rockbox/lib/rbcodec/codecs/flac.c
Michael Sevakis 31b7122867 Implement time-based resume and playback start.
This complements offset-based resume and playback start funcionality.
The implementation is global on both HWCODEC and SWCODEC.

Basically, if either the specified elapsed or offset are non-zero,
it indicates a mid-track resume.

To resume by time only, set elapsed to nonzero and offset to zero.
To resume by offset only, set offset to nonzero and elapsed to zero.

Which one the codec uses and which has priority is up to the codec;
however, using an elapsed time covers more cases:

* Codecs not able to use an offset such as VGM or other atomic
formats

* Starting playback at a nonzero elapsed time from a source that
contains no offset, such as a cuesheet

The change re-versions pretty much everything from tagcache to nvram.

Change-Id: Ic7aebb24e99a03ae99585c5e236eba960d163f38
Reviewed-on: http://gerrit.rockbox.org/516
Reviewed-by: Michael Sevakis <jethead71@rockbox.org>
Tested: Michael Sevakis <jethead71@rockbox.org>
2014-03-10 04:12:30 +01:00

544 lines
18 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2005 Dave Chapman
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "codeclib.h"
#include <codecs/libffmpegFLAC/decoder.h>
CODEC_HEADER
static FLACContext fc IBSS_ATTR_FLAC;
/* The output buffers containing the decoded samples (channels 0 and 1) */
static int32_t decoded0[MAX_BLOCKSIZE] IBSS_ATTR_FLAC;
static int32_t decoded1[MAX_BLOCKSIZE] IBSS_ATTR_FLAC;
static int32_t decoded2[MAX_BLOCKSIZE] IBSS_ATTR_FLAC_LARGE_IRAM;
static int32_t decoded3[MAX_BLOCKSIZE] IBSS_ATTR_FLAC_LARGE_IRAM;
static int32_t decoded4[MAX_BLOCKSIZE] IBSS_ATTR_FLAC_XLARGE_IRAM;
static int32_t decoded5[MAX_BLOCKSIZE] IBSS_ATTR_FLAC_XLARGE_IRAM;
#define MAX_SUPPORTED_SEEKTABLE_SIZE 5000
/* Notes about seeking:
The full seek table consists of:
uint64_t sample (only 36 bits are used)
uint64_t offset
uint32_t blocksize
We also limit the sample and offset values to 32-bits - Rockbox doesn't
support files bigger than 2GB on FAT32 filesystems.
The reference FLAC encoder produces a seek table with points every
10 seconds, but this can be overridden by the user when encoding a file.
With the default settings, a typical 4 minute track will contain
24 seek points.
Taking the extreme case of a Rockbox supported file to be a 2GB (compressed)
16-bit/44.1KHz mono stream with a likely uncompressed size of 4GB:
Total duration is: 48694 seconds (about 810 minutes - 13.5 hours)
Total number of seek points: 4869
Therefore we limit the number of seek points to 5000. This is a
very extreme case, and requires 5000*8=40000 bytes of storage.
If we come across a FLAC file with more than this number of seekpoints, we
just use the first 5000.
*/
struct FLACseekpoints {
uint32_t sample;
uint32_t offset;
uint16_t blocksize;
};
static struct FLACseekpoints seekpoints[MAX_SUPPORTED_SEEKTABLE_SIZE];
static int nseekpoints;
static int8_t *bit_buffer;
static size_t buff_size;
static bool flac_init(FLACContext* fc, int first_frame_offset)
{
unsigned char buf[255];
bool found_streaminfo=false;
uint32_t seekpoint_hi,seekpoint_lo;
uint32_t offset_hi,offset_lo;
uint16_t blocksize;
int endofmetadata=0;
uint32_t blocklength;
ci->memset(fc,0,sizeof(FLACContext));
nseekpoints=0;
fc->sample_skip = 0;
/* Reset sample buffers */
memset(decoded0, 0, sizeof(decoded0));
memset(decoded1, 0, sizeof(decoded1));
memset(decoded2, 0, sizeof(decoded2));
memset(decoded3, 0, sizeof(decoded3));
memset(decoded4, 0, sizeof(decoded4));
memset(decoded5, 0, sizeof(decoded5));
/* Set sample buffers in decoder structure */
fc->decoded[0] = decoded0;
fc->decoded[1] = decoded1;
fc->decoded[2] = decoded2;
fc->decoded[3] = decoded3;
fc->decoded[4] = decoded4;
fc->decoded[5] = decoded5;
/* Skip any foreign tags at start of file */
ci->seek_buffer(first_frame_offset);
fc->metadatalength = first_frame_offset;
if (ci->read_filebuf(buf, 4) < 4)
{
return false;
}
if (ci->memcmp(buf,"fLaC",4) != 0)
{
return false;
}
fc->metadatalength += 4;
while (!endofmetadata) {
if (ci->read_filebuf(buf, 4) < 4)
{
return false;
}
endofmetadata=(buf[0]&0x80);
blocklength = (buf[1] << 16) | (buf[2] << 8) | buf[3];
fc->metadatalength+=blocklength+4;
if ((buf[0] & 0x7f) == 0) /* 0 is the STREAMINFO block */
{
if (ci->read_filebuf(buf, blocklength) < blocklength) return false;
fc->filesize = ci->filesize;
fc->min_blocksize = (buf[0] << 8) | buf[1];
int max_blocksize = (buf[2] << 8) | buf[3];
if (max_blocksize > MAX_BLOCKSIZE)
{
LOGF("FLAC: Maximum blocksize is too large (%d > %d)\n",
max_blocksize, MAX_BLOCKSIZE);
return false;
}
fc->max_blocksize = max_blocksize;
fc->min_framesize = (buf[4] << 16) | (buf[5] << 8) | buf[6];
fc->max_framesize = (buf[7] << 16) | (buf[8] << 8) | buf[9];
fc->samplerate = (buf[10] << 12) | (buf[11] << 4)
| ((buf[12] & 0xf0) >> 4);
fc->channels = ((buf[12]&0x0e)>>1) + 1;
fc->bps = (((buf[12]&0x01) << 4) | ((buf[13]&0xf0)>>4) ) + 1;
/* totalsamples is a 36-bit field, but we assume <= 32 bits are
used */
fc->totalsamples = (buf[14] << 24) | (buf[15] << 16)
| (buf[16] << 8) | buf[17];
/* Calculate track length (in ms) and estimate the bitrate
(in kbit/s) */
fc->length = ((int64_t) fc->totalsamples * 1000) / fc->samplerate;
found_streaminfo=true;
} else if ((buf[0] & 0x7f) == 3) { /* 3 is the SEEKTABLE block */
while ((nseekpoints < MAX_SUPPORTED_SEEKTABLE_SIZE) &&
(blocklength >= 18)) {
if (ci->read_filebuf(buf,18) < 18) return false;
blocklength-=18;
seekpoint_hi=(buf[0] << 24) | (buf[1] << 16) |
(buf[2] << 8) | buf[3];
seekpoint_lo=(buf[4] << 24) | (buf[5] << 16) |
(buf[6] << 8) | buf[7];
offset_hi=(buf[8] << 24) | (buf[9] << 16) |
(buf[10] << 8) | buf[11];
offset_lo=(buf[12] << 24) | (buf[13] << 16) |
(buf[14] << 8) | buf[15];
blocksize=(buf[16] << 8) | buf[17];
/* Only store seekpoints where the high 32 bits are zero */
if ((seekpoint_hi == 0) && (seekpoint_lo != 0xffffffff) &&
(offset_hi == 0)) {
seekpoints[nseekpoints].sample=seekpoint_lo;
seekpoints[nseekpoints].offset=offset_lo;
seekpoints[nseekpoints].blocksize=blocksize;
nseekpoints++;
}
}
/* Skip any unread seekpoints */
if (blocklength > 0)
ci->advance_buffer(blocklength);
} else {
/* Skip to next metadata block */
ci->advance_buffer(blocklength);
}
}
if (found_streaminfo) {
fc->bitrate = ((int64_t) (fc->filesize-fc->metadatalength) * 8)
/ fc->length;
return true;
} else {
return false;
}
}
/* Synchronize to next frame in stream - adapted from libFLAC 1.1.3b2 */
static bool frame_sync(FLACContext* fc) {
unsigned int x = 0;
bool cached = false;
/* Make sure we're byte aligned. */
align_get_bits(&fc->gb);
while(1) {
if(fc->gb.size_in_bits - get_bits_count(&fc->gb) < 8) {
/* Error, end of bitstream, a valid stream should never reach here
* since the buffer should contain at least one frame header.
*/
return false;
}
if(cached)
cached = false;
else
x = get_bits(&fc->gb, 8);
if(x == 0xff) { /* MAGIC NUMBER for first 8 frame sync bits. */
x = get_bits(&fc->gb, 8);
/* We have to check if we just read two 0xff's in a row; the second
* may actually be the beginning of the sync code.
*/
if(x == 0xff) { /* MAGIC NUMBER for first 8 frame sync bits. */
cached = true;
}
else if(x >> 2 == 0x3e) { /* MAGIC NUMBER for last 6 sync bits. */
/* Succesfully synced. */
break;
}
}
}
/* Advance and init bit buffer to the new frame. */
ci->advance_buffer((get_bits_count(&fc->gb)-16)>>3); /* consumed bytes */
bit_buffer = ci->request_buffer(&buff_size, MAX_FRAMESIZE+16);
init_get_bits(&fc->gb, bit_buffer, buff_size*8);
/* Decode the frame to verify the frame crc and
* fill fc with its metadata.
*/
if(flac_decode_frame(fc,
bit_buffer, buff_size, ci->yield) < 0) {
return false;
}
return true;
}
/* Seek to sample - adapted from libFLAC 1.1.3b2+ */
static bool flac_seek(FLACContext* fc, uint32_t target_sample) {
off_t orig_pos = ci->curpos;
off_t pos = -1;
unsigned long lower_bound, upper_bound;
unsigned long lower_bound_sample, upper_bound_sample;
int i;
unsigned approx_bytes_per_frame;
uint32_t this_frame_sample = fc->samplenumber;
unsigned this_block_size = fc->blocksize;
bool needs_seek = true, first_seek = true;
/* We are just guessing here. */
if(fc->max_framesize > 0)
approx_bytes_per_frame = (fc->max_framesize + fc->min_framesize)/2 + 1;
/* Check if it's a known fixed-blocksize stream. */
else if(fc->min_blocksize == fc->max_blocksize && fc->min_blocksize > 0)
approx_bytes_per_frame = fc->min_blocksize*fc->channels*fc->bps/8 + 64;
else
approx_bytes_per_frame = 4608 * fc->channels * fc->bps/8 + 64;
/* Set an upper and lower bound on where in the stream we will search. */
lower_bound = fc->metadatalength;
lower_bound_sample = 0;
upper_bound = fc->filesize;
upper_bound_sample = fc->totalsamples>0 ? fc->totalsamples : target_sample;
/* Refine the bounds if we have a seektable with suitable points. */
if(nseekpoints > 0) {
/* Find the closest seek point <= target_sample, if it exists. */
for(i = nseekpoints-1; i >= 0; i--) {
if(seekpoints[i].sample <= target_sample)
break;
}
if(i >= 0) { /* i.e. we found a suitable seek point... */
lower_bound = fc->metadatalength + seekpoints[i].offset;
lower_bound_sample = seekpoints[i].sample;
}
/* Find the closest seek point > target_sample, if it exists. */
for(i = 0; i < nseekpoints; i++) {
if(seekpoints[i].sample > target_sample)
break;
}
if(i < nseekpoints) { /* i.e. we found a suitable seek point... */
upper_bound = fc->metadatalength + seekpoints[i].offset;
upper_bound_sample = seekpoints[i].sample;
}
}
while(1) {
/* Check if bounds are still ok. */
if(lower_bound_sample >= upper_bound_sample ||
lower_bound > upper_bound) {
return false;
}
/* Calculate new seek position */
if(needs_seek) {
pos = (off_t)(lower_bound +
(((target_sample - lower_bound_sample) *
(int64_t)(upper_bound - lower_bound)) /
(upper_bound_sample - lower_bound_sample)) -
approx_bytes_per_frame);
if(pos >= (off_t)upper_bound)
pos = (off_t)upper_bound-1;
if(pos < (off_t)lower_bound)
pos = (off_t)lower_bound;
}
if(!ci->seek_buffer(pos))
return false;
bit_buffer = ci->request_buffer(&buff_size, MAX_FRAMESIZE+16);
init_get_bits(&fc->gb, bit_buffer, buff_size*8);
/* Now we need to get a frame. It is possible for our seek
* to land in the middle of audio data that looks exactly like
* a frame header from a future version of an encoder. When
* that happens, frame_sync() will return false.
* But there is a remote possibility that it is properly
* synced at such a "future-codec frame", so to make sure,
* we wait to see several "unparseable" errors in a row before
* bailing out.
*/
{
unsigned unparseable_count;
bool got_a_frame = false;
for(unparseable_count = 0; !got_a_frame
&& unparseable_count < 30; unparseable_count++) {
if(frame_sync(fc))
got_a_frame = true;
}
if(!got_a_frame) {
ci->seek_buffer(orig_pos);
return false;
}
}
this_frame_sample = fc->samplenumber;
this_block_size = fc->blocksize;
if(target_sample >= this_frame_sample
&& target_sample < this_frame_sample+this_block_size) {
/* Found the frame containing the target sample. */
fc->sample_skip = target_sample - this_frame_sample;
break;
}
if(this_frame_sample + this_block_size >= upper_bound_sample &&
!first_seek) {
if(pos == (off_t)lower_bound || !needs_seek) {
ci->seek_buffer(orig_pos);
return false;
}
/* Our last move backwards wasn't big enough, try again. */
approx_bytes_per_frame *= 2;
continue;
}
/* Allow one seek over upper bound,
* required for streams with unknown total samples.
*/
first_seek = false;
/* Make sure we are not seeking in a corrupted stream */
if(this_frame_sample < lower_bound_sample) {
ci->seek_buffer(orig_pos);
return false;
}
approx_bytes_per_frame = this_block_size*fc->channels*fc->bps/8 + 64;
/* We need to narrow the search. */
if(target_sample < this_frame_sample) {
upper_bound_sample = this_frame_sample;
upper_bound = ci->curpos;
}
else { /* Target is beyond this frame. */
/* We are close, continue in decoding next frames. */
if(target_sample < this_frame_sample + 4*this_block_size) {
pos = ci->curpos + fc->framesize;
needs_seek = false;
}
lower_bound_sample = this_frame_sample + this_block_size;
lower_bound = ci->curpos + fc->framesize;
}
}
return true;
}
/* Seek to file offset */
static bool flac_seek_offset(FLACContext* fc, uint32_t offset) {
unsigned unparseable_count;
bool got_a_frame = false;
if(!ci->seek_buffer(offset))
return false;
bit_buffer = ci->request_buffer(&buff_size, MAX_FRAMESIZE);
init_get_bits(&fc->gb, bit_buffer, buff_size*8);
for(unparseable_count = 0; !got_a_frame
&& unparseable_count < 10; unparseable_count++) {
if(frame_sync(fc))
got_a_frame = true;
}
if(!got_a_frame) {
ci->seek_buffer(fc->metadatalength);
return false;
}
return true;
}
/* this is the codec entry point */
enum codec_status codec_main(enum codec_entry_call_reason reason)
{
if (reason == CODEC_LOAD) {
/* Generic codec initialisation */
ci->configure(DSP_SET_SAMPLE_DEPTH, FLAC_OUTPUT_DEPTH-1);
}
return CODEC_OK;
}
/* this is called for each file to process */
enum codec_status codec_run(void)
{
int8_t *buf;
uint32_t samplesdone;
uint32_t elapsedtime;
size_t bytesleft;
int consumed;
int res;
int frame;
intptr_t param;
if (codec_init()) {
LOGF("FLAC: Error initialising codec\n");
return CODEC_ERROR;
}
/* Need to save resume for later use (cleared indirectly by flac_init) */
elapsedtime = ci->id3->elapsed;
samplesdone = ci->id3->offset;
if (!flac_init(&fc,ci->id3->first_frame_offset)) {
LOGF("FLAC: Error initialising codec\n");
return CODEC_ERROR;
}
ci->configure(DSP_SET_FREQUENCY, ci->id3->frequency);
ci->configure(DSP_SET_STEREO_MODE, fc.channels == 1 ?
STEREO_MONO : STEREO_NONINTERLEAVED);
codec_set_replaygain(ci->id3);
if (samplesdone || !elapsedtime) {
flac_seek_offset(&fc, samplesdone);
samplesdone=fc.samplenumber+fc.blocksize;
elapsedtime=((uint64_t)samplesdone*1000)/(ci->id3->frequency);
}
else if (!flac_seek(&fc,(uint32_t)((uint64_t)elapsedtime
*ci->id3->frequency/1000))) {
elapsedtime = 0;
}
ci->set_elapsed(elapsedtime);
/* The main decoding loop */
frame=0;
buf = ci->request_buffer(&bytesleft, MAX_FRAMESIZE);
while (bytesleft) {
enum codec_command_action action = ci->get_command(&param);
if (action == CODEC_ACTION_HALT)
break;
/* Deal with any pending seek requests */
if (action == CODEC_ACTION_SEEK_TIME) {
if (flac_seek(&fc,(uint32_t)(((uint64_t)param
*ci->id3->frequency)/1000))) {
/* Refill the input buffer */
buf = ci->request_buffer(&bytesleft, MAX_FRAMESIZE);
}
ci->set_elapsed(param);
ci->seek_complete();
}
if((res=flac_decode_frame(&fc,buf,
bytesleft,ci->yield)) < 0) {
LOGF("FLAC: Frame %d, error %d\n",frame,res);
return CODEC_ERROR;
}
consumed=fc.gb.index/8;
frame++;
ci->yield();
ci->pcmbuf_insert(&fc.decoded[0][fc.sample_skip], &fc.decoded[1][fc.sample_skip],
fc.blocksize - fc.sample_skip);
fc.sample_skip = 0;
/* Update the elapsed-time indicator */
samplesdone=fc.samplenumber+fc.blocksize;
elapsedtime=((uint64_t)samplesdone*1000)/(ci->id3->frequency);
ci->set_elapsed(elapsedtime);
ci->advance_buffer(consumed);
buf = ci->request_buffer(&bytesleft, MAX_FRAMESIZE);
}
LOGF("FLAC: Decoded %lu samples\n",(unsigned long)samplesdone);
return CODEC_OK;
}