rockbox/firmware/kernel.c
Michael Sevakis e64f7e3a6f Add a new timeout API to the kernel. Enable only for e200 right now since it's the only user. Use that as the one-shot delay for SD card inserts.
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@14049 a1c6a512-1295-4272-9138-f99709370657
2007-07-29 04:49:19 +00:00

904 lines
21 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2002 by Björn Stenberg
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <stdlib.h>
#include <string.h>
#include "config.h"
#include "kernel.h"
#include "thread.h"
#include "cpu.h"
#include "system.h"
#include "panic.h"
#if !defined(CPU_PP) || !defined(BOOTLOADER)
volatile long current_tick NOCACHEDATA_ATTR = 0;
#endif
void (*tick_funcs[MAX_NUM_TICK_TASKS])(void);
/* This array holds all queues that are initiated. It is used for broadcast. */
static struct event_queue *all_queues[32] NOCACHEBSS_ATTR;
static int num_queues NOCACHEBSS_ATTR;
void queue_wait(struct event_queue *q, struct event *ev) ICODE_ATTR;
/****************************************************************************
* Standard kernel stuff
****************************************************************************/
void kernel_init(void)
{
/* Init the threading API */
init_threads();
if(CURRENT_CORE == CPU)
{
memset(tick_funcs, 0, sizeof(tick_funcs));
num_queues = 0;
memset(all_queues, 0, sizeof(all_queues));
}
tick_start(1000/HZ);
}
void sleep(int ticks)
{
#if CONFIG_CPU == S3C2440 && defined(BOOTLOADER)
volatile int counter;
TCON &= ~(1 << 20); // stop timer 4
// TODO: this constant depends on dividers settings inherited from
// firmware. Set them explicitly somwhere.
TCNTB4 = 12193 * ticks / HZ;
TCON |= 1 << 21; // set manual bit
TCON &= ~(1 << 21); // reset manual bit
TCON &= ~(1 << 22); //autoreload Off
TCON |= (1 << 20); // start timer 4
do {
counter = TCNTO4;
} while(counter > 0);
#elif defined(CPU_PP) && defined(BOOTLOADER)
unsigned stop = USEC_TIMER + ticks * (1000000/HZ);
while (TIME_BEFORE(USEC_TIMER, stop))
switch_thread(true,NULL);
#else
sleep_thread(ticks);
#endif
}
void yield(void)
{
#if ((CONFIG_CPU == S3C2440 || defined(ELIO_TPJ1022)) && defined(BOOTLOADER))
/* Some targets don't like yielding in the bootloader */
#else
switch_thread(true, NULL);
#endif
}
/****************************************************************************
* Queue handling stuff
****************************************************************************/
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
/* Moves waiting thread's descriptor to the current sender when a
message is dequeued */
static void queue_fetch_sender(struct queue_sender_list *send,
unsigned int i)
{
struct thread_entry **spp = &send->senders[i];
if (*spp)
{
send->curr_sender = *spp;
*spp = NULL;
}
}
/* Puts the specified return value in the waiting thread's return value
* and wakes the thread.
* 1) A sender should be confirmed to exist before calling which makes it
* more efficent to reject the majority of cases that don't need this
called.
* 2) Requires interrupts disabled since queue overflows can cause posts
* from interrupt handlers to wake threads. Not doing so could cause
* an attempt at multiple wakes or other problems.
*/
static void queue_release_sender(struct thread_entry **sender,
intptr_t retval)
{
(*sender)->retval = retval;
wakeup_thread_irq_safe(sender);
#if 0
/* This should _never_ happen - there must never be multiple
threads in this list and it is a corrupt state */
if (*sender != NULL)
panicf("Queue: send slot ovf");
#endif
}
/* Releases any waiting threads that are queued with queue_send -
* reply with 0.
* Disable IRQs before calling since it uses queue_release_sender.
*/
static void queue_release_all_senders(struct event_queue *q)
{
if(q->send)
{
unsigned int i;
for(i = q->read; i != q->write; i++)
{
struct thread_entry **spp =
&q->send->senders[i & QUEUE_LENGTH_MASK];
if(*spp)
{
queue_release_sender(spp, 0);
}
}
}
}
/* Enables queue_send on the specified queue - caller allocates the extra
data structure */
void queue_enable_queue_send(struct event_queue *q,
struct queue_sender_list *send)
{
q->send = send;
memset(send, 0, sizeof(struct queue_sender_list));
}
#endif /* HAVE_EXTENDED_MESSAGING_AND_NAME */
void queue_init(struct event_queue *q, bool register_queue)
{
q->read = 0;
q->write = 0;
q->thread = NULL;
#if NUM_CORES > 1
q->irq_safe = false;
#endif
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
q->send = NULL; /* No message sending by default */
#endif
if(register_queue)
{
/* Add it to the all_queues array */
all_queues[num_queues++] = q;
}
}
#if NUM_CORES > 1
/**
* If IRQ mode is enabled, some core-wise locking mechanisms are disabled
* causing accessing queue to be no longer thread safe from the other core.
* However, that locking mechanism would also kill IRQ handlers.
*
* @param q struct of an event_queue
* @param state enable/disable IRQ mode
* @default state disabled
*/
void queue_set_irq_safe(struct event_queue *q, bool state)
{
q->irq_safe = state;
}
#endif
void queue_delete(struct event_queue *q)
{
int i;
bool found = false;
int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
lock_cores();
/* Release theads waiting on queue */
wakeup_thread(&q->thread);
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
/* Release waiting threads and reply to any dequeued message
waiting for one. */
queue_release_all_senders(q);
queue_reply(q, 0);
#endif
/* Find the queue to be deleted */
for(i = 0;i < num_queues;i++)
{
if(all_queues[i] == q)
{
found = true;
break;
}
}
if(found)
{
/* Move the following queues up in the list */
for(;i < num_queues-1;i++)
{
all_queues[i] = all_queues[i+1];
}
num_queues--;
}
unlock_cores();
set_irq_level(oldlevel);
}
void queue_wait(struct event_queue *q, struct event *ev)
{
int oldlevel;
unsigned int rd;
oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
lock_cores();
if (q->read == q->write)
{
set_irq_level_and_block_thread(&q->thread, oldlevel);
oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
lock_cores();
}
rd = q->read++ & QUEUE_LENGTH_MASK;
*ev = q->events[rd];
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
if(q->send && q->send->senders[rd])
{
/* Get data for a waiting thread if one */
queue_fetch_sender(q->send, rd);
}
#endif
unlock_cores();
set_irq_level(oldlevel);
}
void queue_wait_w_tmo(struct event_queue *q, struct event *ev, int ticks)
{
int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
lock_cores();
if (q->read == q->write && ticks > 0)
{
set_irq_level_and_block_thread_w_tmo(&q->thread, ticks, oldlevel);
oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
lock_cores();
}
if (q->read != q->write)
{
unsigned int rd = q->read++ & QUEUE_LENGTH_MASK;
*ev = q->events[rd];
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
if(q->send && q->send->senders[rd])
{
/* Get data for a waiting thread if one */
queue_fetch_sender(q->send, rd);
}
#endif
}
else
{
ev->id = SYS_TIMEOUT;
}
unlock_cores();
set_irq_level(oldlevel);
}
void queue_post(struct event_queue *q, long id, intptr_t data)
{
int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
unsigned int wr;
#if NUM_CORES > 1
if (!q->irq_safe)
lock_cores();
#endif
wr = q->write++ & QUEUE_LENGTH_MASK;
q->events[wr].id = id;
q->events[wr].data = data;
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
if(q->send)
{
struct thread_entry **spp = &q->send->senders[wr];
if (*spp)
{
/* overflow protect - unblock any thread waiting at this index */
queue_release_sender(spp, 0);
}
}
#endif
wakeup_thread_irq_safe(&q->thread);
#if NUM_CORES > 1
if (!q->irq_safe)
unlock_cores();
#endif
set_irq_level(oldlevel);
}
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
/* No wakeup_thread_irq_safe here because IRQ handlers are not allowed
use of this function - we only aim to protect the queue integrity by
turning them off. */
intptr_t queue_send(struct event_queue *q, long id, intptr_t data)
{
int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
unsigned int wr;
lock_cores();
wr = q->write++ & QUEUE_LENGTH_MASK;
q->events[wr].id = id;
q->events[wr].data = data;
if(q->send)
{
struct thread_entry **spp = &q->send->senders[wr];
if (*spp)
{
/* overflow protect - unblock any thread waiting at this index */
queue_release_sender(spp, 0);
}
wakeup_thread(&q->thread);
set_irq_level_and_block_thread(spp, oldlevel);
return thread_get_current()->retval;
}
/* Function as queue_post if sending is not enabled */
wakeup_thread(&q->thread);
unlock_cores();
set_irq_level(oldlevel);
return 0;
}
#if 0 /* not used now but probably will be later */
/* Query if the last message dequeued was added by queue_send or not */
bool queue_in_queue_send(struct event_queue *q)
{
return q->send && q->send->curr_sender;
}
#endif
/* Replies with retval to any dequeued message sent with queue_send */
void queue_reply(struct event_queue *q, intptr_t retval)
{
lock_cores();
/* No IRQ lock here since IRQs cannot change this */
if(q->send && q->send->curr_sender)
{
queue_release_sender(&q->send->curr_sender, retval);
}
unlock_cores();
}
#endif /* HAVE_EXTENDED_MESSAGING_AND_NAME */
bool queue_empty(const struct event_queue* q)
{
bool is_empty;
#if NUM_CORES > 1
if (!q->irq_safe)
lock_cores();
#endif
is_empty = ( q->read == q->write );
#if NUM_CORES > 1
if (!q->irq_safe)
unlock_cores();
#endif
return is_empty;
}
void queue_clear(struct event_queue* q)
{
int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
#if NUM_CORES > 1
if (!q->irq_safe)
lock_cores();
#endif
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
/* Release all thread waiting in the queue for a reply -
dequeued sent message will be handled by owning thread */
queue_release_all_senders(q);
#endif
q->read = 0;
q->write = 0;
#if NUM_CORES > 1
if (!q->irq_safe)
unlock_cores();
#endif
set_irq_level(oldlevel);
}
void queue_remove_from_head(struct event_queue *q, long id)
{
int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
#if NUM_CORES > 1
if (!q->irq_safe)
lock_cores();
#endif
while(q->read != q->write)
{
unsigned int rd = q->read & QUEUE_LENGTH_MASK;
if(q->events[rd].id != id)
{
break;
}
#ifdef HAVE_EXTENDED_MESSAGING_AND_NAME
if(q->send)
{
struct thread_entry **spp = &q->send->senders[rd];
if (*spp)
{
/* Release any thread waiting on this message */
queue_release_sender(spp, 0);
}
}
#endif
q->read++;
}
#if NUM_CORES > 1
if (!q->irq_safe)
unlock_cores();
#endif
set_irq_level(oldlevel);
}
/**
* The number of events waiting in the queue.
*
* @param struct of event_queue
* @return number of events in the queue
*/
int queue_count(const struct event_queue *q)
{
int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
int result;
#if NUM_CORES > 1
if (!q->irq_safe)
lock_cores();
#endif
result = q->write - q->read;
#if NUM_CORES > 1
if (!q->irq_safe)
unlock_cores();
#endif
set_irq_level(oldlevel);
return result;
}
int queue_broadcast(long id, intptr_t data)
{
int i;
for(i = 0;i < num_queues;i++)
{
queue_post(all_queues[i], id, data);
}
return num_queues;
}
/****************************************************************************
* Timer tick
****************************************************************************/
#if CONFIG_CPU == SH7034
void tick_start(unsigned int interval_in_ms)
{
unsigned long count;
count = CPU_FREQ * interval_in_ms / 1000 / 8;
if(count > 0x10000)
{
panicf("Error! The tick interval is too long (%d ms)\n",
interval_in_ms);
return;
}
/* We are using timer 0 */
TSTR &= ~0x01; /* Stop the timer */
TSNC &= ~0x01; /* No synchronization */
TMDR &= ~0x01; /* Operate normally */
TCNT0 = 0; /* Start counting at 0 */
GRA0 = (unsigned short)(count - 1);
TCR0 = 0x23; /* Clear at GRA match, sysclock/8 */
/* Enable interrupt on level 1 */
IPRC = (IPRC & ~0x00f0) | 0x0010;
TSR0 &= ~0x01;
TIER0 = 0xf9; /* Enable GRA match interrupt */
TSTR |= 0x01; /* Start timer 1 */
}
void IMIA0(void) __attribute__ ((interrupt_handler));
void IMIA0(void)
{
int i;
/* Run through the list of tick tasks */
for(i = 0;i < MAX_NUM_TICK_TASKS;i++)
{
if(tick_funcs[i])
{
tick_funcs[i]();
}
}
current_tick++;
TSR0 &= ~0x01;
}
#elif defined(CPU_COLDFIRE)
void tick_start(unsigned int interval_in_ms)
{
unsigned long count;
int prescale;
count = CPU_FREQ/2 * interval_in_ms / 1000 / 16;
if(count > 0x10000)
{
panicf("Error! The tick interval is too long (%d ms)\n",
interval_in_ms);
return;
}
prescale = cpu_frequency / CPU_FREQ;
/* Note: The prescaler is later adjusted on-the-fly on CPU frequency
changes within timer.c */
/* We are using timer 0 */
TRR0 = (unsigned short)(count - 1); /* The reference count */
TCN0 = 0; /* reset the timer */
TMR0 = 0x001d | ((unsigned short)(prescale - 1) << 8);
/* restart, CLK/16, enabled, prescaler */
TER0 = 0xff; /* Clear all events */
ICR1 = 0x8c; /* Interrupt on level 3.0 */
IMR &= ~0x200;
}
void TIMER0(void) __attribute__ ((interrupt_handler));
void TIMER0(void)
{
int i;
/* Run through the list of tick tasks */
for(i = 0;i < MAX_NUM_TICK_TASKS;i++)
{
if(tick_funcs[i])
{
tick_funcs[i]();
}
}
current_tick++;
TER0 = 0xff; /* Clear all events */
}
#elif defined(CPU_PP)
#ifndef BOOTLOADER
void TIMER1(void)
{
int i;
TIMER1_VAL; /* Read value to ack IRQ */
/* Run through the list of tick tasks (using main core) */
if (CURRENT_CORE == CPU)
{
for (i = 0;i < MAX_NUM_TICK_TASKS;i++)
{
if (tick_funcs[i])
{
tick_funcs[i]();
}
}
current_tick++;
}
}
#endif
void tick_start(unsigned int interval_in_ms)
{
#ifndef BOOTLOADER
if(CURRENT_CORE == CPU)
{
TIMER1_CFG = 0x0;
TIMER1_VAL;
/* enable timer */
TIMER1_CFG = 0xc0000000 | (interval_in_ms*1000 - 1);
/* unmask interrupt source */
CPU_INT_EN = TIMER1_MASK;
} else {
COP_INT_EN = TIMER1_MASK;
}
#else
/* We don't enable interrupts in the bootloader */
(void)interval_in_ms;
#endif
}
#elif CONFIG_CPU == PNX0101
void timer_handler(void)
{
int i;
/* Run through the list of tick tasks */
for(i = 0;i < MAX_NUM_TICK_TASKS;i++)
{
if(tick_funcs[i])
tick_funcs[i]();
}
current_tick++;
TIMER0.clr = 0;
}
void tick_start(unsigned int interval_in_ms)
{
TIMER0.ctrl &= ~0x80; /* Disable the counter */
TIMER0.ctrl |= 0x40; /* Reload after counting down to zero */
TIMER0.load = 3000000 * interval_in_ms / 1000;
TIMER0.ctrl &= ~0xc; /* No prescaler */
TIMER0.clr = 1; /* Clear the interrupt request */
irq_set_int_handler(IRQ_TIMER0, timer_handler);
irq_enable_int(IRQ_TIMER0);
TIMER0.ctrl |= 0x80; /* Enable the counter */
}
#endif
int tick_add_task(void (*f)(void))
{
int i;
int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
/* Add a task if there is room */
for(i = 0;i < MAX_NUM_TICK_TASKS;i++)
{
if(tick_funcs[i] == NULL)
{
tick_funcs[i] = f;
set_irq_level(oldlevel);
return 0;
}
}
set_irq_level(oldlevel);
panicf("Error! tick_add_task(): out of tasks");
return -1;
}
int tick_remove_task(void (*f)(void))
{
int i;
int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
/* Remove a task if it is there */
for(i = 0;i < MAX_NUM_TICK_TASKS;i++)
{
if(tick_funcs[i] == f)
{
tick_funcs[i] = NULL;
set_irq_level(oldlevel);
return 0;
}
}
set_irq_level(oldlevel);
return -1;
}
/****************************************************************************
* Tick-based interval timers/one-shots - be mindful this is not really
* intended for continuous timers but for events that need to run for a short
* time and be cancelled without further software intervention.
****************************************************************************/
#ifdef INCLUDE_TIMEOUT_API
static struct timeout *tmo_list = NULL; /* list of active timeout events */
/* timeout tick task - calls event handlers when they expire
* Event handlers may alter ticks, callback and data during operation.
*/
static void timeout_tick(void)
{
unsigned long tick = current_tick;
struct timeout *curr, *next;
for (curr = tmo_list; curr != NULL; curr = next)
{
next = (struct timeout *)curr->next;
if (TIME_BEFORE(tick, curr->expires))
continue;
/* this event has expired - call callback */
if (curr->callback(curr))
*(long *)&curr->expires = tick + curr->ticks; /* reload */
else
timeout_cancel(curr); /* cancel */
}
}
/* Cancels a timeout callback - can be called from the ISR */
void timeout_cancel(struct timeout *tmo)
{
int oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
if (tmo_list != NULL)
{
struct timeout *curr = tmo_list;
struct timeout *prev = NULL;
while (curr != tmo && curr != NULL)
{
prev = curr;
curr = (struct timeout *)curr->next;
}
if (curr != NULL)
{
/* in list */
if (prev == NULL)
tmo_list = (struct timeout *)curr->next;
else
*(const struct timeout **)&prev->next = curr->next;
if (tmo_list == NULL)
tick_remove_task(timeout_tick); /* last one - remove task */
}
/* not in list or tmo == NULL */
}
set_irq_level(oldlevel);
}
/* Adds a timeout callback - calling with an active timeout resets the
interval - can be called from the ISR */
void timeout_register(struct timeout *tmo, timeout_cb_type callback,
int ticks, intptr_t data)
{
int oldlevel;
struct timeout *curr;
if (tmo == NULL)
return;
oldlevel = set_irq_level(HIGHEST_IRQ_LEVEL);
/* see if this one is already registered */
curr = tmo_list;
while (curr != tmo && curr != NULL)
curr = (struct timeout *)curr->next;
if (curr == NULL)
{
/* not found - add it */
if (tmo_list == NULL)
tick_add_task(timeout_tick); /* first one - add task */
*(struct timeout **)&tmo->next = tmo_list;
tmo_list = tmo;
}
tmo->callback = callback;
tmo->ticks = ticks;
tmo->data = data;
*(long *)&tmo->expires = current_tick + ticks;
set_irq_level(oldlevel);
}
#endif /* INCLUDE_TIMEOUT_API */
#ifndef SIMULATOR
/*
* Simulator versions in uisimulator/SIMVER/
*/
/****************************************************************************
* Simple mutex functions
****************************************************************************/
void mutex_init(struct mutex *m)
{
m->locked = false;
m->thread = NULL;
}
void mutex_lock(struct mutex *m)
{
if (test_and_set(&m->locked, 1))
{
/* Wait until the lock is open... */
block_thread(&m->thread);
}
}
void mutex_unlock(struct mutex *m)
{
lock_cores();
if (m->thread == NULL)
m->locked = 0;
else
wakeup_thread(&m->thread);
unlock_cores();
}
void spinlock_lock(struct mutex *m)
{
while (test_and_set(&m->locked, 1))
{
/* wait until the lock is open... */
switch_thread(true, NULL);
}
}
void spinlock_unlock(struct mutex *m)
{
m->locked = 0;
}
#endif /* ndef SIMULATOR */