rockbox/firmware/target/arm/imx233/i2c-imx233.c
Amaury Pouly 4d42e3685c imx233: rewrite i2c driver
The new driver provides several new features:
- asynchronous transfer
- transactions (several transfers executed at once)
- queueing
The style still provides the legacy interface.

Change-Id: I6d8ecc89d1f7057847c9b2dc69b76cd45c9c8407
2016-06-01 22:55:37 +02:00

498 lines
16 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2011 by Amaury Pouly
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "system.h"
#include "kernel.h"
#include "dma-imx233.h"
#include "i2c-imx233.h"
#include "pinctrl-imx233.h"
#include "string.h"
#include "regs/i2c.h"
/**
* Driver Architecture:
* The driver has two interfaces: the good'n'old i2c_* api and a more
* advanced one specific to the imx233 dma architecture. The i2c_* api is
* implemented with the imx233_i2c_* one.
* Since each i2c transfer must be split into several dma transfers and we
* cannot do dynamic allocation, we allow for at most I2C_NR_STAGES stages.
* A typical read memory transfer will require 3 stages thus 4 is safe:
* - one with start, device address and memory address
* - one with repeated start and device address
* - one with data read and stop
* To make the interface easier to use and to handle the DMA/cache related
* issues, all the data transfers are done in a statically allocated buffer
* which is managed by the driver. The driver will ensure that all transfers
* are cache aligned and will copy back the data to user buffers at the end.
* The I2C_BUFFER_SIZE define controls the size of the buffer. All transfers
* should probably fit within 512 bytes.
*
* On top of this, transfers are queued using the 'next' field of imx233_i2c_xfer_t.
* Each time a transfer is programmed, it is translated to dma transfers using
* the dma API.
*/
/**
* Internal DMA API to build the transfer.
* NOTE the api does not perform any locking, it is up to the caller to ensure
* that there only one transfer beint built at any time.
*/
/* start building a transfer */
static void imx233_i2c_begin(void);
/* add a stage
* NOTE for transmit, the data is copied to a buffer so the buffer can be freed
* afer this function return. For receive, buffer must exists until transfer is
* complete. This function assumes any receive transfer is final (master will
* send NAK). */
static void imx233_i2c_add(bool start, bool transmit, void *buffer, unsigned size, bool stop);
/* end building a transfer and start the transfer */
static void imx233_i2c_kick(void);
/* abort transfer (will call imx233_i2c_transfer_complete) */
static void imx233_i2c_abort(void);
/* set speed */
static void imx233_i2c_set_speed(bool fast_mode);
/* callback function when transfer is finished */
static void imx233_i2c_transfer_complete(enum imx233_i2c_error_t status);
/**
* Advanced API
*/
/* NOTE these variables are not marked as volatile because all functions
* do all operation with IRQ disabled, so they won't change their value
* in the middle of a function */
static struct imx233_i2c_xfer_t *i2c_head; /* pointer to the current transfer */
static struct imx233_i2c_xfer_t *i2c_tail; /* pointer to the last transfer */
static struct timeout i2c_tmo; /* timeout */
/* timeout callback */
static int imx233_i2c_timeout(struct timeout *tmo);
/* called in IRQ context or with IRQ disabled */
static void imx233_i2c_start(void)
{
uint8_t addr_wr = i2c_head->dev_addr;
uint8_t addr_rd = i2c_head->dev_addr | 1;
/* translate transfer using DMA API */
imx233_i2c_set_speed(i2c_head->fast_mode);
imx233_i2c_begin();
if(i2c_head->mode == I2C_WRITE)
{
/* START + addr */
imx233_i2c_add(true, true, &addr_wr, 1, false);
/* data + stop if no second stage */
imx233_i2c_add(false, true, i2c_head->data[0], i2c_head->count[0], i2c_head->count[1] == 0);
/* (if second stage) data + stop */
if(i2c_head->count[1] > 0)
imx233_i2c_add(false, true, i2c_head->data[1], i2c_head->count[1], true);
}
else /* I2C_READ */
{
/* (if write stage) */
if(i2c_head->count[0] > 0)
{
/* START + addr */
imx233_i2c_add(true, true, &addr_wr, 1, false);
/* data */
imx233_i2c_add(false, true, i2c_head->data[0], i2c_head->count[0], false);
}
/* START + addr */
imx233_i2c_add(true, true, &addr_rd, 1, false);
/* read data + stop */
imx233_i2c_add(false, false, i2c_head->data[1], i2c_head->count[1], true);
}
/* kick transfer */
imx233_i2c_kick();
/* setup timer for timeout */
if(i2c_head->tmo_ms > 0)
timeout_register(&i2c_tmo, imx233_i2c_timeout, i2c_head->tmo_ms * HZ / 1000, 0);
}
/* unqueue head and notify completion, called with IRQ disabled */
static void imx233_i2c_unqueue_head(enum imx233_i2c_error_t status)
{
/* notify */
if(i2c_head->callback)
i2c_head->callback(i2c_head, status);
/* unqueue */
i2c_head = i2c_head->next;
}
/* callback function when transfer is finished, called with IRQ disabled */
static void imx233_i2c_transfer_complete(enum imx233_i2c_error_t status)
{
/* cancel timeout
* NOTE because IRQ are disabled, the timeout callback will not be called
* until we enable them back, at which point we will have disabled the timeout
* so the completion routine will not be called twice. */
if(i2c_head->tmo_ms > 0)
timeout_cancel(&i2c_tmo);
/* notify completion and unqueue
* WARNING completion callback can queue other transfers, so the only part
* of the queue that cannot change is this transaction, everything else can
* change */
struct imx233_i2c_xfer_t *this_xfer = i2c_head;
struct imx233_i2c_xfer_t *last_xfer = i2c_head->last; /* in transaction */
/* unqueue head */
imx233_i2c_unqueue_head(status);
/* in case of failure, skip others */
if(status != I2C_SUCCESS && this_xfer != last_xfer)
while(i2c_head != last_xfer)
imx233_i2c_unqueue_head(I2C_SKIP);
/* if there is anything left, start it */
if(i2c_head)
imx233_i2c_start();
}
static int imx233_i2c_timeout(struct timeout *tmo)
{
(void) tmo;
imx233_i2c_abort();
return 0; /* do not fire again */
}
void imx233_i2c_transfer(struct imx233_i2c_xfer_t *xfer)
{
/* avoid any race with the irq handler */
unsigned long cpsr = disable_irq_save();
/* before queuing, update link to last transfer in each transfer */
struct imx233_i2c_xfer_t *last = xfer;
while(last->next)
last = last->next;
struct imx233_i2c_xfer_t *tmp = xfer;
while(tmp)
{
tmp->last = last;
tmp = tmp->next;
}
/* no transfer pending: start one */
if(i2c_head == NULL)
{
i2c_head = xfer;
i2c_tail = last;
/* kick transfer now */
imx233_i2c_start();
}
/* pending transer: queue and let the irq handler process it for us */
else
{
i2c_tail->next = xfer;
i2c_tail = last;
}
restore_irq(cpsr);
}
/**
* DMA API implementation
*/
/* Used for DMA */
struct i2c_dma_command_t
{
struct apb_dma_command_t dma;
/* PIO words */
uint32_t ctrl0;
/* copy buffer pointers */
void *src;
void *dst;
/* padded to next multiple of cache line size (32 bytes) */
uint32_t pad[2];
} __attribute__((packed)) CACHEALIGN_ATTR;
__ENSURE_STRUCT_CACHE_FRIENDLY(struct i2c_dma_command_t)
#define I2C_NR_STAGES 4
#define I2C_BUFFER_SIZE 512
/* Current transfer */
static int i2c_nr_stages;
static struct i2c_dma_command_t i2c_stage[I2C_NR_STAGES];
static uint8_t i2c_buffer[I2C_BUFFER_SIZE] CACHEALIGN_ATTR;
static uint32_t i2c_buffer_end; /* current end */
static void imx233_i2c_reset(void)
{
/* clear softreset */
imx233_reset_block(&HW_I2C_CTRL0);
/* Errata (imx233):
* When RETAIN_CLOCK is set, the ninth clock pulse (ACK) is not generated. However, the SDA
* line is read at the proper timing interval. If RETAIN_CLOCK is cleared, the ninth clock pulse is
* generated.
* HW_I2C_CTRL1[ACK_MODE] has default value of 0. It should be set to 1 to enable the fix for
* this issue.
*/
#if IMX233_SUBTARGET >= 3780
BF_SET(I2C_CTRL1, ACK_MODE);
#endif
BF_SET(I2C_CTRL0, CLKGATE);
}
void imx233_i2c_init(void)
{
BF_SET(I2C_CTRL0, SFTRST);
/* setup pins (must be done when shutdown) */
imx233_pinctrl_setup_vpin(VPIN_I2C_SCL, "i2c scl", PINCTRL_DRIVE_4mA, true);
imx233_pinctrl_setup_vpin(VPIN_I2C_SDA, "i2c sda", PINCTRL_DRIVE_4mA, true);
imx233_i2c_reset();
i2c_head = i2c_tail = NULL;
}
static void imx233_i2c_begin(void)
{
/* wakeup */
BF_CLR(I2C_CTRL0, CLKGATE);
i2c_nr_stages = 0;
i2c_buffer_end = 0;
}
static void imx233_i2c_add(bool start, bool transmit,
void *buffer, unsigned size, bool stop)
{
if(i2c_nr_stages == I2C_NR_STAGES)
panicf("i2c: too many stages");
/* align buffer end on cache boundary */
uint32_t start_off = CACHEALIGN_UP(i2c_buffer_end);
uint32_t end_off = start_off + size;
if(end_off > I2C_BUFFER_SIZE)
panicf("i2c: transfer is too big");
i2c_buffer_end = end_off;
if(transmit)
{
/* copy data to buffer */
memcpy(i2c_buffer + start_off, buffer, size);
}
else
{
/* record pointers for finalization */
i2c_stage[i2c_nr_stages].src = i2c_buffer + start_off;
i2c_stage[i2c_nr_stages].dst = buffer;
}
if(i2c_nr_stages > 0)
{
i2c_stage[i2c_nr_stages - 1].dma.next = &i2c_stage[i2c_nr_stages].dma;
i2c_stage[i2c_nr_stages - 1].dma.cmd |= BM_APB_CHx_CMD_CHAIN;
if(!start)
i2c_stage[i2c_nr_stages - 1].ctrl0 |= BM_I2C_CTRL0_RETAIN_CLOCK;
}
i2c_stage[i2c_nr_stages].dma.buffer = i2c_buffer + start_off;
i2c_stage[i2c_nr_stages].dma.next = NULL;
i2c_stage[i2c_nr_stages].dma.cmd = BF_OR(APB_CHx_CMD,
COMMAND(transmit ? BV_APB_CHx_CMD_COMMAND__READ : BV_APB_CHx_CMD_COMMAND__WRITE),
WAIT4ENDCMD(1), CMDWORDS(1), XFER_COUNT(size));
/* assume that any read is final (send nak on last) */
i2c_stage[i2c_nr_stages].ctrl0 = BF_OR(I2C_CTRL0,
XFER_COUNT(size), DIRECTION(transmit), SEND_NAK_ON_LAST(!transmit),
PRE_SEND_START(start), POST_SEND_STOP(stop), MASTER_MODE(1));
i2c_nr_stages++;
}
static enum imx233_i2c_error_t imx233_i2c_finalize(void)
{
discard_dcache_range(i2c_buffer, I2C_BUFFER_SIZE);
for(int i = 0; i < i2c_nr_stages; i++)
{
struct i2c_dma_command_t *c = &i2c_stage[i];
if(BF_RDX(c->dma.cmd, APB_CHx_CMD, COMMAND) == BV_APB_CHx_CMD_COMMAND__WRITE)
memcpy(c->dst, c->src, BF_RDX(c->dma.cmd, APB_CHx_CMD, XFER_COUNT));
}
return I2C_SUCCESS;
}
static void imx233_i2c_kick(void)
{
if(i2c_nr_stages == 0)
panicf("i2c: empty kick");
i2c_stage[i2c_nr_stages - 1].dma.cmd |= BM_APB_CHx_CMD_SEMAPHORE | BM_APB_CHx_CMD_IRQONCMPLT;
BF_CLR(I2C_CTRL1, SLAVE_IRQ, SLAVE_STOP_IRQ, MASTER_LOSS_IRQ, EARLY_TERM_IRQ,
OVERSIZE_XFER_TERM_IRQ, NO_SLAVE_ACK_IRQ, DATA_ENGINE_CMPLT_IRQ, BUS_FREE_IRQ);
imx233_dma_reset_channel(APB_I2C);
imx233_icoll_enable_interrupt(INT_SRC_I2C_DMA, true);
imx233_icoll_enable_interrupt(INT_SRC_I2C_ERROR, true);
imx233_dma_enable_channel_interrupt(APB_I2C, true);
imx233_dma_start_command(APB_I2C, &i2c_stage[0].dma);
}
static void imx233_i2c_abort(void)
{
/* FIXME there is a race condition here: if dma irq fires right before we
* reset the channel, it will most likely trigger an IRQ anyway. It is
* extremely unlikely but ideally, we should check this in the IRQ handler
* with an id/counter. */
imx233_dma_reset_channel(APB_I2C);
imx233_i2c_reset();
imx233_i2c_transfer_complete(I2C_TIMEOUT);
}
static enum imx233_i2c_error_t imx233_i2c_end(void)
{
enum imx233_i2c_error_t ret;
/* check for various errors */
if(BF_RD(I2C_CTRL1, MASTER_LOSS_IRQ))
ret = I2C_MASTER_LOSS;
else if(BF_RD(I2C_CTRL1, NO_SLAVE_ACK_IRQ))
{
/* the core doesn't like this error, this is a workaround to prevent lock up */
#if IMX233_SUBTARGET >= 3780
BF_SET(I2C_CTRL1, CLR_GOT_A_NAK);
#endif
imx233_dma_reset_channel(APB_I2C);
imx233_i2c_reset();
ret = I2C_NO_SLAVE_ACK;
}
else if(BF_RD(I2C_CTRL1, EARLY_TERM_IRQ))
ret = I2C_SLAVE_NAK;
else
ret = imx233_i2c_finalize();
/* sleep */
BF_SET(I2C_CTRL0, CLKGATE);
return ret;
}
static void imx233_i2c_set_speed(bool fast_mode)
{
/* See I2C specification for standard- and fast-mode timings
* Clock is derived APBX which we assume to be running at 24 MHz. */
if(fast_mode)
{
/* Fast-mode @ 400 kHz */
HW_I2C_TIMING0 = 0x000f0007; /* HIGH_COUNT=0.6us, RCV_COUNT=0.2us */
HW_I2C_TIMING1 = 0x001f000f; /* LOW_COUNT=1.3us, XMIT_COUNT=0.6us */
HW_I2C_TIMING2 = 0x0015000d; /* BUS_FREE=0.9us LEADIN_COUNT=0.55us */
}
else
{
/* Standard-mode @ 100 kHz */
HW_I2C_TIMING0 = 0x00780030; /* HIGH_COUNT=5us, RCV_COUNT=2us */
HW_I2C_TIMING1 = 0x00800030; /* LOW_COUNT=5.3us, XMIT_COUNT=2us */
HW_I2C_TIMING2 = 0x00300030; /* BUS_FREE=2us LEADIN_COUNT=2us */
}
}
static void imx233_i2c_irq(bool err)
{
if(err)
panicf("i2c: dma error");
/* reset dma channel on error */
if(imx233_dma_is_channel_error_irq(APB_I2C))
imx233_dma_reset_channel(APB_I2C);
/* clear irq flags */
imx233_dma_clear_channel_interrupt(APB_I2C);
/* handle completion */
imx233_i2c_transfer_complete(imx233_i2c_end());
}
void INT_I2C_DMA(void)
{
imx233_i2c_irq(false);
}
void INT_I2C_ERROR(void)
{
imx233_i2c_irq(true);
}
/** Public API */
void i2c_init(void)
{
}
struct imx233_i2c_sync_xfer_t
{
struct imx233_i2c_xfer_t xfer;
struct semaphore sema;
volatile enum imx233_i2c_error_t status;
};
/* synchronous callback: record status and release semaphore */
static void i2c_sync_callback(struct imx233_i2c_xfer_t *xfer, enum imx233_i2c_error_t status)
{
struct imx233_i2c_sync_xfer_t *sxfer = (void *)xfer;
sxfer->status = status;
semaphore_release(&sxfer->sema);
}
static int i2c_sync_transfer(struct imx233_i2c_sync_xfer_t *xfer)
{
semaphore_init(&xfer->sema, 1, 0);
/* common init */
xfer->xfer.next = NULL;
xfer->xfer.callback = &i2c_sync_callback;
xfer->xfer.fast_mode = true;
xfer->xfer.tmo_ms = 1000;
/* kick */
imx233_i2c_transfer(&xfer->xfer);
/* wait */
semaphore_wait(&xfer->sema, TIMEOUT_BLOCK);
return (int)xfer->status;
}
int i2c_write(int device, const unsigned char* buf, int count)
{
struct imx233_i2c_sync_xfer_t xfer;
xfer.xfer.dev_addr = device;
xfer.xfer.mode = I2C_WRITE;
xfer.xfer.count[0] = count;
xfer.xfer.data[0] = (void *)buf;
xfer.xfer.count[1] = 0;
return i2c_sync_transfer(&xfer);
}
int i2c_read(int device, unsigned char* buf, int count)
{
struct imx233_i2c_sync_xfer_t xfer;
xfer.xfer.dev_addr = device;
xfer.xfer.mode = I2C_READ;
xfer.xfer.count[0] = 0;
xfer.xfer.count[1] = count;
xfer.xfer.data[1] = buf;
return i2c_sync_transfer(&xfer);
}
int i2c_readmem(int device, int address, unsigned char* buf, int count)
{
uint8_t addr = address; /* assume 1 byte */
struct imx233_i2c_sync_xfer_t xfer;
xfer.xfer.dev_addr = device;
xfer.xfer.mode = I2C_READ;
xfer.xfer.count[0] = 1;
xfer.xfer.data[0] = &addr;
xfer.xfer.count[1] = count;
xfer.xfer.data[1] = buf;
return i2c_sync_transfer(&xfer);
}
int i2c_writemem(int device, int address, const unsigned char* buf, int count)
{
uint8_t addr = address; /* assume 1 byte */
struct imx233_i2c_sync_xfer_t xfer;
xfer.xfer.dev_addr = device;
xfer.xfer.mode = I2C_WRITE;
xfer.xfer.count[0] = 1;
xfer.xfer.data[0] = &addr;
xfer.xfer.count[1] = count;
xfer.xfer.data[1] = (void *)buf;
return i2c_sync_transfer(&xfer);
}