3a9852be1c
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@24739 a1c6a512-1295-4272-9138-f99709370657
414 lines
13 KiB
C
414 lines
13 KiB
C
/*
|
|
* Fixed Point IMDCT
|
|
* Copyright (c) 2002 The FFmpeg Project.
|
|
* Copyright (c) 2010 Dave Hooper, Mohamed Tarek, Michael Giacomelli
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include "codeclib.h"
|
|
#include "mdct.h"
|
|
#include "asm_arm.h"
|
|
#include "asm_mcf5249.h"
|
|
#include "codeclib_misc.h"
|
|
#include "mdct_lookup.h"
|
|
|
|
/**
|
|
* Compute the middle half of the inverse MDCT of size N = 2^nbits
|
|
* thus excluding the parts that can be derived by symmetry
|
|
* @param output N/2 samples
|
|
* @param input N/2 samples
|
|
*
|
|
* NOTE - CANNOT CURRENTLY OPERATE IN PLACE (input and output must
|
|
* not overlap or intersect at all)
|
|
*/
|
|
void ff_imdct_half(unsigned int nbits, fixed32 *output, const fixed32 *input)
|
|
{
|
|
int n8, n4, n2, n, j;
|
|
const fixed32 *in1, *in2;
|
|
|
|
n = 1 << nbits;
|
|
|
|
n2 = n >> 1;
|
|
n4 = n >> 2;
|
|
n8 = n >> 3;
|
|
|
|
FFTComplex *z = (FFTComplex *)output;
|
|
|
|
/* pre rotation */
|
|
in1 = input;
|
|
in2 = input + n2 - 1;
|
|
|
|
/* revtab comes from the fft; revtab table is sized for N=4096 size fft = 2^12.
|
|
The fft is size N/4 so s->nbits-2, so our shift needs to be (12-(nbits-2)) */
|
|
const int revtab_shift = (14- nbits);
|
|
|
|
/* bitreverse reorder the input and rotate; result here is in OUTPUT ... */
|
|
/* (note that when using the current split radix, the bitreverse ordering is
|
|
complex, meaning that this reordering cannot easily be done in-place) */
|
|
/* Using the following pdf, you can see that it is possible to rearrange
|
|
the 'classic' pre/post rotate with an alternative one that enables
|
|
us to use fewer distinct twiddle factors.
|
|
http://www.eurasip.org/Proceedings/Eusipco/Eusipco2006/papers/1568980508.pdf
|
|
|
|
For prerotation, the factors are just sin,cos(2PI*i/N)
|
|
For postrotation, the factors are sin,cos(2PI*(i+1/4)/N)
|
|
|
|
Therefore, prerotation can immediately reuse the same twiddles as fft
|
|
(for postrotation it's still a bit complex, so this is still using
|
|
an mdct-local set of twiddles to do that part)
|
|
*/
|
|
const int32_t *T = sincos_lookup0;
|
|
const int step = 2<<(12-nbits);
|
|
const uint16_t * p_revtab=revtab;
|
|
{
|
|
const uint16_t * const p_revtab_end = p_revtab + n8;
|
|
while(LIKELY(p_revtab < p_revtab_end))
|
|
{
|
|
j = (*p_revtab)>>revtab_shift;
|
|
XNPROD31(*in2, *in1, T[1], T[0], &z[j].re, &z[j].im );
|
|
T += step;
|
|
in1 += 2;
|
|
in2 -= 2;
|
|
p_revtab++;
|
|
j = (*p_revtab)>>revtab_shift;
|
|
XNPROD31(*in2, *in1, T[1], T[0], &z[j].re, &z[j].im );
|
|
T += step;
|
|
in1 += 2;
|
|
in2 -= 2;
|
|
p_revtab++;
|
|
}
|
|
}
|
|
{
|
|
const uint16_t * const p_revtab_end = p_revtab + n8;
|
|
while(LIKELY(p_revtab < p_revtab_end))
|
|
{
|
|
j = (*p_revtab)>>revtab_shift;
|
|
XNPROD31(*in2, *in1, T[0], T[1], &z[j].re, &z[j].im);
|
|
T -= step;
|
|
in1 += 2;
|
|
in2 -= 2;
|
|
p_revtab++;
|
|
j = (*p_revtab)>>revtab_shift;
|
|
XNPROD31(*in2, *in1, T[0], T[1], &z[j].re, &z[j].im);
|
|
T -= step;
|
|
in1 += 2;
|
|
in2 -= 2;
|
|
p_revtab++;
|
|
}
|
|
}
|
|
|
|
|
|
/* ... and so fft runs in OUTPUT buffer */
|
|
ff_fft_calc_c(nbits-2, z);
|
|
|
|
/* post rotation + reordering. now keeps the result within the OUTPUT buffer */
|
|
switch( nbits )
|
|
{
|
|
default:
|
|
{
|
|
fixed32 * z1 = (fixed32 *)(&z[0]);
|
|
fixed32 * z2 = (fixed32 *)(&z[n4-1]);
|
|
int magic_step = step>>2;
|
|
int newstep;
|
|
if(n<=1024)
|
|
{
|
|
T = sincos_lookup0 + magic_step;
|
|
newstep = step>>1;
|
|
}
|
|
else
|
|
{
|
|
T = sincos_lookup1;
|
|
newstep = 2;
|
|
}
|
|
|
|
while(z1<z2)
|
|
{
|
|
fixed32 r0,i0,r1,i1;
|
|
XNPROD31_R(z1[1], z1[0], T[0], T[1], r0, i1 ); T+=newstep;
|
|
XNPROD31_R(z2[1], z2[0], T[1], T[0], r1, i0 ); T+=newstep;
|
|
z1[0] = -r0;
|
|
z1[1] = -i0;
|
|
z2[0] = -r1;
|
|
z2[1] = -i1;
|
|
z1+=2;
|
|
z2-=2;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case 12: /* n=4096 */
|
|
{
|
|
/* linear interpolation (50:50) between sincos_lookup0 and sincos_lookup1 */
|
|
const int32_t * V = sincos_lookup1;
|
|
T = sincos_lookup0;
|
|
int32_t t0,t1,v0,v1;
|
|
fixed32 * z1 = (fixed32 *)(&z[0]);
|
|
fixed32 * z2 = (fixed32 *)(&z[n4-1]);
|
|
|
|
t0 = T[0]>>1; t1=T[1]>>1;
|
|
|
|
while(z1<z2)
|
|
{
|
|
fixed32 r0,i0,r1,i1;
|
|
t0 += (v0 = (V[0]>>1));
|
|
t1 += (v1 = (V[1]>>1));
|
|
XNPROD31_R(z1[1], z1[0], t0, t1, r0, i1 );
|
|
T+=2;
|
|
v0 += (t0 = (T[0]>>1));
|
|
v1 += (t1 = (T[1]>>1));
|
|
XNPROD31_R(z2[1], z2[0], v1, v0, r1, i0 );
|
|
z1[0] = -r0;
|
|
z1[1] = -i0;
|
|
z2[0] = -r1;
|
|
z2[1] = -i1;
|
|
z1+=2;
|
|
z2-=2;
|
|
V+=2;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case 13: /* n = 8192 */
|
|
{
|
|
/* weight linear interpolation between sincos_lookup0 and sincos_lookup1
|
|
specifically: 25:75 for first twiddle and 75:25 for second twiddle */
|
|
const int32_t * V = sincos_lookup1;
|
|
T = sincos_lookup0;
|
|
int32_t t0,t1,v0,v1,q0,q1;
|
|
fixed32 * z1 = (fixed32 *)(&z[0]);
|
|
fixed32 * z2 = (fixed32 *)(&z[n4-1]);
|
|
|
|
t0 = T[0]; t1=T[1];
|
|
|
|
while(z1<z2)
|
|
{
|
|
fixed32 r0,i0,r1,i1;
|
|
v0 = V[0]; v1 = V[1];
|
|
t0 += (q0 = (v0-t0)>>1);
|
|
t1 += (q1 = (v1-t1)>>1);
|
|
XNPROD31_R(z1[1], z1[0], t0, t1, r0, i1 );
|
|
t0 = v0-q0;
|
|
t1 = v1-q1;
|
|
XNPROD31_R(z2[1], z2[0], t1, t0, r1, i0 );
|
|
z1[0] = -r0;
|
|
z1[1] = -i0;
|
|
z2[0] = -r1;
|
|
z2[1] = -i1;
|
|
z1+=2;
|
|
z2-=2;
|
|
T+=2;
|
|
|
|
t0 = T[0]; t1 = T[1];
|
|
v0 += (q0 = (t0-v0)>>1);
|
|
v1 += (q1 = (t1-v1)>>1);
|
|
XNPROD31_R(z1[1], z1[0], v0, v1, r0, i1 );
|
|
v0 = t0-q0;
|
|
v1 = t1-q1;
|
|
XNPROD31_R(z2[1], z2[0], v1, v0, r1, i0 );
|
|
z1[0] = -r0;
|
|
z1[1] = -i0;
|
|
z2[0] = -r1;
|
|
z2[1] = -i1;
|
|
z1+=2;
|
|
z2-=2;
|
|
V+=2;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Compute inverse MDCT of size N = 2^nbits
|
|
* @param output N samples
|
|
* @param input N/2 samples
|
|
* "In-place" processing can be achieved provided that:
|
|
* [0 .. N/2-1 | N/2 .. N-1 ]
|
|
* <----input---->
|
|
* <-----------output----------->
|
|
*
|
|
*/
|
|
void ff_imdct_calc(unsigned int nbits, fixed32 *output, const fixed32 *input)
|
|
{
|
|
const int n = (1<<nbits);
|
|
const int n2 = (n>>1);
|
|
const int n4 = (n>>2);
|
|
|
|
ff_imdct_half(nbits,output+n2,input);
|
|
|
|
/* reflect the half imdct into the full N samples */
|
|
/* TODO: this could easily be optimised more! */
|
|
fixed32 * in_r, * in_r2, * out_r, * out_r2;
|
|
|
|
out_r = output;
|
|
out_r2 = output+n2-8;
|
|
in_r = output+n2+n4-8;
|
|
while(out_r<out_r2)
|
|
{
|
|
out_r[0] = -(out_r2[7] = in_r[7]);
|
|
out_r[1] = -(out_r2[6] = in_r[6]);
|
|
out_r[2] = -(out_r2[5] = in_r[5]);
|
|
out_r[3] = -(out_r2[4] = in_r[4]);
|
|
out_r[4] = -(out_r2[3] = in_r[3]);
|
|
out_r[5] = -(out_r2[2] = in_r[2]);
|
|
out_r[6] = -(out_r2[1] = in_r[1]);
|
|
out_r[7] = -(out_r2[0] = in_r[0]);
|
|
in_r -= 8;
|
|
out_r += 8;
|
|
out_r2 -= 8;
|
|
}
|
|
|
|
in_r = output + n2+n4;
|
|
in_r2 = output + n-4;
|
|
out_r = output + n2;
|
|
out_r2 = output + n2 + n4 - 4;
|
|
while(in_r<in_r2)
|
|
{
|
|
register fixed32 t0,t1,t2,t3;
|
|
register fixed32 s0,s1,s2,s3;
|
|
|
|
//simultaneously do the following things:
|
|
// 1. copy range from [n2+n4 .. n-1] to range[n2 .. n2+n4-1]
|
|
// 2. reflect range from [n2+n4 .. n-1] inplace
|
|
//
|
|
// [ | ]
|
|
// ^a -> <- ^b ^c -> <- ^d
|
|
//
|
|
// #1: copy from ^c to ^a
|
|
// #2: copy from ^d to ^b
|
|
// #3: swap ^c and ^d in place
|
|
//
|
|
// #1 pt1 : load 4 words from ^c.
|
|
t0=in_r[0]; t1=in_r[1]; t2=in_r[2]; t3=in_r[3];
|
|
// #1 pt2 : write to ^a
|
|
out_r[0]=t0;out_r[1]=t1;out_r[2]=t2;out_r[3]=t3;
|
|
// #2 pt1 : load 4 words from ^d
|
|
s0=in_r2[0];s1=in_r2[1];s2=in_r2[2];s3=in_r2[3];
|
|
// #2 pt2 : write to ^b
|
|
out_r2[0]=s0;out_r2[1]=s1;out_r2[2]=s2;out_r2[3]=s3;
|
|
// #3 pt1 : write words from #2 to ^c
|
|
in_r[0]=s3;in_r[1]=s2;in_r[2]=s1;in_r[3]=s0;
|
|
// #3 pt2 : write words from #1 to ^d
|
|
in_r2[0]=t3;in_r2[1]=t2;in_r2[2]=t1;in_r2[3]=t0;
|
|
|
|
in_r += 4;
|
|
in_r2 -= 4;
|
|
out_r += 4;
|
|
out_r2 -= 4;
|
|
}
|
|
}
|
|
|
|
static const long cordic_circular_gain = 0xb2458939; /* 0.607252929 */
|
|
|
|
/* Table of values of atan(2^-i) in 0.32 format fractions of pi where pi = 0xffffffff / 2 */
|
|
static const unsigned long atan_table[] = {
|
|
0x1fffffff, /* +0.785398163 (or pi/4) */
|
|
0x12e4051d, /* +0.463647609 */
|
|
0x09fb385b, /* +0.244978663 */
|
|
0x051111d4, /* +0.124354995 */
|
|
0x028b0d43, /* +0.062418810 */
|
|
0x0145d7e1, /* +0.031239833 */
|
|
0x00a2f61e, /* +0.015623729 */
|
|
0x00517c55, /* +0.007812341 */
|
|
0x0028be53, /* +0.003906230 */
|
|
0x00145f2e, /* +0.001953123 */
|
|
0x000a2f98, /* +0.000976562 */
|
|
0x000517cc, /* +0.000488281 */
|
|
0x00028be6, /* +0.000244141 */
|
|
0x000145f3, /* +0.000122070 */
|
|
0x0000a2f9, /* +0.000061035 */
|
|
0x0000517c, /* +0.000030518 */
|
|
0x000028be, /* +0.000015259 */
|
|
0x0000145f, /* +0.000007629 */
|
|
0x00000a2f, /* +0.000003815 */
|
|
0x00000517, /* +0.000001907 */
|
|
0x0000028b, /* +0.000000954 */
|
|
0x00000145, /* +0.000000477 */
|
|
0x000000a2, /* +0.000000238 */
|
|
0x00000051, /* +0.000000119 */
|
|
0x00000028, /* +0.000000060 */
|
|
0x00000014, /* +0.000000030 */
|
|
0x0000000a, /* +0.000000015 */
|
|
0x00000005, /* +0.000000007 */
|
|
0x00000002, /* +0.000000004 */
|
|
0x00000001, /* +0.000000002 */
|
|
0x00000000, /* +0.000000001 */
|
|
0x00000000, /* +0.000000000 */
|
|
};
|
|
|
|
/**
|
|
* Implements sin and cos using CORDIC rotation.
|
|
*
|
|
* @param phase has range from 0 to 0xffffffff, representing 0 and
|
|
* 2*pi respectively.
|
|
* @param cos return address for cos
|
|
* @return sin of phase, value is a signed value from LONG_MIN to LONG_MAX,
|
|
* representing -1 and 1 respectively.
|
|
*
|
|
* Gives at least 24 bits precision (last 2-8 bits or so are probably off)
|
|
*/
|
|
|
|
long fsincos(unsigned long phase, fixed32 *cos)
|
|
{
|
|
int32_t x, x1, y, y1;
|
|
unsigned long z, z1;
|
|
int i;
|
|
|
|
/* Setup initial vector */
|
|
x = cordic_circular_gain;
|
|
y = 0;
|
|
z = phase;
|
|
|
|
/* The phase has to be somewhere between 0..pi for this to work right */
|
|
if (z < 0xffffffff / 4) {
|
|
/* z in first quadrant, z += pi/2 to correct */
|
|
x = -x;
|
|
z += 0xffffffff / 4;
|
|
} else if (z < 3 * (0xffffffff / 4)) {
|
|
/* z in third quadrant, z -= pi/2 to correct */
|
|
z -= 0xffffffff / 4;
|
|
} else {
|
|
/* z in fourth quadrant, z -= 3pi/2 to correct */
|
|
x = -x;
|
|
z -= 3 * (0xffffffff / 4);
|
|
}
|
|
|
|
/* Each iteration adds roughly 1-bit of extra precision */
|
|
for (i = 0; i < 31; i++) {
|
|
x1 = x >> i;
|
|
y1 = y >> i;
|
|
z1 = atan_table[i];
|
|
|
|
/* Decided which direction to rotate vector. Pivot point is pi/2 */
|
|
if (z >= 0xffffffff / 4) {
|
|
x -= y1;
|
|
y += x1;
|
|
z -= z1;
|
|
} else {
|
|
x += y1;
|
|
y -= x1;
|
|
z += z1;
|
|
}
|
|
}
|
|
|
|
if (cos)
|
|
*cos = x;
|
|
|
|
return y;
|
|
}
|