rockbox/apps/codecs/libatrac/atrac3.c
Andree Buschmann 24c0474472 Fix comment on interpolation macro.
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@25136 a1c6a512-1295-4272-9138-f99709370657
2010-03-12 20:09:55 +00:00

1245 lines
40 KiB
C

/*
* Atrac 3 compatible decoder
* Copyright (c) 2006-2008 Maxim Poliakovski
* Copyright (c) 2006-2008 Benjamin Larsson
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file libavcodec/atrac3.c
* Atrac 3 compatible decoder.
* This decoder handles Sony's ATRAC3 data.
*
* Container formats used to store atrac 3 data:
* RealMedia (.rm), RIFF WAV (.wav, .at3), Sony OpenMG (.oma, .aa3).
*
* To use this decoder, a calling application must supply the extradata
* bytes provided in the containers above.
*/
#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include "atrac3.h"
#include "atrac3data.h"
#include "atrac3data_fixed.h"
#include "fixp_math.h"
#define JOINT_STEREO 0x12
#define STEREO 0x2
#ifdef ROCKBOX
#undef DEBUGF
#define DEBUGF(...)
#endif /* ROCKBOX */
/* FFMAX/MIN/SWAP and av_clip were taken from libavutil/common.h */
#define FFMAX(a,b) ((a) > (b) ? (a) : (b))
#define FFMIN(a,b) ((a) > (b) ? (b) : (a))
#define FFSWAP(type,a,b) do{type SWAP_tmp= b; b= a; a= SWAP_tmp;}while(0)
static VLC spectral_coeff_tab[7];
static int32_t qmf_window[48] IBSS_ATTR;
static int32_t atrac3_spectrum [2][1024] IBSS_ATTR __attribute__((aligned(16)));
static int32_t atrac3_IMDCT_buf[2][ 512] IBSS_ATTR __attribute__((aligned(16)));
static int32_t atrac3_prevFrame[2][1024] IBSS_ATTR;
static channel_unit channel_units[2] IBSS_ATTR_LARGE_IRAM;
/**
* Matrixing within quadrature mirror synthesis filter.
*
* @param p3 output buffer
* @param inlo lower part of spectrum
* @param inhi higher part of spectrum
* @param nIn size of spectrum buffer
*/
#if defined(CPU_ARM)
extern void
atrac3_iqmf_matrixing(int32_t *p3,
int32_t *inlo,
int32_t *inhi,
unsigned int nIn);
#else
static inline void
atrac3_iqmf_matrixing(int32_t *p3,
int32_t *inlo,
int32_t *inhi,
unsigned int nIn)
{
uint32_t i;
for(i=0; i<nIn; i+=2){
p3[2*i+0] = inlo[i ] + inhi[i ];
p3[2*i+1] = inlo[i ] - inhi[i ];
p3[2*i+2] = inlo[i+1] + inhi[i+1];
p3[2*i+3] = inlo[i+1] - inhi[i+1];
}
}
#endif
/**
* Matrixing within quadrature mirror synthesis filter.
*
* @param out output buffer
* @param in input buffer
* @param win windowing coefficients
* @param nIn size of spectrum buffer
* Reference implementation:
*
* for (j = nIn; j != 0; j--) {
* s1 = fixmul32(in[0], win[0]);
* s2 = fixmul32(in[1], win[1]);
* for (i = 2; i < 48; i += 2) {
* s1 += fixmul31(in[i ], win[i ]);
* s2 += fixmul31(in[i+1], win[i+1]);
* }
* out[0] = s2;
* out[1] = s1;
* in += 2;
* out += 2;
* }
*/
#if defined(CPU_ARM)
extern void
atrac3_iqmf_dewindowing(int32_t *out,
int32_t *in,
int32_t *win,
unsigned int nIn);
#else
static inline void
atrac3_iqmf_dewindowing(int32_t *out,
int32_t *in,
int32_t *win,
unsigned int nIn)
{
int32_t i, j, s1, s2;
for (j = nIn; j != 0; j--) {
i = 0;
/* 0.. 7 */
s1 = fixmul31(win[i], in[i]); i++;
s2 = fixmul31(win[i], in[i]); i++;
s1 += fixmul31(win[i], in[i]); i++;
s2 += fixmul31(win[i], in[i]); i++;
s1 += fixmul31(win[i], in[i]); i++;
s2 += fixmul31(win[i], in[i]); i++;
s1 += fixmul31(win[i], in[i]); i++;
s2 += fixmul31(win[i], in[i]); i++;
/* 8..15 */
s1 += fixmul31(win[i], in[i]); i++;
s2 += fixmul31(win[i], in[i]); i++;
s1 += fixmul31(win[i], in[i]); i++;
s2 += fixmul31(win[i], in[i]); i++;
s1 += fixmul31(win[i], in[i]); i++;
s2 += fixmul31(win[i], in[i]); i++;
s1 += fixmul31(win[i], in[i]); i++;
s2 += fixmul31(win[i], in[i]); i++;
/* 16..23 */
s1 += fixmul31(win[i], in[i]); i++;
s2 += fixmul31(win[i], in[i]); i++;
s1 += fixmul31(win[i], in[i]); i++;
s2 += fixmul31(win[i], in[i]); i++;
s1 += fixmul31(win[i], in[i]); i++;
s2 += fixmul31(win[i], in[i]); i++;
s1 += fixmul31(win[i], in[i]); i++;
s2 += fixmul31(win[i], in[i]); i++;
/* 24..31 */
s1 += fixmul31(win[i], in[i]); i++;
s2 += fixmul31(win[i], in[i]); i++;
s1 += fixmul31(win[i], in[i]); i++;
s2 += fixmul31(win[i], in[i]); i++;
s1 += fixmul31(win[i], in[i]); i++;
s2 += fixmul31(win[i], in[i]); i++;
s1 += fixmul31(win[i], in[i]); i++;
s2 += fixmul31(win[i], in[i]); i++;
/* 32..39 */
s1 += fixmul31(win[i], in[i]); i++;
s2 += fixmul31(win[i], in[i]); i++;
s1 += fixmul31(win[i], in[i]); i++;
s2 += fixmul31(win[i], in[i]); i++;
s1 += fixmul31(win[i], in[i]); i++;
s2 += fixmul31(win[i], in[i]); i++;
s1 += fixmul31(win[i], in[i]); i++;
s2 += fixmul31(win[i], in[i]); i++;
/* 40..47 */
s1 += fixmul31(win[i], in[i]); i++;
s2 += fixmul31(win[i], in[i]); i++;
s1 += fixmul31(win[i], in[i]); i++;
s2 += fixmul31(win[i], in[i]); i++;
s1 += fixmul31(win[i], in[i]); i++;
s2 += fixmul31(win[i], in[i]); i++;
s1 += fixmul31(win[i], in[i]); i++;
s2 += fixmul31(win[i], in[i]);
out[0] = s2;
out[1] = s1;
in += 2;
out += 2;
}
}
#endif
/**
* IMDCT windowing.
*
* @param buffer sample buffer
* @param win window coefficients
*/
static inline void
atrac3_imdct_windowing(int32_t *buffer,
const int32_t *win)
{
int32_t i;
/* win[0..127] = win[511..384], win[128..383] = 1 */
for(i = 0; i<128; i++) {
buffer[ i] = fixmul31(win[i], buffer[ i]);
buffer[511-i] = fixmul31(win[i], buffer[511-i]);
}
}
/**
* Quadrature mirror synthesis filter.
*
* @param inlo lower part of spectrum
* @param inhi higher part of spectrum
* @param nIn size of spectrum buffer
* @param pOut out buffer
* @param delayBuf delayBuf buffer
* @param temp temp buffer
*/
static void iqmf (int32_t *inlo, int32_t *inhi, unsigned int nIn, int32_t *pOut, int32_t *delayBuf, int32_t *temp)
{
/* Restore the delay buffer */
memcpy(temp, delayBuf, 46*sizeof(int32_t));
/* loop1: matrixing */
atrac3_iqmf_matrixing(temp + 46, inlo, inhi, nIn);
/* loop2: dewindowing */
atrac3_iqmf_dewindowing(pOut, temp, qmf_window, nIn);
/* Save the delay buffer */
memcpy(delayBuf, temp + (nIn << 1), 46*sizeof(int32_t));
}
/**
* Regular 512 points IMDCT without overlapping, with the exception of the swapping of odd bands
* caused by the reverse spectra of the QMF.
*
* @param pInput input
* @param pOutput output
* @param odd_band 1 if the band is an odd band
*/
static void IMLT(int32_t *pInput, int32_t *pOutput)
{
/* Apply the imdct. */
ff_imdct_calc(9, pOutput, pInput);
/* Windowing. */
atrac3_imdct_windowing(pOutput, window_lookup);
}
/**
* Atrac 3 indata descrambling, only used for data coming from the rm container
*
* @param in pointer to 8 bit array of indata
* @param bits amount of bits
* @param out pointer to 8 bit array of outdata
*/
static int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
int i, off;
uint32_t c;
const uint32_t* buf;
uint32_t* obuf = (uint32_t*) out;
#if ((defined(TEST) || defined(SIMULATOR)) && !defined(CPU_ARM))
off = 0; /* no check for memory alignment of inbuffer */
#else
off = (intptr_t)inbuffer & 3;
#endif /* TEST */
buf = (const uint32_t*) (inbuffer - off);
c = be2me_32((0x537F6103 >> (off*8)) | (0x537F6103 << (32-(off*8))));
bytes += 3 + off;
for (i = 0; i < bytes/4; i++)
obuf[i] = c ^ buf[i];
return off;
}
static void init_atrac3_transforms(void)
{
int32_t s;
int i;
/* Generate the mdct window, for details see
* http://wiki.multimedia.cx/index.php?title=RealAudio_atrc#Windows */
/* mdct window had been generated and saved as a lookup table in atrac3data_fixed.h */
/* Generate the QMF window. */
for (i=0 ; i<24; i++) {
s = qmf_48tap_half_fix[i] << 1;
qmf_window[i] = s;
qmf_window[47 - i] = s;
}
}
/**
* Mantissa decoding
*
* @param gb the GetBit context
* @param selector what table is the output values coded with
* @param codingFlag constant length coding or variable length coding
* @param mantissas mantissa output table
* @param numCodes amount of values to get
*/
static void readQuantSpectralCoeffs (GetBitContext *gb, int selector, int codingFlag, int* mantissas, int numCodes)
{
int numBits, cnt, code, huffSymb;
if (selector == 1)
numCodes /= 2;
if (codingFlag != 0) {
/* constant length coding (CLC) */
numBits = CLCLengthTab[selector];
if (selector > 1) {
for (cnt = 0; cnt < numCodes; cnt++) {
if (numBits)
code = get_sbits(gb, numBits);
else
code = 0;
mantissas[cnt] = code;
}
} else {
for (cnt = 0; cnt < numCodes; cnt++) {
if (numBits)
code = get_bits(gb, numBits); /* numBits is always 4 in this case */
else
code = 0;
mantissas[cnt*2] = seTab_0[code >> 2];
mantissas[cnt*2+1] = seTab_0[code & 3];
}
}
} else {
/* variable length coding (VLC) */
if (selector != 1) {
for (cnt = 0; cnt < numCodes; cnt++) {
huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3);
huffSymb += 1;
code = huffSymb >> 1;
if (huffSymb & 1)
code = -code;
mantissas[cnt] = code;
}
} else {
for (cnt = 0; cnt < numCodes; cnt++) {
huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3);
mantissas[cnt*2] = decTable1[huffSymb*2];
mantissas[cnt*2+1] = decTable1[huffSymb*2+1];
}
}
}
}
/**
* Requantize the spectrum.
*
* @param *mantissas pointer to mantissas for each spectral line
* @param pOut requantized band spectrum
* @param first first spectral line in subband
* @param last last spectral line in subband
* @param SF scalefactor for all spectral lines of this band
*/
static void inverseQuantizeSpectrum(int *mantissas, int32_t *pOut,
int32_t first, int32_t last, int32_t SF)
{
int *pIn = mantissas;
/* Inverse quantize the coefficients. */
if((first/256) &1) {
/* Odd band - Reverse coefficients */
do {
pOut[last--] = fixmul16(*pIn++, SF);
pOut[last--] = fixmul16(*pIn++, SF);
pOut[last--] = fixmul16(*pIn++, SF);
pOut[last--] = fixmul16(*pIn++, SF);
pOut[last--] = fixmul16(*pIn++, SF);
pOut[last--] = fixmul16(*pIn++, SF);
pOut[last--] = fixmul16(*pIn++, SF);
pOut[last--] = fixmul16(*pIn++, SF);
} while (last>first);
} else {
/* Even band - Do not reverse coefficients */
do {
pOut[first++] = fixmul16(*pIn++, SF);
pOut[first++] = fixmul16(*pIn++, SF);
pOut[first++] = fixmul16(*pIn++, SF);
pOut[first++] = fixmul16(*pIn++, SF);
pOut[first++] = fixmul16(*pIn++, SF);
pOut[first++] = fixmul16(*pIn++, SF);
pOut[first++] = fixmul16(*pIn++, SF);
pOut[first++] = fixmul16(*pIn++, SF);
} while (first<last);
}
}
/**
* Restore the quantized band spectrum coefficients
*
* @param gb the GetBit context
* @param pOut decoded band spectrum
* @return outSubbands subband counter, fix for broken specification/files
*/
int decodeSpectrum (GetBitContext *gb, int32_t *pOut) ICODE_ATTR_LARGE_IRAM;
int decodeSpectrum (GetBitContext *gb, int32_t *pOut)
{
int numSubbands, codingMode, cnt, first, last, subbWidth;
int subband_vlc_index[32], SF_idxs[32];
int mantissas[128];
int32_t SF;
numSubbands = get_bits(gb, 5); /* number of coded subbands */
codingMode = get_bits1(gb); /* coding Mode: 0 - VLC/ 1-CLC */
/* Get the VLC selector table for the subbands, 0 means not coded. */
for (cnt = 0; cnt <= numSubbands; cnt++)
subband_vlc_index[cnt] = get_bits(gb, 3);
/* Read the scale factor indexes from the stream. */
for (cnt = 0; cnt <= numSubbands; cnt++) {
if (subband_vlc_index[cnt] != 0)
SF_idxs[cnt] = get_bits(gb, 6);
}
for (cnt = 0; cnt <= numSubbands; cnt++) {
first = subbandTab[cnt];
last = subbandTab[cnt+1];
subbWidth = last - first;
if (subband_vlc_index[cnt] != 0) {
/* Decode spectral coefficients for this subband. */
/* TODO: This can be done faster is several blocks share the
* same VLC selector (subband_vlc_index) */
readQuantSpectralCoeffs (gb, subband_vlc_index[cnt], codingMode, mantissas, subbWidth);
/* Decode the scale factor for this subband. */
SF = fixmul31(SFTable_fixed[SF_idxs[cnt]], iMaxQuant_fix[subband_vlc_index[cnt]]);
/* Remark: Hardcoded hack to add 2 bits (empty) fract part to internal sample
* representation. Needed for higher accuracy in internal calculations as
* well as for DSP configuration. See also: ../atrac3_rm.c, DSP_SET_SAMPLE_DEPTH
*/
SF <<= 2;
/* Inverse quantize the coefficients. */
inverseQuantizeSpectrum(mantissas, pOut, first, last, SF);
} else {
/* This subband was not coded, so zero the entire subband. */
memset(pOut+first, 0, subbWidth*sizeof(int32_t));
}
}
/* Clear the subbands that were not coded. */
first = subbandTab[cnt];
memset(pOut+first, 0, (1024 - first) * sizeof(int32_t));
return numSubbands;
}
/**
* Restore the quantized tonal components
*
* @param gb the GetBit context
* @param pComponent tone component
* @param numBands amount of coded bands
*/
static int decodeTonalComponents (GetBitContext *gb, tonal_component *pComponent, int numBands)
{
int i,j,k,cnt;
int components, coding_mode_selector, coding_mode, coded_values_per_component;
int sfIndx, coded_values, max_coded_values, quant_step_index, coded_components;
int band_flags[4], mantissa[8];
int32_t *pCoef;
int32_t scalefactor;
int component_count = 0;
components = get_bits(gb,5);
/* no tonal components */
if (components == 0)
return 0;
coding_mode_selector = get_bits(gb,2);
if (coding_mode_selector == 2)
return -1;
coding_mode = coding_mode_selector & 1;
for (i = 0; i < components; i++) {
for (cnt = 0; cnt <= numBands; cnt++)
band_flags[cnt] = get_bits1(gb);
coded_values_per_component = get_bits(gb,3);
quant_step_index = get_bits(gb,3);
if (quant_step_index <= 1)
return -1;
if (coding_mode_selector == 3)
coding_mode = get_bits1(gb);
for (j = 0; j < (numBands + 1) * 4; j++) {
if (band_flags[j >> 2] == 0)
continue;
coded_components = get_bits(gb,3);
for (k=0; k<coded_components; k++) {
sfIndx = get_bits(gb,6);
pComponent[component_count].pos = j * 64 + (get_bits(gb,6));
max_coded_values = 1024 - pComponent[component_count].pos;
coded_values = coded_values_per_component + 1;
coded_values = FFMIN(max_coded_values,coded_values);
scalefactor = fixmul31(SFTable_fixed[sfIndx], iMaxQuant_fix[quant_step_index]);
/* Remark: Hardcoded hack to add 2 bits (empty) fract part to internal sample
* representation. Needed for higher accuracy in internal calculations as
* well as for DSP configuration. See also: ../atrac3_rm.c, DSP_SET_SAMPLE_DEPTH
*/
scalefactor <<= 2;
readQuantSpectralCoeffs(gb, quant_step_index, coding_mode, mantissa, coded_values);
pComponent[component_count].numCoefs = coded_values;
/* inverse quant */
pCoef = pComponent[component_count].coef;
for (cnt = 0; cnt < coded_values; cnt++)
pCoef[cnt] = fixmul16(mantissa[cnt], scalefactor);
component_count++;
}
}
}
return component_count;
}
/**
* Decode gain parameters for the coded bands
*
* @param gb the GetBit context
* @param pGb the gainblock for the current band
* @param numBands amount of coded bands
*/
static int decodeGainControl (GetBitContext *gb, gain_block *pGb, int numBands)
{
int i, cf, numData;
int *pLevel, *pLoc;
gain_info *pGain = pGb->gBlock;
for (i=0 ; i<=numBands; i++)
{
numData = get_bits(gb,3);
pGain[i].num_gain_data = numData;
pLevel = pGain[i].levcode;
pLoc = pGain[i].loccode;
for (cf = 0; cf < numData; cf++){
pLevel[cf]= get_bits(gb,4);
pLoc [cf]= get_bits(gb,5);
if(cf && pLoc[cf] <= pLoc[cf-1])
return -1;
}
}
/* Clear the unused blocks. */
for (; i<4 ; i++)
pGain[i].num_gain_data = 0;
return 0;
}
/**
* Apply fix (constant) gain and overlap for sample[start...255].
*
* @param pIn input buffer
* @param pPrev previous buffer to perform overlap against
* @param pOut output buffer
* @param start index to start with (always a multiple of 8)
* @param gain gain to apply
*/
static void applyFixGain (int32_t *pIn, int32_t *pPrev, int32_t *pOut,
int32_t start, int32_t gain)
{
int32_t i = start;
/* start is always a multiple of 8 and therefore allows us to unroll the
* loop to 8 calculation per loop
*/
if (ONE_16 == gain) {
/* gain1 = 1.0 -> no multiplication needed, just adding */
/* Remark: This path is called >90%. */
do {
pOut[i] = pIn[i] + pPrev[i]; i++;
pOut[i] = pIn[i] + pPrev[i]; i++;
pOut[i] = pIn[i] + pPrev[i]; i++;
pOut[i] = pIn[i] + pPrev[i]; i++;
pOut[i] = pIn[i] + pPrev[i]; i++;
pOut[i] = pIn[i] + pPrev[i]; i++;
pOut[i] = pIn[i] + pPrev[i]; i++;
pOut[i] = pIn[i] + pPrev[i]; i++;
} while (i<256);
} else {
/* gain1 != 1.0 -> we need to do a multiplication */
/* Remark: This path is called seldom. */
do {
pOut[i] = fixmul16(pIn[i], gain) + pPrev[i]; i++;
pOut[i] = fixmul16(pIn[i], gain) + pPrev[i]; i++;
pOut[i] = fixmul16(pIn[i], gain) + pPrev[i]; i++;
pOut[i] = fixmul16(pIn[i], gain) + pPrev[i]; i++;
pOut[i] = fixmul16(pIn[i], gain) + pPrev[i]; i++;
pOut[i] = fixmul16(pIn[i], gain) + pPrev[i]; i++;
pOut[i] = fixmul16(pIn[i], gain) + pPrev[i]; i++;
pOut[i] = fixmul16(pIn[i], gain) + pPrev[i]; i++;
} while (i<256);
}
}
/**
* Apply variable gain and overlap. Returns sample index after applying gain,
* resulting sample index is always a multiple of 8.
*
* @param pIn input buffer
* @param pPrev previous buffer to perform overlap against
* @param pOut output buffer
* @param start index to start with (always a multiple of 8)
* @param end end index for first loop (always a multiple of 8)
* @param gain1 current bands gain to apply
* @param gain2 next bands gain to apply
* @param gain_inc stepwise adaption from gain1 to gain2
*/
static int applyVariableGain (int32_t *pIn, int32_t *pPrev, int32_t *pOut,
int32_t start, int32_t end,
int32_t gain1, int32_t gain2, int32_t gain_inc)
{
int32_t i = start;
/* Apply fix gains until end index is reached */
do {
pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
} while (i < end);
/* Interpolation is done over next eight samples */
pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
gain2 = fixmul16(gain2, gain_inc);
pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
gain2 = fixmul16(gain2, gain_inc);
pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
gain2 = fixmul16(gain2, gain_inc);
pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
gain2 = fixmul16(gain2, gain_inc);
pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
gain2 = fixmul16(gain2, gain_inc);
pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
gain2 = fixmul16(gain2, gain_inc);
pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
gain2 = fixmul16(gain2, gain_inc);
pOut[i] = fixmul16((fixmul16(pIn[i], gain1) + pPrev[i]), gain2); i++;
gain2 = fixmul16(gain2, gain_inc);
return i;
}
/**
* Apply gain parameters and perform the MDCT overlapping part
*
* @param pIn input buffer
* @param pPrev previous buffer to perform overlap against
* @param pOut output buffer
* @param pGain1 current band gain info
* @param pGain2 next band gain info
*/
static void gainCompensateAndOverlap (int32_t *pIn, int32_t *pPrev, int32_t *pOut,
gain_info *pGain1, gain_info *pGain2)
{
/* gain compensation function */
int32_t gain1, gain2, gain_inc;
int cnt, numdata, nsample, startLoc;
if (pGain2->num_gain_data == 0)
gain1 = ONE_16;
else
gain1 = (ONE_16<<4)>>(pGain2->levcode[0]);
if (pGain1->num_gain_data == 0) {
/* Remark: This path is called >90%. */
/* Apply gain for all samples from 0...255 */
applyFixGain(pIn, pPrev, pOut, 0, gain1);
} else {
/* Remark: This path is called seldom. */
numdata = pGain1->num_gain_data;
pGain1->loccode[numdata] = 32;
pGain1->levcode[numdata] = 4;
nsample = 0; /* starting loop with =0 */
for (cnt = 0; cnt < numdata; cnt++) {
startLoc = pGain1->loccode[cnt] * 8;
gain2 = (ONE_16<<4)>>(pGain1->levcode[cnt]);
gain_inc = gain_tab2[(pGain1->levcode[cnt+1] - pGain1->levcode[cnt])+15];
/* Apply variable gain (gain1 -> gain2) to samples */
nsample = applyVariableGain(pIn, pPrev, pOut, nsample, startLoc, gain1, gain2, gain_inc);
}
/* Apply gain for the residual samples from nsample...255 */
applyFixGain(pIn, pPrev, pOut, nsample, gain1);
}
/* Delay for the overlapping part. */
memcpy(pPrev, &pIn[256], 256*sizeof(int32_t));
}
/**
* Combine the tonal band spectrum and regular band spectrum
* Return position of the last tonal coefficient
*
* @param pSpectrum output spectrum buffer
* @param numComponents amount of tonal components
* @param pComponent tonal components for this band
*/
static int addTonalComponents (int32_t *pSpectrum, int numComponents, tonal_component *pComponent)
{
int cnt, i, lastPos = -1;
int32_t *pOut;
int32_t *pIn;
for (cnt = 0; cnt < numComponents; cnt++){
lastPos = FFMAX(pComponent[cnt].pos + pComponent[cnt].numCoefs, lastPos);
pIn = pComponent[cnt].coef;
pOut = &(pSpectrum[pComponent[cnt].pos]);
for (i=0 ; i<pComponent[cnt].numCoefs ; i++)
pOut[i] += pIn[i];
}
return lastPos;
}
/**
* Linear equidistant interpolation between two points x and y. 7 interpolation
* points can be calculated.
* Result for s=0 is x
* Result for s=8 is y
*
* @param x first input point
* @param y second input point
* @param s index of interpolation point (0..7)
*/
/* rockbox: Not used anymore. Faster version defined below.
#define INTERPOLATE_FP16(x, y, s) ((x) + fixmul16(((s*ONE_16)>>3), (((y) - (x)))))
*/
#define INTERPOLATE_FP16(x, y, s) ((x) + ((s*((y)-(x)))>>3))
static void reverseMatrixing(int32_t *su1, int32_t *su2, int *pPrevCode, int *pCurrCode)
{
int i, band, nsample, s1, s2;
int32_t c1, c2;
int32_t mc1_l, mc1_r, mc2_l, mc2_r;
for (i=0,band = 0; band < 4*256; band+=256,i++) {
s1 = pPrevCode[i];
s2 = pCurrCode[i];
nsample = 0;
if (s1 != s2) {
/* Selector value changed, interpolation needed. */
mc1_l = matrixCoeffs_fix[s1<<1];
mc1_r = matrixCoeffs_fix[(s1<<1)+1];
mc2_l = matrixCoeffs_fix[s2<<1];
mc2_r = matrixCoeffs_fix[(s2<<1)+1];
/* Interpolation is done over the first eight samples. */
for(; nsample < 8; nsample++) {
c1 = su1[band+nsample];
c2 = su2[band+nsample];
c2 = fixmul16(c1, INTERPOLATE_FP16(mc1_l, mc2_l, nsample)) + fixmul16(c2, INTERPOLATE_FP16(mc1_r, mc2_r, nsample));
su1[band+nsample] = c2;
su2[band+nsample] = (c1 << 1) - c2;
}
}
/* Apply the matrix without interpolation. */
switch (s2) {
case 0: /* M/S decoding */
for (; nsample < 256; nsample++) {
c1 = su1[band+nsample];
c2 = su2[band+nsample];
su1[band+nsample] = c2 << 1;
su2[band+nsample] = (c1 - c2) << 1;
}
break;
case 1:
for (; nsample < 256; nsample++) {
c1 = su1[band+nsample];
c2 = su2[band+nsample];
su1[band+nsample] = (c1 + c2) << 1;
su2[band+nsample] = -1*(c2 << 1);
}
break;
case 2:
case 3:
for (; nsample < 256; nsample++) {
c1 = su1[band+nsample];
c2 = su2[band+nsample];
su1[band+nsample] = c1 + c2;
su2[band+nsample] = c1 - c2;
}
break;
default:
/* assert(0) */;
break;
}
}
}
static void getChannelWeights (int indx, int flag, int32_t ch[2]){
/* Read channel weights from table */
if (flag) {
/* Swap channel weights */
ch[1] = channelWeights0[indx&7];
ch[0] = channelWeights1[indx&7];
} else {
ch[0] = channelWeights0[indx&7];
ch[1] = channelWeights1[indx&7];
}
}
static void channelWeighting (int32_t *su1, int32_t *su2, int *p3)
{
int band, nsample;
/* w[x][y] y=0 is left y=1 is right */
int32_t w[2][2];
if (p3[1] != 7 || p3[3] != 7){
getChannelWeights(p3[1], p3[0], w[0]);
getChannelWeights(p3[3], p3[2], w[1]);
for(band = 1; band < 4; band++) {
/* scale the channels by the weights */
for(nsample = 0; nsample < 8; nsample++) {
su1[band*256+nsample] = fixmul16(su1[band*256+nsample], INTERPOLATE_FP16(w[0][0], w[0][1], nsample));
su2[band*256+nsample] = fixmul16(su2[band*256+nsample], INTERPOLATE_FP16(w[1][0], w[1][1], nsample));
}
for(; nsample < 256; nsample++) {
su1[band*256+nsample] = fixmul16(su1[band*256+nsample], w[1][0]);
su2[band*256+nsample] = fixmul16(su2[band*256+nsample], w[1][1]);
}
}
}
}
/**
* Decode a Sound Unit
*
* @param gb the GetBit context
* @param pSnd the channel unit to be used
* @param pOut the decoded samples before IQMF
* @param channelNum channel number
* @param codingMode the coding mode (JOINT_STEREO or regular stereo/mono)
*/
static int decodeChannelSoundUnit (GetBitContext *gb, channel_unit *pSnd, int32_t *pOut, int channelNum, int codingMode)
{
int band, result=0, numSubbands, lastTonal, numBands;
if (codingMode == JOINT_STEREO && channelNum == 1) {
if (get_bits(gb,2) != 3) {
DEBUGF("JS mono Sound Unit id != 3.\n");
return -1;
}
} else {
if (get_bits(gb,6) != 0x28) {
DEBUGF("Sound Unit id != 0x28.\n");
return -1;
}
}
/* number of coded QMF bands */
pSnd->bandsCoded = get_bits(gb,2);
result = decodeGainControl (gb, &(pSnd->gainBlock[pSnd->gcBlkSwitch]), pSnd->bandsCoded);
if (result) return result;
pSnd->numComponents = decodeTonalComponents (gb, pSnd->components, pSnd->bandsCoded);
if (pSnd->numComponents == -1) return -1;
numSubbands = decodeSpectrum (gb, pSnd->spectrum);
/* Merge the decoded spectrum and tonal components. */
lastTonal = addTonalComponents (pSnd->spectrum, pSnd->numComponents, pSnd->components);
/* calculate number of used MLT/QMF bands according to the amount of coded spectral lines */
numBands = (subbandTab[numSubbands] - 1) >> 8;
if (lastTonal >= 0)
numBands = FFMAX((lastTonal + 256) >> 8, numBands);
/* Reconstruct time domain samples. */
for (band=0; band<4; band++) {
/* Perform the IMDCT step without overlapping. */
if (band <= numBands) {
IMLT(&(pSnd->spectrum[band*256]), pSnd->IMDCT_buf);
} else {
memset(pSnd->IMDCT_buf, 0, 512 * sizeof(int32_t));
}
/* gain compensation and overlapping */
gainCompensateAndOverlap (pSnd->IMDCT_buf, &(pSnd->prevFrame[band*256]), &(pOut[band*256]),
&((pSnd->gainBlock[1 - (pSnd->gcBlkSwitch)]).gBlock[band]),
&((pSnd->gainBlock[pSnd->gcBlkSwitch]).gBlock[band]));
}
/* Swap the gain control buffers for the next frame. */
pSnd->gcBlkSwitch ^= 1;
return 0;
}
/**
* Frame handling
*
* @param q Atrac3 private context
* @param databuf the input data
*/
static int decodeFrame(ATRAC3Context *q, const uint8_t* databuf, int off)
{
int result, i;
int32_t *p1, *p2, *p3, *p4;
uint8_t *ptr1;
if (q->codingMode == JOINT_STEREO) {
/* channel coupling mode */
/* decode Sound Unit 1 */
init_get_bits(&q->gb,databuf,q->bits_per_frame);
result = decodeChannelSoundUnit(&q->gb, q->pUnits, q->outSamples, 0, JOINT_STEREO);
if (result != 0)
return (result);
/* Framedata of the su2 in the joint-stereo mode is encoded in
* reverse byte order so we need to swap it first. */
if (databuf == q->decoded_bytes_buffer) {
uint8_t *ptr2 = q->decoded_bytes_buffer+q->bytes_per_frame-1;
ptr1 = q->decoded_bytes_buffer;
for (i = 0; i < (q->bytes_per_frame/2); i++, ptr1++, ptr2--) {
FFSWAP(uint8_t,*ptr1,*ptr2);
}
} else {
const uint8_t *ptr2 = databuf+q->bytes_per_frame-1;
for (i = 0; i < q->bytes_per_frame; i++)
q->decoded_bytes_buffer[i] = *ptr2--;
}
/* Skip the sync codes (0xF8). */
ptr1 = q->decoded_bytes_buffer;
for (i = 4; *ptr1 == 0xF8; i++, ptr1++) {
if (i >= q->bytes_per_frame)
return -1;
}
/* set the bitstream reader at the start of the second Sound Unit*/
init_get_bits(&q->gb,ptr1,q->bits_per_frame);
/* Fill the Weighting coeffs delay buffer */
memmove(q->weighting_delay,&(q->weighting_delay[2]),4*sizeof(int));
q->weighting_delay[4] = get_bits1(&q->gb);
q->weighting_delay[5] = get_bits(&q->gb,3);
for (i = 0; i < 4; i++) {
q->matrix_coeff_index_prev[i] = q->matrix_coeff_index_now[i];
q->matrix_coeff_index_now[i] = q->matrix_coeff_index_next[i];
q->matrix_coeff_index_next[i] = get_bits(&q->gb,2);
}
/* Decode Sound Unit 2. */
result = decodeChannelSoundUnit(&q->gb, &q->pUnits[1], &q->outSamples[1024], 1, JOINT_STEREO);
if (result != 0)
return (result);
/* Reconstruct the channel coefficients. */
reverseMatrixing(q->outSamples, &q->outSamples[1024], q->matrix_coeff_index_prev, q->matrix_coeff_index_now);
channelWeighting(q->outSamples, &q->outSamples[1024], q->weighting_delay);
} else {
/* normal stereo mode or mono */
/* Decode the channel sound units. */
for (i=0 ; i<q->channels ; i++) {
/* Set the bitstream reader at the start of a channel sound unit. */
init_get_bits(&q->gb, databuf+((i*q->bytes_per_frame)/q->channels)+off, (q->bits_per_frame)/q->channels);
result = decodeChannelSoundUnit(&q->gb, &q->pUnits[i], &q->outSamples[i*1024], i, q->codingMode);
if (result != 0)
return (result);
}
}
/* Apply the iQMF synthesis filter. */
p1= q->outSamples;
for (i=0 ; i<q->channels ; i++) {
p2= p1+256;
p3= p2+256;
p4= p3+256;
iqmf (p1, p2, 256, p1, q->pUnits[i].delayBuf1, q->tempBuf);
iqmf (p4, p3, 256, p3, q->pUnits[i].delayBuf2, q->tempBuf);
iqmf (p1, p3, 512, p1, q->pUnits[i].delayBuf3, q->tempBuf);
p1 +=1024;
}
return 0;
}
/**
* Atrac frame decoding
*
* @param rmctx pointer to the AVCodecContext
*/
int atrac3_decode_frame(unsigned long block_align, ATRAC3Context *q,
int *data_size, const uint8_t *buf, int buf_size) {
int result = 0, off = 0;
const uint8_t* databuf;
if ((unsigned)buf_size < block_align)
return buf_size;
/* Check if we need to descramble and what buffer to pass on. */
if (q->scrambled_stream) {
off = decode_bytes(buf, q->decoded_bytes_buffer, block_align);
databuf = q->decoded_bytes_buffer;
} else {
databuf = buf;
}
result = decodeFrame(q, databuf, off);
if (result != 0) {
DEBUGF("Frame decoding error!\n");
return -1;
}
if (q->channels == 1)
*data_size = 1024 * sizeof(int32_t);
else
*data_size = 2048 * sizeof(int32_t);
return block_align;
}
/**
* Atrac3 initialization
*
* @param rmctx pointer to the RMContext
*/
int atrac3_decode_init(ATRAC3Context *q, struct mp3entry *id3)
{
int i;
uint8_t *edata_ptr = (uint8_t*)&id3->id3v2buf;
static VLC_TYPE atrac3_vlc_table[4096][2];
static int vlcs_initialized = 0;
/* Take data from the RM container. */
q->sample_rate = id3->frequency;
q->channels = id3->channels;
q->bit_rate = id3->bitrate * 1000;
q->bits_per_frame = id3->bytesperframe * 8;
q->bytes_per_frame = id3->bytesperframe;
/* Take care of the codec-specific extradata. */
if (id3->extradata_size == 14) {
/* Parse the extradata, WAV format */
DEBUGF("[0-1] %d\n",rm_get_uint16le(&edata_ptr[0])); /* Unknown value always 1 */
q->samples_per_channel = rm_get_uint32le(&edata_ptr[2]);
q->codingMode = rm_get_uint16le(&edata_ptr[6]);
DEBUGF("[8-9] %d\n",rm_get_uint16le(&edata_ptr[8])); /* Dupe of coding mode */
q->frame_factor = rm_get_uint16le(&edata_ptr[10]); /* Unknown always 1 */
DEBUGF("[12-13] %d\n",rm_get_uint16le(&edata_ptr[12])); /* Unknown always 0 */
/* setup */
q->samples_per_frame = 1024 * q->channels;
q->atrac3version = 4;
q->delay = 0x88E;
if (q->codingMode)
q->codingMode = JOINT_STEREO;
else
q->codingMode = STEREO;
q->scrambled_stream = 0;
if ((q->bytes_per_frame == 96*q->channels*q->frame_factor) || (q->bytes_per_frame == 152*q->channels*q->frame_factor) || (q->bytes_per_frame == 192*q->channels*q->frame_factor)) {
} else {
DEBUGF("Unknown frame/channel/frame_factor configuration %d/%d/%d\n", q->bytes_per_frame, q->channels, q->frame_factor);
return -1;
}
} else if (id3->extradata_size == 10) {
/* Parse the extradata, RM format. */
q->atrac3version = rm_get_uint32be(&edata_ptr[0]);
q->samples_per_frame = rm_get_uint16be(&edata_ptr[4]);
q->delay = rm_get_uint16be(&edata_ptr[6]);
q->codingMode = rm_get_uint16be(&edata_ptr[8]);
q->samples_per_channel = q->samples_per_frame / q->channels;
q->scrambled_stream = 1;
} else {
DEBUGF("Unknown extradata size %d.\n",id3->extradata_size);
}
/* Check the extradata. */
if (q->atrac3version != 4) {
DEBUGF("Version %d != 4.\n",q->atrac3version);
return -1;
}
if (q->samples_per_frame != 1024 && q->samples_per_frame != 2048) {
DEBUGF("Unknown amount of samples per frame %d.\n",q->samples_per_frame);
return -1;
}
if (q->delay != 0x88E) {
DEBUGF("Unknown amount of delay %x != 0x88E.\n",q->delay);
return -1;
}
if (q->codingMode == STEREO) {
DEBUGF("Normal stereo detected.\n");
} else if (q->codingMode == JOINT_STEREO) {
DEBUGF("Joint stereo detected.\n");
} else {
DEBUGF("Unknown channel coding mode %x!\n",q->codingMode);
return -1;
}
if (id3->channels <= 0 || id3->channels > 2 ) {
DEBUGF("Channel configuration error!\n");
return -1;
}
if(id3->bytesperframe >= UINT16_MAX/2)
return -1;
/* Initialize the VLC tables. */
if (!vlcs_initialized) {
for (i=0 ; i<7 ; i++) {
spectral_coeff_tab[i].table = &atrac3_vlc_table[atrac3_vlc_offs[i]];
spectral_coeff_tab[i].table_allocated = atrac3_vlc_offs[i + 1] - atrac3_vlc_offs[i];
init_vlc (&spectral_coeff_tab[i], 9, huff_tab_sizes[i],
huff_bits[i], 1, 1,
huff_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
}
vlcs_initialized = 1;
}
init_atrac3_transforms();
/* init the joint-stereo decoding data */
q->weighting_delay[0] = 0;
q->weighting_delay[1] = 7;
q->weighting_delay[2] = 0;
q->weighting_delay[3] = 7;
q->weighting_delay[4] = 0;
q->weighting_delay[5] = 7;
for (i=0; i<4; i++) {
q->matrix_coeff_index_prev[i] = 3;
q->matrix_coeff_index_now[i] = 3;
q->matrix_coeff_index_next[i] = 3;
}
/* Link the iram'ed arrays to the decoder's data structure */
q->pUnits = channel_units;
q->pUnits[0].spectrum = &atrac3_spectrum [0][0];
q->pUnits[1].spectrum = &atrac3_spectrum [1][0];
q->pUnits[0].IMDCT_buf = &atrac3_IMDCT_buf[0][0];
q->pUnits[1].IMDCT_buf = &atrac3_IMDCT_buf[1][0];
q->pUnits[0].prevFrame = &atrac3_prevFrame[0][0];
q->pUnits[1].prevFrame = &atrac3_prevFrame[1][0];
return 0;
}