd(NAND_CMD_READSTART);
/* Wait for device ready */
jz_nand_wait_ready();
/* Read page data */
data_buf = dst;
ecc_count = page_size / ECC_BLOCK;
for (i = 0; i < ecc_count; i++)
{
#ifdef USE_ECC
volatile unsigned char *paraddr = (volatile unsigned char *)EMC_NFPAR0;
unsigned int stat;
/* Enable RS decoding */
REG_EMC_NFINTS = 0x0;
__nand_ecc_rs_decoding();
#endif
/* Read data */
jz_nand_read_buf((void *)data_buf, ECC_BLOCK, bus_width);
#ifdef USE_ECC
/* Set PAR values */
for (j = 0; j < PAR_SIZE; j++)
*paraddr++ = oob_buf[ECC_POS + i*PAR_SIZE + j];
/* Set PRDY */
REG_EMC_NFECR |= EMC_NFECR_PRDY;
/* Wait for completion */
__nand_ecc_decode_sync();
/* Disable decoding */
__nand_ecc_disable();
/* Check result of decoding */
stat = REG_EMC_NFINTS;
if (stat & EMC_NFINTS_ERR)
{
/* Error occurred */
if (stat & EMC_NFINTS_UNCOR)
{
/* Uncorrectable error occurred */
logf("Uncorrectable ECC error at NAND page address 0x%lx", page_addr);
return -1;
}
else
{
unsigned int errcnt, index, mask;
errcnt = (stat & EMC_NFINTS_ERRCNT_MASK) >> EMC_NFINTS_ERRCNT_BIT;
switch (errcnt)
{
case 4:
index = (REG_EMC_NFERR3 & EMC_NFERR_INDEX_MASK) >> EMC_NFERR_INDEX_BIT;
mask = (REG_EMC_NFERR3 & EMC_NFERR_MASK_MASK) >> EMC_NFERR_MASK_BIT;
jz_rs_correct(data_buf, index, mask);
case 3:
index = (REG_EMC_NFERR2 & EMC_NFERR_INDEX_MASK) >> EMC_NFERR_INDEX_BIT;
mask = (REG_EMC_NFERR2 & EMC_NFERR_MASK_MASK) >> EMC_NFERR_MASK_BIT;
jz_rs_correct(data_buf, index, mask);
case 2:
index = (REG_EMC_NFERR1 & EMC_NFERR_INDEX_MASK) >> EMC_NFERR_INDEX_BIT;
mask = (REG_EMC_NFERR1 & EMC_NFERR_MASK_MASK) >> EMC_NFERR_MASK_BIT;
jz_rs_correct(data_buf, index, mask);
case 1:
index = (REG_EMC_NFERR0 & EMC_NFERR_INDEX_MASK) >> EMC_NFERR_INDEX_BIT;
mask = (REG_EMC_NFERR0 & EMC_NFERR_MASK_MASK) >> EMC_NFERR_MASK_BIT;
jz_rs_correct(data_buf, index, mask);
break;
default:
break;
}
}
}
#endif
data_buf += ECC_BLOCK;
}
return 0;
}
/*
* Disable NAND controller
*/
static void jz_nand_disable(void)
{
REG_EMC_NFCSR &= ~(EMC_NFCSR_NFCE1 | EMC_NFCSR_NFCE2 |
EMC_NFCSR_NFCE3 | EMC_NFCSR_NFCE4 |
EMC_NFCSR_NFE1 | EMC_NFCSR_NFE2 |
EMC_NFCSR_NFE3 | EMC_NFCSR_NFE4 );
}
/*
* Enable NAND controller
*/
static void jz_nand_enable(void)
{
#if 0
/* OF RE */
REG_GPIO_PXFUNS(1) = 0x1E018000; // __gpio_as_func0() start
REG_GPIO_PXSELC(1) = 0x1E018000; // __gpio_as_func0() end
REG_GPIO_PXFUNS(2) = 0x3000<<16; // __gpio_as_func0() start
REG_GPIO_PXSELC(2) = 0x3000<<16; // __gpio_as_func0() end
REG_GPIO_PXFUNC(2) = 0x4000<<16; // __gpio_port_as_input() start
REG_GPIO_PXSELC(2) = 0x4000<<16;
REG_GPIO_PXDIRC(2) = 0x4000<<16; // __gpio_port_as_input() end
REG_GPIO_PXPES(2) = 0x4000<<16; // __gpio_disable_pull()
REG_GPIO_PXFUNS(1) = 0x40<<16; // __gpio_as_func0() start
REG_GPIO_PXSELC(1) = 0x40<<16; // __gpio_as_func0() end
REG_EMC_SMCR1 = (REG_EMC_SMCR1 & 0xFF) | 0x4621200;
REG_EMC_SMCR2 = (REG_EMC_SMCR2 & 0xFF) | 0x4621200;
REG_EMC_SMCR3 = (REG_EMC_SMCR3 & 0xFF) | 0x4621200;
REG_EMC_SMCR4 = (REG_EMC_SMCR4 & 0xFF) | 0x4621200;
REG_EMC_SMCR1 = REG_EMC_SMCR2 = REG_EMC_SMCR3 = REG_EMC_SMCR4 = 0x6621200;
#else
REG_EMC_SMCR1 = REG_EMC_SMCR2 = REG_EMC_SMCR3 = REG_EMC_SMCR4 = 0x04444400;
#endif
}
static void jz_nand_select(int bank)
{
REG_EMC_NFCSR |= (EMC_NFCSR_NFE(bank+1) | EMC_NFCSR_NFCE(bank+1));
switch(bank)
{
case 0:
nand_address = 0xB8000000;
break;
case 1:
nand_address = 0xB4000000;
break;
case 2:
nand_address = 0xAC000000;
break;
case 3:
nand_address = 0xA8000000;
break;
}
}
static void jz_nand_deselect(int bank)
{
REG_EMC_NFCSR &= ~(EMC_NFCSR_NFE(bank+1) | EMC_NFCSR_NFCE(bank+1));
nand_address = 0;
}
static int jz_nand_init(void)
{
unsigned char cData[5];
int i;
jz_nand_enable();
for(i=0; i<4; i++)
{
jz_nand_select(i);
__nand_cmd(NAND_CMD_READID);
__nand_addr(NAND_CMD_READ0);
cData[0] = __nand_data8();
cData[1] = __nand_data8();
cData[2] = __nand_data8();
cData[3] = __nand_data8();
cData[4] = __nand_data8();
jz_nand_deselect(i);
logf("NAND chip %d: 0x%x 0x%x 0x%x 0x%x 0x%x", i+1, cData[0], cData[1],
cData[2], cData[3], cData[4]);
banks[i] = nand_identify(cData);
if(banks[i] != NULL)
nr_banks++;
if(i == 0 && banks[i] == NULL)
{
panicf("Unknown NAND flash chip: 0x%x 0x%x 0x%x 0x%x 0x%x", cData[0],
cData[1], cData[2], cData[3], cData[4]);
return -1; /* panicf() doesn't return though */
}
}
chip_info = banks[0];
internal_param.bus_width = 8;
internal_param.row_cycle = chip_info->row_cycles;
internal_param.page_size = chip_info->page_size;
internal_param.oob_size = chip_info->spare_size;
internal_param.page_per_block = chip_info->pages_per_block;
bank_size = chip_info->page_size * chip_info->blocks_per_bank / 512 * chip_info->pages_per_block;
jz_nand_disable();
return 0;
}
int nand_init(void)
{
int res = 0;
static bool inited = false;
if(!inited)
{
res = jz_nand_init();
mutex_init(&nand_mtx);
#ifdef USE_DMA
mutex_init(&nand_dma_mtx);
semaphore_init(&nand_dma_complete, 1, 0);
system_enable_irq(DMA_IRQ(DMA_NAND_CHANNEL));
#endif
inited = true;
}
return res;
}
static inline int read_sector(unsigned long start, unsigned int count,
void* buf, unsigned int chip_size)
{
register int ret;
if(UNLIKELY(start % chip_size == 0 && count == chip_size))
ret = jz_nand_read_page(start / chip_size, buf);
else
{
ret = jz_nand_read_page(start / chip_size, temp_page);
memcpy(buf, temp_page + (start % chip_size), count);
}
return ret;
}
int nand_read_sectors(IF_MV2(int drive,) unsigned long start, int count, void* buf)
{
#ifdef HAVE_MULTIVOLUME
(void)drive;
#endif
int ret = 0;
unsigned int i, _count, chip_size = chip_info->page_size;
unsigned long _start;
logf("start");
mutex_lock(&nand_mtx);
_start = start << 9;
_count = count << 9;
if(_count <= chip_size)
{
jz_nand_select(start / bank_size);
ret = read_sector(_start, _count, buf, chip_size);
jz_nand_deselect(start / bank_size);
}
else
{
for(i=0; i<_count && ret==0; i+=chip_size)
{
jz_nand_select((start+(i>>9)) / bank_size);
ret = read_sector(_start+i, (_count-i < chip_size ?
_count-i : chip_size),
buf+i, chip_size);
jz_nand_deselect((start+(i>>9)) / bank_size);
}
}
mutex_unlock(&nand_mtx);
logf("nand_read_sectors(%ld, %d, 0x%x): %d", start, count, (int)buf, ret);
return ret;
}
/* TODO */
int nand_write_sectors(IF_MV2(int drive,) unsigned long start, int count, const void* buf)
{
(void)start;
(void)count;
(void)buf;
#ifdef HAVE_MULTIVOLUME
(void)drive;
#endif
return -1;
}
#ifdef HAVE_STORAGE_FLUSH
int nand_flush(void)
{
return 0;
}
#endif
void nand_spindown(int seconds)
{
/* null */
(void)seconds;
}
void nand_sleep(void)
{
/* null */
}
void nand_spin(void)
{
/* null */
}
void nand_enable(bool on)
{
/* null - flash controller is enabled/disabled as needed. */
(void)on;
}
/* TODO */
long nand_last_disk_activity(void)
{
return 0;
}
int nand_spinup_time(void)
{
return 0;
}
void nand_sleepnow(void)
{
}
#ifdef STORAGE_GET_INFO
void nand_get_info(IF_MV2(int drive,) struct storage_info *info)
{
#ifdef HAVE_MULTIVOLUME
(void)drive;
#endif
/* firmware version */
info->revision="0.00";
info->vendor="Rockbox";
info->product="NAND Storage";
/* blocks count */
info->num_sectors = bank_size * nr_banks;
info->sector_size = 512;
}
#endif
#ifdef CONFIG_STORAGE_MULTI
int nand_num_drives(int first_drive)
{
/* We don't care which logical drive number(s) we have been assigned */
(void)first_drive;
return 1;
}
#endif