rockbox/lib/rbcodec/dsp/compressor.c
Ryan Billing d0918b98fa DSP Compressor: Sidechain, Exponential Atk/Rls
This is an improvement to the current compressor which I have added
to my own Sansa Fuze V2 build.  I am submitting here in case others
find it interesting.

Features added to the existing compressor:
Attack, Look-ahead, Sidechain Filtering.
Exponential attack and release characteristic response.

Benefits from adding missing features:
Attack:
Preserve perceived "brightness" of tone by letting onset transients
come through at a higher level than the rest of the compressed program
material.

Look-ahead:
With Attack comes clipping on the leading several cycles of a transient
onset.  With look-ahead function, this can be pre-emptively mitigated with
a slower gain change (less distortion).  Look-ahead limiting is implemented
to prevent clipping while keeping gain change ramp to an interval near 3ms
instead of instant attack.

The existing compressor implementation distorts the leading edge of a
transient by causing instant gain change, resulting in log() distortion.
This sounds "woofy" to me.

Exponential Attack/Release:
eMore natural sounding.  On attack, this is a true straight line of 10dB per
attack interval.  Release is a little different, however, sounds natural as
an analog compressor.

Sidechain Filtering:
Mild high-pass filter reduces response to low frequency onsets.  For example,
a hard kick drum is less likely to make the whole of the program material
appear to fade in and out.  Combined with a moderate attack time, such a
transient will ride through with minimal audible artifact.

Overall these changes make dynamic music sound more "open", more natural.  The
goal of a compressor is to make dyanamic music sound louder without necessarily
sounding as though it has been compressed.  I believe these changes come closer to this goal.

Enjoy.  If not, I am enjoying it

Change-Id: I664eace546c364b815b4dc9ed4a72849231a0eb2
Reviewed-on: http://gerrit.rockbox.org/626
Tested: Purling Nayuki <cyq.yzfl@gmail.com>
Reviewed-by: Michael Giacomelli <giac2000@hotmail.com>
2013-12-15 22:24:08 +01:00

614 lines
20 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2009 Jeffrey Goode
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "rbcodecconfig.h"
#include "fixedpoint.h"
#include "fracmul.h"
#include <string.h>
/* Define LOGF_ENABLE to enable logf output in this file
* #define LOGF_ENABLE
*/
#include "logf.h"
#include "dsp_proc_entry.h"
#include "compressor.h"
#include "dsp_misc.h"
#define UNITY (1L << 24) /* unity gain in S7.24 format */
#define MAX_DLY 960 /* Max number of samples to delay
output (960 = 5ms @ 192 kHz)
*/
#define MAX_CH 4 /* Is there a good malloc() or equal
for rockbox?
*/
#define DLY_TIME 3 /* milliseconds */
static struct compressor_settings curr_set; /* Cached settings */
static int32_t comp_makeup_gain IBSS_ATTR; /* S7.24 format */
static int32_t comp_curve[66] IBSS_ATTR; /* S7.24 format */
static int32_t release_gain IBSS_ATTR; /* S7.24 format */
static int32_t release_holdoff IBSS_ATTR; /* S7.24 format */
/* 1-pole filter coefficients for exponential attack/release times */
static int32_t rlsca IBSS_ATTR; /* Release 'alpha' */
static int32_t rlscb IBSS_ATTR; /* Release 'beta' */
static int32_t attca IBSS_ATTR; /* Attack 'alpha' */
static int32_t attcb IBSS_ATTR; /* Attack 'beta' */
static int32_t limitca IBSS_ATTR; /* Limiter Attack 'alpha' */
/* 1-pole filter coefficients for sidechain pre-emphasis filters */
static int32_t hp1ca IBSS_ATTR; /* hpf1 'alpha' */
static int32_t hp2ca IBSS_ATTR; /* hpf2 'beta' */
/* 1-pole hp filter state variables for pre-emphasis filters */
static int32_t hpfx1 IBSS_ATTR; /* hpf1 and hpf2 x[n-1] */
static int32_t hp1y1 IBSS_ATTR; /* hpf2 y[n-1] */
static int32_t hp2y1 IBSS_ATTR; /* hpf2 y[n-1] */
/* Delay Line for look-ahead compression */
static int32_t labuf[MAX_CH][MAX_DLY]; /* look-ahead buffer */
static int32_t delay_time;
static int32_t delay_write;
static int32_t delay_read;
/** 1-Pole LP Filter first coefficient computation
* Returns S7.24 format integer used for "a" coefficient
* rc: "RC Time Constant", or time to decay to 1/e
* fs: Sampling Rate
* Interpret attack and release time as an RC time constant
* (time to decay to 1/e)
* 1-pole filters use approximation
* a0 = 1/(fs*rc + 1)
* b1 = 1.0 - a0
* fs = Sampling Rate
* rc = Time to decay to 1/e
* y[n] = a0*x[n] + b1*y[n-1]
*
* According to simulation on Intel hardware
* this algorithm produces < 2% error for rc < ~100ms
* For rc 100ms - 1000ms, error approaches 0%
* For compressor attack/release times, this is more than adequate.
*
* Error was measured against the more rigorous computation:
* a0 = 1.0 - e^(-1.0/(fs*rc))
*/
int32_t get_lpf_coeff(int32_t rc, int32_t fs, int32_t rc_units)
{
int32_t c = fs*rc;
c /= rc_units;
c += 1;
c = UNITY/c;
return c;
}
/** Coefficients to get 10dB change per time period "rc"
* from 1-pole LP filter topology
* This function is better used to match behavior of
* linear release which was implemented prior to implementation
* of exponential attack/release function
*/
int32_t get_att_rls_coeff(int32_t rc, int32_t fs)
{
int32_t c = UNITY/fs;
c *= 1152; /* 1000 * 10/( 20*log10( 1/e ) ) */
c /= rc;
return c;
}
/** COMPRESSOR UPDATE
* Called via the menu system to configure the compressor process
*/
static bool compressor_update(struct dsp_config *dsp,
const struct compressor_settings *settings)
{
/* make settings values useful */
int threshold = settings->threshold;
bool auto_gain = settings->makeup_gain == 1;
static const int comp_ratios[] = { 2, 4, 6, 10, 0 };
int ratio = comp_ratios[settings->ratio];
bool soft_knee = settings->knee == 1;
int32_t release = settings->release_time;
int32_t attack = settings->attack_time;
/* Compute Attack and Release Coefficients */
int32_t fs = dsp_get_output_frequency(dsp);
/* Release */
rlsca = get_att_rls_coeff(release, fs);
rlscb = UNITY - rlsca ;
/* Attack */
if(attack > 0)
{
attca = get_att_rls_coeff(attack, fs);
attcb = UNITY - attca ;
}
else {
attca = UNITY;
attcb = 0;
}
/* Sidechain pre-emphasis filter coefficients */
hp1ca = fs + 0x003C1; /** The "magic" constant is 1/RC. This filter
* cut-off is approximately 237 Hz
*/
hp1ca = UNITY/hp1ca;
hp1ca *= fs;
hp2ca = fs + 0x02065; /* The "magic" constant is 1/RC. This filter
* cut-off is approximately 2.18 kHz
*/
hp2ca = UNITY/hp2ca;
hp2ca *= fs;
bool changed = settings == &curr_set; /* If frequency changes */
bool active = threshold < 0;
if (memcmp(settings, &curr_set, sizeof (curr_set)))
{
/* Compressor settings have changed since last call */
changed = true;
#if defined(ROCKBOX_HAS_LOGF) && defined(LOGF_ENABLE)
if (settings->threshold != curr_set.threshold)
{
logf(" Compressor Threshold: %d dB\tEnabled: %s",
threshold, active ? "Yes" : "No");
}
if (settings->makeup_gain != curr_set.makeup_gain)
{
logf(" Compressor Makeup Gain: %s",
auto_gain ? "Auto" : "Off");
}
if (settings->ratio != cur_set.ratio)
{
if (ratio)
{ logf(" Compressor Ratio: %d:1", ratio); }
else
{ logf(" Compressor Ratio: Limit"); }
}
if (settings->knee != cur_set.knee)
{
logf(" Compressor Knee: %s", soft_knee?"Soft":"Hard");
}
if (settings->release_time != cur_set.release_time)
{
logf(" Compressor Release: %d", release);
}
if (settings->attack_time != cur_set.attack_time)
{
logf(" Compressor Attack: %d", attack);
}
#endif
curr_set = *settings;
}
if (!changed || !active)
return active;
/* configure variables for compressor operation */
static const int32_t db[] = {
/* positive db equivalents in S15.16 format */
0x000000, 0x241FA4, 0x1E1A5E, 0x1A94C8,
0x181518, 0x1624EA, 0x148F82, 0x1338BD,
0x120FD2, 0x1109EB, 0x101FA4, 0x0F4BB6,
0x0E8A3C, 0x0DD840, 0x0D3377, 0x0C9A0E,
0x0C0A8C, 0x0B83BE, 0x0B04A5, 0x0A8C6C,
0x0A1A5E, 0x09ADE1, 0x094670, 0x08E398,
0x0884F6, 0x082A30, 0x07D2FA, 0x077F0F,
0x072E31, 0x06E02A, 0x0694C8, 0x064BDF,
0x060546, 0x05C0DA, 0x057E78, 0x053E03,
0x04FF5F, 0x04C273, 0x048726, 0x044D64,
0x041518, 0x03DE30, 0x03A89B, 0x037448,
0x03412A, 0x030F32, 0x02DE52, 0x02AE80,
0x027FB0, 0x0251D6, 0x0224EA, 0x01F8E2,
0x01CDB4, 0x01A359, 0x0179C9, 0x0150FC,
0x0128EB, 0x010190, 0x00DAE4, 0x00B4E1,
0x008F82, 0x006AC1, 0x004699, 0x002305};
struct curve_point
{
int32_t db; /* S15.16 format */
int32_t offset; /* S15.16 format */
} db_curve[5];
/** Set up the shape of the compression curve first as decibel values
* db_curve[0] = bottom of knee
* [1] = threshold
* [2] = top of knee
* [3] = 0 db input
* [4] = ~+12db input (2 bits clipping overhead)
*/
db_curve[1].db = threshold << 16;
if (soft_knee)
{
/* bottom of knee is 3dB below the threshold for soft knee */
db_curve[0].db = db_curve[1].db - (3 << 16);
/* top of knee is 3dB above the threshold for soft knee */
db_curve[2].db = db_curve[1].db + (3 << 16);
if (ratio)
/* offset = -3db * (ratio - 1) / ratio */
db_curve[2].offset = (int32_t)((long long)(-3 << 16)
* (ratio - 1) / ratio);
else
/* offset = -3db for hard limit */
db_curve[2].offset = (-3 << 16);
}
else
{
/* bottom of knee is at the threshold for hard knee */
db_curve[0].db = threshold << 16;
/* top of knee is at the threshold for hard knee */
db_curve[2].db = threshold << 16;
db_curve[2].offset = 0;
}
/* Calculate 0db and ~+12db offsets */
db_curve[4].db = 0xC0A8C; /* db of 2 bits clipping */
if (ratio)
{
/* offset = threshold * (ratio - 1) / ratio */
db_curve[3].offset = (int32_t)((long long)(threshold << 16)
* (ratio - 1) / ratio);
db_curve[4].offset = (int32_t)((long long)-db_curve[4].db
* (ratio - 1) / ratio) + db_curve[3].offset;
}
else
{
/* offset = threshold for hard limit */
db_curve[3].offset = (threshold << 16);
db_curve[4].offset = -db_curve[4].db + db_curve[3].offset;
}
/** Now set up the comp_curve table with compression offsets in the
* form of gain factors in S7.24 format
* comp_curve[0] is 0 (-infinity db) input
*/
comp_curve[0] = UNITY;
/** comp_curve[1 to 63] are intermediate compression values
* corresponding to the 6 MSB of the input values of a non-clipped
* signal
*/
for (int i = 1; i < 64; i++)
{
/** db constants are stored as positive numbers;
* make them negative here
*/
int32_t this_db = -db[i];
/* no compression below the knee */
if (this_db <= db_curve[0].db)
comp_curve[i] = UNITY;
/** if soft knee and below top of knee,
* interpolate along soft knee slope
*/
else if (soft_knee && (this_db <= db_curve[2].db))
comp_curve[i] = fp_factor(fp_mul(
((this_db - db_curve[0].db) / 6),
db_curve[2].offset, 16), 16) << 8;
/* interpolate along ratio slope above the knee */
else
comp_curve[i] = fp_factor(fp_mul(
fp_div((db_curve[1].db - this_db), db_curve[1].db, 16),
db_curve[3].offset, 16), 16) << 8;
}
/** comp_curve[64] is the compression level of a maximum level,
* non-clipped signal
*/
comp_curve[64] = fp_factor(db_curve[3].offset, 16) << 8;
/** comp_curve[65] is the compression level of a maximum level,
* clipped signal
*/
comp_curve[65] = fp_factor(db_curve[4].offset, 16) << 8;
/** if using auto peak, then makeup gain is max offset -
* 3dB headroom
*/
comp_makeup_gain = auto_gain ?
fp_factor(-(db_curve[3].offset) - 0x4AC4, 16) << 8 : UNITY;
#if defined(ROCKBOX_HAS_LOGF) && defined(LOGF_ENABLE)
logf("\n *** Compression Offsets ***");
/* some settings for display only, not used in calculations */
db_curve[0].offset = 0;
db_curve[1].offset = 0;
db_curve[3].db = 0;
for (int i = 0; i <= 4; i++)
{
logf("Curve[%d]: db: % 6.2f\toffset: % 6.2f", i,
(float)db_curve[i].db / (1 << 16),
(float)db_curve[i].offset / (1 << 16));
}
logf("\nGain factors:");
for (int i = 1; i <= 65; i++)
{
DEBUGF("%02d: %.6f ", i, (float)comp_curve[i] / UNITY);
if (i % 4 == 0) DEBUGF("\n");
}
DEBUGF("\n");
logf("Makeup gain:\t%.6f", (float)comp_makeup_gain / UNITY);
#endif
return active;
}
/** GET COMPRESSION GAIN
* Returns the required gain factor in S7.24 format in order to compress the
* sample in accordance with the compression curve. Always 1 or less.
*/
static inline int32_t get_compression_gain(struct sample_format *format,
int32_t sample)
{
const int frac_bits_offset = format->frac_bits - 15;
/* sample must be positive */
if (sample < 0)
sample = -(sample + 1);
/* shift sample into 15 frac bit range */
if (frac_bits_offset > 0)
sample >>= frac_bits_offset;
if (frac_bits_offset < 0)
sample <<= -frac_bits_offset;
/* normal case: sample isn't clipped */
if (sample < (1 << 15))
{
/* index is 6 MSB, rem is 9 LSB */
int index = sample >> 9;
int32_t rem = (sample & 0x1FF) << 22;
/** interpolate from the compression curve:
* higher gain - ((rem / (1 << 31)) * (higher gain - lower gain))
*/
return comp_curve[index] - (FRACMUL(rem,
(comp_curve[index] - comp_curve[index + 1])));
}
/* sample is somewhat clipped, up to 2 bits of overhead */
if (sample < (1 << 17))
{
/** straight interpolation:
* higher gain - ((clipped portion of sample * 4/3
* / (1 << 31)) * (higher gain - lower gain))
*/
return comp_curve[64] - (FRACMUL(((sample - (1 << 15)) / 3) << 16,
(comp_curve[64] - comp_curve[65])));
}
/* sample is too clipped, return invalid value */
return -1;
}
/** DSP interface **/
/** SET COMPRESSOR
* Enable or disable the compressor based upon the settings
*/
void dsp_set_compressor(const struct compressor_settings *settings)
{
/* enable/disable the compressor depending upon settings */
struct dsp_config *dsp = dsp_get_config(CODEC_IDX_AUDIO);
bool enable = compressor_update(dsp, settings);
dsp_proc_enable(dsp, DSP_PROC_COMPRESSOR, enable);
dsp_proc_activate(dsp, DSP_PROC_COMPRESSOR, true);
}
/** COMPRESSOR PROCESS
* Changes the gain of the samples according to the compressor curve
*/
static void compressor_process(struct dsp_proc_entry *this,
struct dsp_buffer **buf_p)
{
struct dsp_buffer *buf = *buf_p;
int count = buf->remcount;
int32_t *in_buf[2] = { buf->p32[0], buf->p32[1] };
const int num_chan = buf->format.num_channels;
while (count-- > 0)
{
/* Use the average of the channels */
int32_t sample_gain = UNITY;
int32_t x = 0;
int32_t tmpx = 0;
int32_t in_buf_max_level = 0;
for (int ch = 0; ch < num_chan; ch++)
{
tmpx = *in_buf[ch];
x += tmpx;
labuf[ch][delay_write] = tmpx;
/* Limiter detection */
if(tmpx < 0) tmpx = -(tmpx + 1);
if(tmpx > in_buf_max_level) in_buf_max_level = tmpx;
}
/** Divide it by the number of channels, roughly
* It will be exact if the number of channels a power of 2
* it will be imperfect otherwise. Real division costs too
* much here, and most of the time it will be 2 channels (stereo)
*/
x >>= (num_chan >> 1);
/** 1p HP Filters: y[n] = a*(y[n-1] + x - x[n-1])
* Zero and Pole in the same place to reduce computation
* Run the first pre-emphasis filter
*/
int32_t tmp1 = x - hpfx1 + hp1y1;
hp1y1 = FRACMUL_SHL(hp1ca, tmp1, 7);
/* Run the second pre-emphasis filter */
tmp1 = x - hpfx1 + hp2y1;
hp2y1 = FRACMUL_SHL(hp2ca, tmp1, 7);
hpfx1 = x;
/* Apply weighted sum to the pre-emphasis network */
sample_gain = (x>>1) + hp1y1 + (hp2y1<<1); /* x/2 + hp1 + 2*hp2 */
sample_gain >>= 1;
sample_gain += sample_gain >> 1;
sample_gain = get_compression_gain(&buf->format, sample_gain);
/* Exponential Attack and Release */
if ((sample_gain <= release_gain) && (sample_gain > 0))
{
/* Attack */
if(attca != UNITY)
{
int32_t this_gain = FRACMUL_SHL(release_gain, attcb, 7);
this_gain += FRACMUL_SHL(sample_gain, attca, 7);
release_gain = this_gain;
}
else
{
release_gain = sample_gain;
}
/** reset it to delay time so it cannot release before the
* delayed signal releases
*/
release_holdoff = delay_time;
}
else
/* Reverse exponential decay to current gain value */
{
/* Don't start release while output is still above thresh */
if(release_holdoff > 0)
{
release_holdoff--;
}
else
{
/* Release */
int32_t this_gain = FRACMUL_SHL(release_gain, rlscb, 7);
this_gain += FRACMUL_SHL(sample_gain,rlsca,7);
release_gain = this_gain;
}
}
/** total gain factor is the product of release gain and makeup gain,
* but avoid computation if possible
*/
int32_t total_gain = FRACMUL_SHL(release_gain, comp_makeup_gain, 7);
/* Look-ahead limiter */
int32_t test_gain = FRACMUL_SHL(total_gain, in_buf_max_level, 3);
if( test_gain > UNITY)
{
release_gain -= limitca;
}
/** Implement the compressor: apply total gain factor (if any) to the
* output buffer sample pair/mono sample
*/
if (total_gain != UNITY)
{
for (int ch = 0; ch < num_chan; ch++)
{
*in_buf[ch] = FRACMUL_SHL(total_gain, labuf[ch][delay_read], 7);
}
}
in_buf[0]++;
in_buf[1]++;
delay_write++;
delay_read++;
if(delay_write >= MAX_DLY) delay_write = 0;
if(delay_read >= MAX_DLY) delay_read = 0;
}
(void)this;
}
/* DSP message hook */
static intptr_t compressor_configure(struct dsp_proc_entry *this,
struct dsp_config *dsp,
unsigned int setting,
intptr_t value)
{
int i,j;
switch (setting)
{
case DSP_PROC_INIT:
if (value != 0)
break; /* Already enabled */
this->process = compressor_process;
/* Won't have been getting frequency updates */
compressor_update(dsp, &curr_set);
/* Fall-through */
case DSP_RESET:
case DSP_FLUSH:
release_gain = UNITY;
for(i=0; i<MAX_CH; i++)
{
for(j=0; j<MAX_DLY; j++)
{
labuf[i][j] = 0; /* All Silence */
}
}
/* Delay Line Read/Write Pointers */
int32_t fs = dsp_get_output_frequency(dsp);
delay_read = 0;
delay_write = (DLY_TIME*fs/1000);
if(delay_write >= MAX_DLY) {
delay_write = MAX_DLY - 1; /* Limit to the max allocated buffer */
}
delay_time = delay_write;
release_holdoff = delay_write;
limitca = get_att_rls_coeff(DLY_TIME, fs); /** Attack time for
* look-ahead limiter
*/
break;
case DSP_SET_OUT_FREQUENCY:
compressor_update(dsp, &curr_set);
break;
}
return 0;
}
/* Database entry */
DSP_PROC_DB_ENTRY(
COMPRESSOR,
compressor_configure);