rockbox/firmware/target/arm/s5l8702/ipod6g/storage_ata-ipod6g.c
Michael Sparmann 4c12aa1f08 iPod Classic: HDD endianness change
This commit changes the default HDD endianness to the correct one,
but stays compatible with the old endianness.
If an MBR with the wrong endianness is detected, it will
automatically enable word swapping and issue a warning splash.

To permanently fix this you'll need to upgrade emCORE to at least r836.
This will wipe all data! A post-r836 build of emCORE will be
officially released during the next couple of days.


git-svn-id: svn://svn.rockbox.org/rockbox/trunk@31455 a1c6a512-1295-4272-9138-f99709370657
2011-12-28 16:06:13 +00:00

1176 lines
38 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2007 Dave Chapman
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "thread.h"
#include "disk.h"
#include "storage.h"
#include "timer.h"
#include "kernel.h"
#include "string.h"
#include "power.h"
#include "panic.h"
#include "mmu-arm.h"
#include "mmcdefs-target.h"
#include "s5l8702.h"
#include "led.h"
#include "ata_idle_notify.h"
#include "fat.h"
#include "splash.h"
#ifndef ATA_RETRIES
#define ATA_RETRIES 3
#endif
#define CEATA_POWERUP_TIMEOUT 20000000
#define CEATA_COMMAND_TIMEOUT 1000000
#define CEATA_DAT_NONBUSY_TIMEOUT 5000000
#define CEATA_MMC_RCA 1
/** static, private data **/
static uint8_t ceata_taskfile[16] __attribute__((aligned(16)));
static uint16_t ata_identify_data[0x100] __attribute__((aligned(16)));
static bool ceata;
static bool ata_swap;
static bool ata_lba48;
static bool ata_dma;
static uint64_t ata_total_sectors;
static struct mutex ata_mutex;
static struct semaphore ata_wakeup;
static uint32_t ata_dma_flags;
static long ata_last_activity_value = -1;
static long ata_sleep_timeout = 20 * HZ;
static uint32_t ata_stack[(DEFAULT_STACK_SIZE + 0x400) / 4];
static bool ata_powered;
static const int ata_retries = ATA_RETRIES;
static const bool ata_error_srst = true;
static struct semaphore mmc_wakeup;
static struct semaphore mmc_comp_wakeup;
static int spinup_time = 0;
static int dma_mode = 0;
#ifdef ATA_HAVE_BBT
char ata_bbt_buf[ATA_BBT_PAGES * 64];
uint16_t (*ata_bbt)[0x20];
uint64_t ata_virtual_sectors;
uint32_t ata_last_offset;
uint64_t ata_last_phys;
int ata_rw_sectors_internal(uint64_t sector, uint32_t count,
void* buffer, bool write);
int ata_bbt_read_sectors(uint32_t sector, uint32_t count, void* buffer)
{
if (ata_last_phys != sector - 1 && ata_last_phys > sector - 64) ata_soft_reset();
int rc = ata_rw_sectors_internal(sector, count, buffer, false);
if (rc) rc = ata_rw_sectors_internal(sector, count, buffer, false);
ata_last_phys = sector + count - 1;
ata_last_offset = 0;
if (IS_ERR(rc))
panicf("ATA: Error %08X while reading BBT (sector %d, count %d)\n",
(unsigned int)rc, (unsigned int)sector, (unsigned int)count);
return rc;
}
#endif
static uint16_t ata_read_cbr(uint32_t volatile* reg)
{
while (!(ATA_PIO_READY & 2));
volatile uint32_t dummy __attribute__((unused)) = *reg;
while (!(ATA_PIO_READY & 1));
return ATA_PIO_RDATA;
}
static void ata_write_cbr(uint32_t volatile* reg, uint16_t data)
{
while (!(ATA_PIO_READY & 2));
*reg = data;
}
static int ata_wait_for_not_bsy(long timeout)
{
long startusec = USEC_TIMER;
while (true)
{
uint8_t csd = ata_read_cbr(&ATA_PIO_CSD);
if (!(csd & BIT(7))) return 0;
if (TIMEOUT_EXPIRED(startusec, timeout)) RET_ERR(0);
}
}
static int ata_wait_for_rdy(long timeout)
{
long startusec = USEC_TIMER;
PASS_RC(ata_wait_for_not_bsy(timeout), 1, 0);
while (true)
{
uint8_t dad = ata_read_cbr(&ATA_PIO_DAD);
if (dad & BIT(6)) return 0;
if (TIMEOUT_EXPIRED(startusec, timeout)) RET_ERR(1);
}
}
static int ata_wait_for_start_of_transfer(long timeout)
{
long startusec = USEC_TIMER;
PASS_RC(ata_wait_for_not_bsy(timeout), 2, 0);
while (true)
{
uint8_t dad = ata_read_cbr(&ATA_PIO_DAD);
if (dad & BIT(0)) RET_ERR(1);
if ((dad & (BIT(7) | BIT(3))) == BIT(3)) return 0;
if (TIMEOUT_EXPIRED(startusec, timeout)) RET_ERR(2);
}
}
static int ata_wait_for_end_of_transfer(long timeout)
{
PASS_RC(ata_wait_for_not_bsy(timeout), 2, 0);
uint8_t dad = ata_read_cbr(&ATA_PIO_DAD);
if (dad & BIT(0)) RET_ERR(1);
if ((dad & (BIT(3) | BITRANGE(5, 7))) == BIT(6)) return 0;
RET_ERR(2);
}
static int mmc_dsta_check_command_success(bool disable_crc)
{
int rc = 0;
uint32_t dsta = SDCI_DSTA;
if (dsta & SDCI_DSTA_RESTOUTE) rc |= 1;
if (dsta & SDCI_DSTA_RESENDE) rc |= 2;
if (dsta & SDCI_DSTA_RESINDE) rc |= 4;
if (!disable_crc)
if (dsta & SDCI_DSTA_RESCRCE)
rc |= 8;
if (rc) RET_ERR(rc);
return 0;
}
static bool mmc_send_command(uint32_t cmd, uint32_t arg, uint32_t* result, int timeout)
{
long starttime = USEC_TIMER;
while ((SDCI_STATE & SDCI_STATE_CMD_STATE_MASK) != SDCI_STATE_CMD_STATE_CMD_IDLE)
{
if (TIMEOUT_EXPIRED(starttime, timeout)) RET_ERR(0);
yield();
}
SDCI_STAC = SDCI_STAC_CLR_CMDEND | SDCI_STAC_CLR_BIT_3
| SDCI_STAC_CLR_RESEND | SDCI_STAC_CLR_DATEND
| SDCI_STAC_CLR_DAT_CRCEND | SDCI_STAC_CLR_CRC_STAEND
| SDCI_STAC_CLR_RESTOUTE | SDCI_STAC_CLR_RESENDE
| SDCI_STAC_CLR_RESINDE | SDCI_STAC_CLR_RESCRCE
| SDCI_STAC_CLR_WR_DATCRCE | SDCI_STAC_CLR_RD_DATCRCE
| SDCI_STAC_CLR_RD_DATENDE0 | SDCI_STAC_CLR_RD_DATENDE1
| SDCI_STAC_CLR_RD_DATENDE2 | SDCI_STAC_CLR_RD_DATENDE3
| SDCI_STAC_CLR_RD_DATENDE4 | SDCI_STAC_CLR_RD_DATENDE5
| SDCI_STAC_CLR_RD_DATENDE6 | SDCI_STAC_CLR_RD_DATENDE7;
SDCI_ARGU = arg;
SDCI_CMD = cmd;
if (!(SDCI_DSTA & SDCI_DSTA_CMDRDY)) RET_ERR(1);
SDCI_CMD = cmd | SDCI_CMD_CMDSTR;
long sleepbase = USEC_TIMER;
while (TIMEOUT_EXPIRED(sleepbase, 1000)) yield();
while (!(SDCI_DSTA & SDCI_DSTA_CMDEND))
{
if (TIMEOUT_EXPIRED(starttime, timeout)) RET_ERR(2);
yield();
}
if ((cmd & SDCI_CMD_RES_TYPE_MASK) != SDCI_CMD_RES_TYPE_NONE)
{
while (!(SDCI_DSTA & SDCI_DSTA_RESEND))
{
if (TIMEOUT_EXPIRED(starttime, timeout)) RET_ERR(3);
yield();
}
if (cmd & SDCI_CMD_RES_BUSY)
while (SDCI_DSTA & SDCI_DSTA_DAT_BUSY)
{
if (TIMEOUT_EXPIRED(starttime, CEATA_DAT_NONBUSY_TIMEOUT)) RET_ERR(4);
yield();
}
}
bool nocrc = (cmd & SDCI_CMD_RES_SIZE_MASK) == SDCI_CMD_RES_SIZE_136;
PASS_RC(mmc_dsta_check_command_success(nocrc), 3, 5);
if (result) *result = SDCI_RESP0;
return 0;
}
static int mmc_get_card_status(uint32_t* result)
{
return mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_SEND_STATUS)
| SDCI_CMD_CMD_TYPE_AC | SDCI_CMD_RES_TYPE_R1
| SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR,
MMC_CMD_SEND_STATUS_RCA(CEATA_MMC_RCA), result, CEATA_COMMAND_TIMEOUT);
}
static int mmc_init(void)
{
sleep(HZ / 10);
PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_GO_IDLE_STATE)
| SDCI_CMD_CMD_TYPE_BC | SDCI_CMD_RES_TYPE_NONE
| SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NID,
0, NULL, CEATA_COMMAND_TIMEOUT), 3, 0);
long startusec = USEC_TIMER;
uint32_t result;
do
{
if (TIMEOUT_EXPIRED(startusec, CEATA_POWERUP_TIMEOUT)) RET_ERR(1);
sleep(HZ / 100);
PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_SEND_OP_COND)
| SDCI_CMD_CMD_TYPE_BCR | SDCI_CMD_RES_TYPE_R3
| SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NID,
MMC_CMD_SEND_OP_COND_OCR(MMC_OCR_270_360),
NULL, CEATA_COMMAND_TIMEOUT), 3, 2);
result = SDCI_RESP0;
}
while (!(result & MMC_OCR_POWER_UP_DONE));
PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_ALL_SEND_CID)
| SDCI_CMD_CMD_TYPE_BCR | SDCI_CMD_RES_TYPE_R2
| SDCI_CMD_RES_SIZE_136 | SDCI_CMD_NCR_NID_NID,
0, NULL, CEATA_COMMAND_TIMEOUT), 3, 3);
PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_SET_RELATIVE_ADDR)
| SDCI_CMD_CMD_TYPE_BCR | SDCI_CMD_RES_TYPE_R1
| SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR,
MMC_CMD_SET_RELATIVE_ADDR_RCA(CEATA_MMC_RCA),
NULL, CEATA_COMMAND_TIMEOUT), 3, 4);
PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_SELECT_CARD)
| SDCI_CMD_CMD_TYPE_AC | SDCI_CMD_RES_TYPE_R1
| SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR,
MMC_CMD_SELECT_CARD_RCA(CEATA_MMC_RCA),
NULL, CEATA_COMMAND_TIMEOUT), 3, 5);
PASS_RC(mmc_get_card_status(&result), 3, 6);
if ((result & MMC_STATUS_CURRENT_STATE_MASK) != MMC_STATUS_CURRENT_STATE_TRAN) RET_ERR(7);
return 0;
}
static int mmc_fastio_write(uint32_t addr, uint32_t data)
{
return mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_FAST_IO)
| SDCI_CMD_CMD_TYPE_AC | SDCI_CMD_RES_TYPE_R4
| SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR,
MMC_CMD_FAST_IO_RCA(CEATA_MMC_RCA) | MMC_CMD_FAST_IO_DIRECTION_WRITE
| MMC_CMD_FAST_IO_ADDRESS(addr) | MMC_CMD_FAST_IO_DATA(data),
NULL, CEATA_COMMAND_TIMEOUT);
}
static int mmc_fastio_read(uint32_t addr, uint32_t* data)
{
return mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_FAST_IO)
| SDCI_CMD_CMD_TYPE_AC | SDCI_CMD_RES_TYPE_R4
| SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR,
MMC_CMD_FAST_IO_RCA(CEATA_MMC_RCA) | MMC_CMD_FAST_IO_DIRECTION_READ
| MMC_CMD_FAST_IO_ADDRESS(addr), data, CEATA_COMMAND_TIMEOUT);
}
static int ceata_soft_reset(void)
{
PASS_RC(mmc_fastio_write(6, 4), 2, 0);
sleep(HZ / 100);
PASS_RC(mmc_fastio_write(6, 0), 2, 1);
sleep(HZ / 100);
long startusec = USEC_TIMER;
uint32_t status;
do
{
PASS_RC(mmc_fastio_read(0xf, &status), 2, 2);
if (TIMEOUT_EXPIRED(startusec, CEATA_POWERUP_TIMEOUT)) RET_ERR(3);
sleep(HZ / 100);
}
while (status & 0x80);
return 0;
}
static int mmc_dsta_check_data_success(void)
{
int rc = 0;
uint32_t dsta = SDCI_DSTA;
if (dsta & (SDCI_DSTA_WR_DATCRCE | SDCI_DSTA_RD_DATCRCE))
{
if (dsta & SDCI_DSTA_WR_DATCRCE) rc |= 1;
if (dsta & SDCI_DSTA_RD_DATCRCE) rc |= 2;
if ((dsta & SDCI_DSTA_WR_CRC_STATUS_MASK) == SDCI_DSTA_WR_CRC_STATUS_TXERR) rc |= 4;
else if ((dsta & SDCI_DSTA_WR_CRC_STATUS_MASK) == SDCI_DSTA_WR_CRC_STATUS_CARDERR) rc |= 8;
}
if (dsta & (SDCI_DSTA_RD_DATENDE0 | SDCI_DSTA_RD_DATENDE1 | SDCI_DSTA_RD_DATENDE2
| SDCI_DSTA_RD_DATENDE3 | SDCI_DSTA_RD_DATENDE4 | SDCI_DSTA_RD_DATENDE5
| SDCI_DSTA_RD_DATENDE6 | SDCI_DSTA_RD_DATENDE7))
rc |= 16;
if (rc) RET_ERR(rc);
return 0;
}
static void mmc_discard_irq(void)
{
SDCI_IRQ = SDCI_IRQ_DAT_DONE_INT | SDCI_IRQ_MASK_MASK_IOCARD_IRQ_INT
| SDCI_IRQ_MASK_MASK_READ_WAIT_INT;
semaphore_wait(&mmc_wakeup, 0);
}
static int ceata_read_multiple_register(uint32_t addr, void* dest, uint32_t size)
{
if (size > 0x10) RET_ERR(0);
mmc_discard_irq();
SDCI_DMASIZE = size;
SDCI_DMACOUNT = 1;
SDCI_DMAADDR = dest;
SDCI_DCTRL = SDCI_DCTRL_TXFIFORST | SDCI_DCTRL_RXFIFORST;
commit_discard_dcache();
PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_CEATA_RW_MULTIPLE_REG)
| SDCI_CMD_CMD_TYPE_ADTC | SDCI_CMD_RES_TYPE_R1
| SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR,
MMC_CMD_CEATA_RW_MULTIPLE_REG_DIRECTION_READ
| MMC_CMD_CEATA_RW_MULTIPLE_REG_ADDRESS(addr & 0xfc)
| MMC_CMD_CEATA_RW_MULTIPLE_REG_COUNT(size & 0xfc),
NULL, CEATA_COMMAND_TIMEOUT), 2, 1);
if (semaphore_wait(&mmc_wakeup, CEATA_COMMAND_TIMEOUT * HZ / 1000000)
== OBJ_WAIT_TIMEDOUT) RET_ERR(2);
PASS_RC(mmc_dsta_check_data_success(), 2, 3);
return 0;
}
static int ceata_write_multiple_register(uint32_t addr, void* dest, uint32_t size)
{
uint32_t i;
if (size > 0x10) RET_ERR(0);
mmc_discard_irq();
SDCI_DMASIZE = size;
SDCI_DMACOUNT = 0;
SDCI_DCTRL = SDCI_DCTRL_TXFIFORST | SDCI_DCTRL_RXFIFORST;
PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_CEATA_RW_MULTIPLE_REG)
| SDCI_CMD_CMD_TYPE_ADTC | SDCI_CMD_CMD_RD_WR
| SDCI_CMD_RES_BUSY | SDCI_CMD_RES_TYPE_R1
| SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR,
MMC_CMD_CEATA_RW_MULTIPLE_REG_DIRECTION_WRITE
| MMC_CMD_CEATA_RW_MULTIPLE_REG_ADDRESS(addr & 0xfc)
| MMC_CMD_CEATA_RW_MULTIPLE_REG_COUNT(size & 0xfc),
NULL, CEATA_COMMAND_TIMEOUT), 3, 1);
SDCI_DCTRL = SDCI_DCTRL_TRCONT_TX;
for (i = 0; i < size / 4; i++) SDCI_DATA = ((uint32_t*)dest)[i];
long startusec = USEC_TIMER;
if (semaphore_wait(&mmc_wakeup, CEATA_COMMAND_TIMEOUT * HZ / 1000000)
== OBJ_WAIT_TIMEDOUT) RET_ERR(2);
while ((SDCI_STATE & SDCI_STATE_DAT_STATE_MASK) != SDCI_STATE_DAT_STATE_IDLE)
{
if (TIMEOUT_EXPIRED(startusec, CEATA_COMMAND_TIMEOUT)) RET_ERR(3);
yield();
}
PASS_RC(mmc_dsta_check_data_success(), 3, 4);
return 0;
}
static int ceata_init(int buswidth)
{
uint32_t result;
PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_SWITCH) | SDCI_CMD_RES_BUSY
| SDCI_CMD_CMD_TYPE_AC | SDCI_CMD_RES_TYPE_R1
| SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR,
MMC_CMD_SWITCH_ACCESS_WRITE_BYTE
| MMC_CMD_SWITCH_INDEX(MMC_CMD_SWITCH_FIELD_HS_TIMING)
| MMC_CMD_SWITCH_VALUE(MMC_CMD_SWITCH_FIELD_HS_TIMING_HIGH_SPEED),
&result, CEATA_COMMAND_TIMEOUT), 3, 0);
if (result & MMC_STATUS_SWITCH_ERROR) RET_ERR(1);
if (buswidth > 1)
{
int setting;
if (buswidth == 4) setting = MMC_CMD_SWITCH_FIELD_BUS_WIDTH_4BIT;
else if (buswidth == 8) setting = MMC_CMD_SWITCH_FIELD_BUS_WIDTH_8BIT;
else setting = MMC_CMD_SWITCH_FIELD_BUS_WIDTH_1BIT;
PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_SWITCH) | SDCI_CMD_RES_BUSY
| SDCI_CMD_CMD_TYPE_AC | SDCI_CMD_RES_TYPE_R1
| SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR,
MMC_CMD_SWITCH_ACCESS_WRITE_BYTE
| MMC_CMD_SWITCH_INDEX(MMC_CMD_SWITCH_FIELD_BUS_WIDTH)
| MMC_CMD_SWITCH_VALUE(setting),
&result, CEATA_COMMAND_TIMEOUT), 3, 2);
if (result & MMC_STATUS_SWITCH_ERROR) RET_ERR(3);
if (buswidth == 4)
SDCI_CTRL = (SDCI_CTRL & ~SDCI_CTRL_BUS_WIDTH_MASK) | SDCI_CTRL_BUS_WIDTH_4BIT;
else if (buswidth == 8)
SDCI_CTRL = (SDCI_CTRL & ~SDCI_CTRL_BUS_WIDTH_MASK) | SDCI_CTRL_BUS_WIDTH_8BIT;
}
PASS_RC(ceata_soft_reset(), 3, 4);
PASS_RC(ceata_read_multiple_register(0, ceata_taskfile, 0x10), 3, 5);
if (ceata_taskfile[0xc] != 0xce || ceata_taskfile[0xd] != 0xaa) RET_ERR(6);
PASS_RC(mmc_fastio_write(6, 0), 3, 7);
return 0;
}
static int ceata_check_error(void)
{
uint32_t status, error;
PASS_RC(mmc_fastio_read(0xf, &status), 2, 0);
if (status & 1)
{
PASS_RC(mmc_fastio_read(0x9, &error), 2, 1);
RET_ERR((error << 2) | 2);
}
return 0;
}
static int ceata_wait_idle(void)
{
long startusec = USEC_TIMER;
while (true)
{
uint32_t status;
PASS_RC(mmc_fastio_read(0xf, &status), 1, 0);
if (!(status & 0x88)) return 0;
if (TIMEOUT_EXPIRED(startusec, CEATA_DAT_NONBUSY_TIMEOUT)) RET_ERR(1);
sleep(HZ / 20);
}
}
static int ceata_cancel_command(void)
{
*((uint32_t volatile*)0x3cf00200) = 0x9000e;
udelay(1);
*((uint32_t volatile*)0x3cf00200) = 0x9000f;
udelay(1);
*((uint32_t volatile*)0x3cf00200) = 0x90003;
udelay(1);
PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_STOP_TRANSMISSION)
| SDCI_CMD_CMD_TYPE_AC | SDCI_CMD_RES_TYPE_R1 | SDCI_CMD_RES_BUSY
| SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR,
0, NULL, CEATA_COMMAND_TIMEOUT), 1, 0);
PASS_RC(ceata_wait_idle(), 1, 1);
return 0;
}
static int ceata_rw_multiple_block(bool write, void* buf, uint32_t count, long timeout)
{
mmc_discard_irq();
uint32_t responsetype;
uint32_t cmdtype;
uint32_t direction;
if (write)
{
cmdtype = SDCI_CMD_CMD_TYPE_ADTC | SDCI_CMD_CMD_RD_WR;
responsetype = SDCI_CMD_RES_TYPE_R1 | SDCI_CMD_RES_BUSY;
direction = MMC_CMD_CEATA_RW_MULTIPLE_BLOCK_DIRECTION_WRITE;
}
else
{
cmdtype = SDCI_CMD_CMD_TYPE_ADTC;
responsetype = SDCI_CMD_RES_TYPE_R1;
direction = MMC_CMD_CEATA_RW_MULTIPLE_BLOCK_DIRECTION_READ;
}
SDCI_DMASIZE = 0x200;
SDCI_DMAADDR = buf;
SDCI_DMACOUNT = count;
SDCI_DCTRL = SDCI_DCTRL_TXFIFORST | SDCI_DCTRL_RXFIFORST;
commit_discard_dcache();
PASS_RC(mmc_send_command(SDCI_CMD_CMD_NUM(MMC_CMD_CEATA_RW_MULTIPLE_BLOCK)
| SDCI_CMD_CMD_TYPE_ADTC | cmdtype | responsetype
| SDCI_CMD_RES_SIZE_48 | SDCI_CMD_NCR_NID_NCR,
direction | MMC_CMD_CEATA_RW_MULTIPLE_BLOCK_COUNT(count),
NULL, CEATA_COMMAND_TIMEOUT), 4, 0);
if (write) SDCI_DCTRL = SDCI_DCTRL_TRCONT_TX;
if (semaphore_wait(&mmc_wakeup, timeout) == OBJ_WAIT_TIMEDOUT)
{
PASS_RC(ceata_cancel_command(), 4, 1);
RET_ERR(2);
}
PASS_RC(mmc_dsta_check_data_success(), 4, 3);
if (semaphore_wait(&mmc_comp_wakeup, timeout) == OBJ_WAIT_TIMEDOUT)
{
PASS_RC(ceata_cancel_command(), 4, 4);
RET_ERR(4);
}
PASS_RC(ceata_check_error(), 4, 5);
return 0;
}
static int ata_identify(uint16_t* buf)
{
int i;
if (ceata)
{
memset(ceata_taskfile, 0, 16);
ceata_taskfile[0xf] = 0xec;
PASS_RC(ceata_wait_idle(), 2, 0);
PASS_RC(ceata_write_multiple_register(0, ceata_taskfile, 16), 2, 1);
PASS_RC(ceata_rw_multiple_block(false, buf, 1, CEATA_COMMAND_TIMEOUT * HZ / 1000000), 2, 2);
}
else
{
uint32_t old = ATA_CFG;
ATA_CFG |= BIT(6);
PASS_RC(ata_wait_for_not_bsy(10000000), 1, 0);
ata_write_cbr(&ATA_PIO_DVR, 0);
ata_write_cbr(&ATA_PIO_CSD, 0xec);
PASS_RC(ata_wait_for_start_of_transfer(10000000), 1, 1);
for (i = 0; i < 0x100; i++) buf[i] = ata_read_cbr(&ATA_PIO_DTR);
ATA_CFG = old;
}
return 0;
}
static void ata_set_active(void)
{
ata_last_activity_value = current_tick;
}
bool ata_disk_is_active(void)
{
return ata_powered;
}
static int ata_set_feature(uint32_t feature, uint32_t param)
{
PASS_RC(ata_wait_for_rdy(500000), 1, 0);
ata_write_cbr(&ATA_PIO_DVR, 0);
ata_write_cbr(&ATA_PIO_FED, 3);
ata_write_cbr(&ATA_PIO_SCR, param);
ata_write_cbr(&ATA_PIO_CSD, feature);
PASS_RC(ata_wait_for_rdy(500000), 1, 1);
return 0;
}
static int ata_power_up(void)
{
ata_set_active();
if (ata_powered) return 0;
ide_power_enable(true);
long spinup_start = current_tick;
if (ceata)
{
PWRCON(0) &= ~(1 << 9);
SDCI_RESET = 0xa5;
sleep(HZ / 100);
*((uint32_t volatile*)0x3cf00380) = 0;
*((uint32_t volatile*)0x3cf0010c) = 0xff;
SDCI_CTRL = SDCI_CTRL_SDCIEN | SDCI_CTRL_CLK_SEL_SDCLK
| SDCI_CTRL_BIT_8 | SDCI_CTRL_BIT_14;
SDCI_CDIV = SDCI_CDIV_CLKDIV(260);
*((uint32_t volatile*)0x3cf00200) = 0xb000f;
SDCI_IRQ_MASK = SDCI_IRQ_MASK_MASK_DAT_DONE_INT | SDCI_IRQ_MASK_MASK_IOCARD_IRQ_INT;
PASS_RC(mmc_init(), 2, 0);
SDCI_CDIV = SDCI_CDIV_CLKDIV(4);
sleep(HZ / 100);
PASS_RC(ceata_init(8), 2, 1);
PASS_RC(ata_identify(ata_identify_data), 2, 2);
dma_mode = 0x44;
}
else
{
PWRCON(0) &= ~(1 << 5);
ATA_CFG = BIT(0);
sleep(HZ / 100);
ATA_CFG = 0;
sleep(HZ / 100);
ATA_SWRST = BIT(0);
sleep(HZ / 100);
ATA_SWRST = 0;
sleep(HZ / 10);
ATA_CONTROL = BIT(0);
sleep(HZ / 5);
ATA_PIO_TIME = 0x191f7;
ATA_PIO_LHR = 0;
if (!ata_swap) ATA_CFG = BIT(6);
while (!(ATA_PIO_READY & BIT(1))) yield();
PASS_RC(ata_identify(ata_identify_data), 2, 0);
uint32_t piotime = 0x11f3;
uint32_t mdmatime = 0x1c175;
uint32_t udmatime = 0x5071152;
uint32_t param = 0;
ata_dma_flags = 0;
ata_lba48 = ata_identify_data[83] & BIT(10) ? true : false;
if (ata_identify_data[53] & BIT(1))
{
if (ata_identify_data[64] & BIT(1)) piotime = 0x2072;
else if (ata_identify_data[64] & BIT(0)) piotime = 0x7083;
}
if (ata_identify_data[63] & BIT(2))
{
mdmatime = 0x5072;
param = 0x22;
}
else if (ata_identify_data[63] & BIT(1))
{
mdmatime = 0x7083;
param = 0x21;
}
if (ata_identify_data[63] & BITRANGE(0, 2))
{
ata_dma_flags = BIT(3) | BIT(10);
param |= 0x20;
}
if (ata_identify_data[53] & BIT(2))
{
if (ata_identify_data[88] & BIT(4))
{
udmatime = 0x2010a52;
param = 0x44;
}
else if (ata_identify_data[88] & BIT(3))
{
udmatime = 0x2020a52;
param = 0x43;
}
else if (ata_identify_data[88] & BIT(2))
{
udmatime = 0x3030a52;
param = 0x42;
}
else if (ata_identify_data[88] & BIT(1))
{
udmatime = 0x3050a52;
param = 0x41;
}
if (ata_identify_data[88] & BITRANGE(0, 4))
{
ata_dma_flags = BIT(2) | BIT(3) | BIT(9) | BIT(10);
param |= 0x40;
}
}
ata_dma = param ? true : false;
dma_mode = param;
PASS_RC(ata_set_feature(0xef, param), 2, 1);
if (ata_identify_data[82] & BIT(5)) PASS_RC(ata_set_feature(0x02, 0), 2, 2);
if (ata_identify_data[82] & BIT(6)) PASS_RC(ata_set_feature(0x55, 0), 2, 3);
ATA_PIO_TIME = piotime;
ATA_MDMA_TIME = mdmatime;
ATA_UDMA_TIME = udmatime;
}
spinup_time = current_tick - spinup_start;
if (ata_lba48)
ata_total_sectors = ata_identify_data[100]
| (((uint64_t)ata_identify_data[101]) << 16)
| (((uint64_t)ata_identify_data[102]) << 32)
| (((uint64_t)ata_identify_data[103]) << 48);
else ata_total_sectors = ata_identify_data[60] | (((uint32_t)ata_identify_data[61]) << 16);
ata_total_sectors >>= 3;
ata_powered = true;
ata_set_active();
return 0;
}
static void ata_power_down(void)
{
if (!ata_powered) return;
ata_powered = false;
if (ceata)
{
memset(ceata_taskfile, 0, 16);
ceata_taskfile[0xf] = 0xe0;
ceata_wait_idle();
ceata_write_multiple_register(0, ceata_taskfile, 16);
sleep(HZ);
PWRCON(0) |= (1 << 9);
}
else
{
ata_wait_for_rdy(1000000);
ata_write_cbr(&ATA_PIO_DVR, 0);
ata_write_cbr(&ATA_PIO_CSD, 0xe0);
ata_wait_for_rdy(1000000);
sleep(HZ / 30);
ATA_CONTROL = 0;
while (!(ATA_CONTROL & BIT(1))) yield();
PWRCON(0) |= (1 << 5);
}
ide_power_enable(false);
}
static int ata_rw_chunk_internal(uint64_t sector, uint32_t cnt, void* buffer, bool write)
{
if (ceata)
{
memset(ceata_taskfile, 0, 16);
ceata_taskfile[0x2] = cnt >> 5;
ceata_taskfile[0x3] = sector >> 21;
ceata_taskfile[0x4] = sector >> 29;
ceata_taskfile[0x5] = sector >> 37;
ceata_taskfile[0xa] = cnt << 3;
ceata_taskfile[0xb] = sector << 3;
ceata_taskfile[0xc] = sector >> 5;
ceata_taskfile[0xd] = sector >> 13;
ceata_taskfile[0xf] = write ? 0x35 : 0x25;
PASS_RC(ceata_wait_idle(), 2, 0);
PASS_RC(ceata_write_multiple_register(0, ceata_taskfile, 16), 2, 1);
PASS_RC(ceata_rw_multiple_block(write, buffer, cnt << 3, CEATA_COMMAND_TIMEOUT * HZ / 1000000), 2, 2);
}
else
{
PASS_RC(ata_wait_for_rdy(100000), 2, 0);
ata_write_cbr(&ATA_PIO_DVR, 0);
if (ata_lba48)
{
ata_write_cbr(&ATA_PIO_SCR, cnt >> 5);
ata_write_cbr(&ATA_PIO_SCR, (cnt << 3) & 0xff);
ata_write_cbr(&ATA_PIO_LHR, (sector >> 37) & 0xff);
ata_write_cbr(&ATA_PIO_LMR, (sector >> 29) & 0xff);
ata_write_cbr(&ATA_PIO_LLR, (sector >> 21) & 0xff);
ata_write_cbr(&ATA_PIO_LHR, (sector >> 13) & 0xff);
ata_write_cbr(&ATA_PIO_LMR, (sector >> 5) & 0xff);
ata_write_cbr(&ATA_PIO_LLR, (sector << 3) & 0xff);
ata_write_cbr(&ATA_PIO_DVR, BIT(6));
if (write) ata_write_cbr(&ATA_PIO_CSD, ata_dma ? 0x35 : 0x39);
else ata_write_cbr(&ATA_PIO_CSD, ata_dma ? 0x25 : 0x29);
}
else
{
ata_write_cbr(&ATA_PIO_SCR, (cnt << 3) & 0xff);
ata_write_cbr(&ATA_PIO_LHR, (sector >> 13) & 0xff);
ata_write_cbr(&ATA_PIO_LMR, (sector >> 5) & 0xff);
ata_write_cbr(&ATA_PIO_LLR, (sector << 3) & 0xff);
ata_write_cbr(&ATA_PIO_DVR, BIT(6) | ((sector >> 21) & 0xf));
if (write) ata_write_cbr(&ATA_PIO_CSD, ata_dma ? 0xca : 0x30);
else ata_write_cbr(&ATA_PIO_CSD, ata_dma ? 0xc8 : 0xc4);
}
if (ata_dma)
{
PASS_RC(ata_wait_for_start_of_transfer(500000), 2, 1);
if (write)
{
ATA_SBUF_START = buffer;
ATA_SBUF_SIZE = SECTOR_SIZE * cnt;
ATA_CFG |= BIT(4);
}
else
{
ATA_TBUF_START = buffer;
ATA_TBUF_SIZE = SECTOR_SIZE * cnt;
ATA_CFG &= ~BIT(4);
}
ATA_XFR_NUM = SECTOR_SIZE * cnt - 1;
ATA_CFG |= ata_dma_flags;
ATA_CFG &= ~(BIT(7) | BIT(8));
semaphore_wait(&ata_wakeup, 0);
ATA_IRQ = BITRANGE(0, 4);
ATA_IRQ_MASK = BIT(0);
ATA_COMMAND = BIT(0);
if (semaphore_wait(&ata_wakeup, 500000 * HZ / 1000000)
== OBJ_WAIT_TIMEDOUT)
{
ATA_COMMAND = BIT(1);
ATA_CFG &= ~(BITRANGE(2, 3) | BIT(12));
RET_ERR(2);
}
ATA_COMMAND = BIT(1);
ATA_CFG &= ~(BITRANGE(2, 3) | BIT(12));
}
else
{
cnt *= SECTOR_SIZE / 512;
while (cnt--)
{
int i;
PASS_RC(ata_wait_for_start_of_transfer(500000), 2, 1);
if (write)
for (i = 0; i < 256; i++)
ata_write_cbr(&ATA_PIO_DTR, ((uint16_t*)buffer)[i]);
else
for (i = 0; i < 256; i++)
((uint16_t*)buffer)[i] = ata_read_cbr(&ATA_PIO_DTR);
buffer += 512;
}
}
PASS_RC(ata_wait_for_end_of_transfer(100000), 2, 3);
}
return 0;
}
static int ata_rw_chunk(uint64_t sector, uint32_t cnt, void* buffer, bool write)
{
led(true);
int rc = ata_rw_chunk_internal(sector, cnt, buffer, write);
led(false);
return rc;
}
#ifdef ATA_HAVE_BBT
int ata_bbt_translate(uint64_t sector, uint32_t count, uint64_t* phys, uint32_t* physcount)
{
if (sector + count > ata_virtual_sectors) RET_ERR(0);
if (!ata_bbt)
{
*phys = sector;
*physcount = count;
return 0;
}
if (!count)
{
*phys = 0;
*physcount = 0;
return 0;
}
uint32_t offset;
uint32_t l0idx = sector >> 15;
uint32_t l0offs = sector & 0x7fff;
*physcount = MIN(count, 0x8000 - l0offs);
uint32_t l0data = ata_bbt[0][l0idx << 1];
uint32_t base = ata_bbt[0][(l0idx << 1) | 1] << 12;
if (l0data < 0x8000) offset = l0data + base;
else
{
uint32_t l1idx = (sector >> 10) & 0x1f;
uint32_t l1offs = sector & 0x3ff;
*physcount = MIN(count, 0x400 - l1offs);
uint32_t l1data = ata_bbt[l0data & 0x7fff][l1idx];
if (l1data < 0x8000) offset = l1data + base;
else
{
uint32_t l2idx = (sector >> 5) & 0x1f;
uint32_t l2offs = sector & 0x1f;
*physcount = MIN(count, 0x20 - l2offs);
uint32_t l2data = ata_bbt[l1data & 0x7fff][l2idx];
if (l2data < 0x8000) offset = l2data + base;
else
{
uint32_t l3idx = sector & 0x1f;
uint32_t l3data = ata_bbt[l2data & 0x7fff][l3idx];
for (*physcount = 1; *physcount < count && l3idx + *physcount < 0x20; (*physcount)++)
if (ata_bbt[l2data & 0x7fff][l3idx + *physcount] != l3data)
break;
offset = l3data + base;
}
}
}
*phys = sector + offset;
return 0;
}
#endif
static int ata_rw_sectors(uint64_t sector, uint32_t count, void* buffer, bool write)
{
if (((uint32_t)buffer) & 0xf)
panicf("ATA: Misaligned data buffer at %08X (sector %lu, count %lu)",
(unsigned int)buffer, (long unsigned int)sector, (long unsigned int)count);
#ifdef ATA_HAVE_BBT
if (sector + count > ata_virtual_sectors) RET_ERR(0);
if (ata_bbt)
while (count)
{
uint64_t phys;
uint32_t cnt;
PASS_RC(ata_bbt_translate(sector, count, &phys, &cnt), 0, 0);
uint32_t offset = phys - sector;
if (offset != ata_last_offset && phys - ata_last_phys < 64) ata_soft_reset();
ata_last_offset = offset;
ata_last_phys = phys + cnt;
PASS_RC(ata_rw_sectors_internal(phys, cnt, buffer, write), 0, 0);
buffer += cnt * SECTOR_SIZE;
sector += cnt;
count -= cnt;
}
else PASS_RC(ata_rw_sectors_internal(sector, count, buffer, write), 0, 0);
return 0;
}
int ata_rw_sectors_internal(uint64_t sector, uint32_t count, void* buffer, bool write)
{
#endif
if (sector + count > ata_total_sectors) RET_ERR(0);
if (!ata_powered) ata_power_up();
ata_set_active();
if (ata_dma && write) commit_dcache();
else if (ata_dma) commit_discard_dcache();
if (!ceata) ATA_COMMAND = BIT(1);
while (count)
{
uint32_t cnt = MIN(ata_lba48 ? 8192 : 32, count);
int rc = -1;
rc = ata_rw_chunk(sector, cnt, buffer, write);
if (rc && ata_error_srst) ata_soft_reset();
if (rc && ata_retries)
{
void* buf = buffer;
uint64_t sect;
for (sect = sector; sect < sector + cnt; sect++)
{
rc = -1;
int tries = ata_retries;
while (tries-- && rc)
{
rc = ata_rw_chunk(sect, 1, buf, write);
if (rc && ata_error_srst) ata_soft_reset();
}
if (rc) break;
buf += SECTOR_SIZE;
}
}
PASS_RC(rc, 1, 1);
buffer += SECTOR_SIZE * cnt;
sector += cnt;
count -= cnt;
}
ata_set_active();
return 0;
}
static void ata_thread(void)
{
while (true)
{
mutex_lock(&ata_mutex);
if (TIME_AFTER(current_tick, ata_last_activity_value + ata_sleep_timeout) && ata_powered)
{
call_storage_idle_notifys(false);
ata_power_down();
}
mutex_unlock(&ata_mutex);
sleep(HZ / 2);
}
}
/* API Functions */
int ata_soft_reset(void)
{
int rc;
mutex_lock(&ata_mutex);
if (!ata_powered) ata_power_up();
ata_set_active();
if (ceata) rc = ceata_soft_reset();
else
{
ata_write_cbr(&ATA_PIO_DAD, BIT(1) | BIT(2));
udelay(10);
ata_write_cbr(&ATA_PIO_DAD, 0);
rc = ata_wait_for_rdy(20000000);
}
if (IS_ERR(rc))
{
ata_power_down();
sleep(HZ * 3);
ata_power_up();
}
ata_set_active();
mutex_unlock(&ata_mutex);
return rc;
}
int ata_read_sectors(IF_MD2(int drive,) unsigned long start, int incount,
void* inbuf)
{
mutex_lock(&ata_mutex);
int rc = ata_rw_sectors(start, incount, inbuf, false);
mutex_unlock(&ata_mutex);
return rc;
}
int ata_write_sectors(IF_MD2(int drive,) unsigned long start, int count,
const void* outbuf)
{
mutex_lock(&ata_mutex);
int rc = ata_rw_sectors(start, count, (void*)((uint32_t)outbuf), true);
mutex_unlock(&ata_mutex);
return rc;
}
void ata_spindown(int seconds)
{
ata_sleep_timeout = seconds * HZ;
}
void ata_sleep(void)
{
ata_last_activity_value = current_tick - ata_sleep_timeout + HZ / 5;
}
void ata_sleepnow(void)
{
mutex_lock(&ata_mutex);
ata_power_down();
mutex_unlock(&ata_mutex);
}
void ata_close(void)
{
ata_sleepnow();
}
void ata_spin(void)
{
ata_set_active();
}
void ata_get_info(IF_MD2(int drive,) struct storage_info *info)
{
(*info).sector_size = SECTOR_SIZE;
#ifdef ATA_HAVE_BBT
(*info).num_sectors = ata_virtual_sectors;
#else
(*info).num_sectors = ata_total_sectors;
#endif
(*info).vendor = "Apple";
(*info).product = "iPod Classic";
(*info).revision = "1.0";
}
long ata_last_disk_activity(void)
{
return ata_last_activity_value;
}
#ifdef ATA_HAVE_BBT
void ata_bbt_disable(void)
{
mutex_lock(&ata_mutex);
ata_bbt = NULL;
ata_virtual_sectors = ata_total_sectors;
mutex_unlock(&ata_mutex);
}
void ata_bbt_reload(void)
{
mutex_lock(&ata_mutex);
ata_bbt_disable();
ata_power_up();
uint32_t* buf = (uint32_t*)(ata_bbt_buf + sizeof(ata_bbt_buf) - SECTOR_SIZE);
if (buf)
{
if (IS_ERR(ata_bbt_read_sectors(0, 1, buf)))
ata_virtual_sectors = ata_total_sectors;
else if (!memcmp(buf, "emBIbbth", 8))
{
ata_virtual_sectors = (((uint64_t)buf[0x1fd]) << 32) | buf[0x1fc];
uint32_t count = buf[0x1ff];
if (count > ATA_BBT_PAGES / 64)
panicf("ATA: BBT too big! (space: %d, size: %d)",
ATA_BBT_PAGES, (unsigned int)(count * 64));
uint32_t i;
uint32_t cnt;
ata_bbt = (typeof(ata_bbt))ata_bbt_buf;
for (i = 0; i < count; i += cnt)
{
uint32_t phys = buf[0x200 + i];
for (cnt = 1; cnt < count; cnt++)
if (buf[0x200 + i + cnt] != phys + cnt)
break;
if (IS_ERR(ata_bbt_read_sectors(phys, cnt, ata_bbt[i << 6])))
{
ata_virtual_sectors = ata_total_sectors;
break;
}
}
}
else ata_virtual_sectors = ata_total_sectors;
}
else ata_virtual_sectors = ata_total_sectors;
mutex_unlock(&ata_mutex);
}
#endif
int ata_init(void)
{
mutex_init(&ata_mutex);
semaphore_init(&ata_wakeup, 1, 0);
semaphore_init(&mmc_wakeup, 1, 0);
semaphore_init(&mmc_comp_wakeup, 1, 0);
ceata = PDAT(11) & BIT(1);
if (ceata)
{
ata_lba48 = true;
ata_dma = true;
PCON(8) = 0x33333333;
PCON(9) = (PCON(9) & ~0xff) | 0x33;
PCON(11) |= 0xf;
*((uint32_t volatile*)0x38a00000) = 0;
*((uint32_t volatile*)0x38700000) = 0;
}
else
{
PCON(7) = 0x44444444;
PCON(8) = 0x44444444;
PCON(9) = 0x44444444;
PCON(10) = (PCON(10) & ~0xffff) | 0x4444;
}
ata_swap = false;
ata_powered = false;
ata_total_sectors = 0;
ata_power_up();
#ifdef ATA_HAVE_BBT
ata_bbt_reload();
#endif
/* HDD data endianness check:
During the transition period Rockbox needs to detect the HDD data
endianness automatically and support both. We're now using the correct
endianness by default and only switching back to swapped bytes if we
find a reversed MBR signature.
To make this warning go away, update your emCORE version. The HDD will
be reformatted with the correct endianness during the process.
Once most users have switched over, this code may be removed again.
-- Michael Sparmann (theseven), 2011-10-22 */
if (!ceata)
{
unsigned char* sector = fat_get_sector_buffer();
ata_rw_sectors(0, 1, sector, false);
if (sector[510] == 0xaa && sector[511] == 0x55)
{
ata_swap = true;
splashf(5000, "Wrong HDD endianness, please update your emCORE version!");
}
fat_release_sector_buffer();
}
create_thread(ata_thread, ata_stack,
sizeof(ata_stack), 0, "ATA idle monitor"
IF_PRIO(, PRIORITY_USER_INTERFACE)
IF_COP(, CPU));
return 0;
}
#ifdef CONFIG_STORAGE_MULTI
static int ata_num_drives(int first_drive)
{
/* We don't care which logical drive number(s) we have been assigned */
(void)first_drive;
return 1;
}
#endif
unsigned short* ata_get_identify(void)
{
return ata_identify_data;
}
int ata_spinup_time(void)
{
return spinup_time;
}
int ata_get_dma_mode(void)
{
return dma_mode;
}
void INT_ATA(void)
{
uint32_t ata_irq = ATA_IRQ;
ATA_IRQ = ata_irq;
if (ata_irq & ATA_IRQ_MASK) semaphore_release(&ata_wakeup);
ATA_IRQ_MASK = 0;
}
void INT_MMC(void)
{
uint32_t irq = SDCI_IRQ;
if (irq & SDCI_IRQ_DAT_DONE_INT) semaphore_release(&mmc_wakeup);
if (irq & SDCI_IRQ_IOCARD_IRQ_INT) semaphore_release(&mmc_comp_wakeup);
SDCI_IRQ = irq;
}