rockbox/firmware/target/arm/imx31/gigabeat-s/pcm-gigabeat-s.c

538 lines
15 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2008 by Michael Sevakis
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <stdlib.h>
#include "system.h"
#include "kernel.h"
#include "audio.h"
#include "sound.h"
#include "ccm-imx31.h"
#include "sdma-imx31.h"
#include "mmu-imx31.h"
#define DMA_PLAY_CH_NUM 2
#define DMA_REC_CH_NUM 1
#define DMA_PLAY_CH_PRIORITY 6
#define DMA_REC_CH_PRIORITY 6
static struct buffer_descriptor dma_play_bd NOCACHEBSS_ATTR;
static void play_dma_callback(void);
static struct channel_descriptor dma_play_cd =
{
.bd_count = 1,
.callback = play_dma_callback,
.shp_addr = SDMA_PER_ADDR_SSI2_TX1,
.wml = SDMA_SSI_TXFIFO_WML*2,
.per_type = SDMA_PER_SSI_SHP, /* SSI2 shared with SDMA core */
.tran_type = SDMA_TRAN_EMI_2_PER,
.event_id1 = SDMA_REQ_SSI2_TX1,
};
/* The pcm locking relies on the fact the interrupt handlers run to completion
* before lower-priority modes proceed. We don't have to touch hardware
* registers. Disabling SDMA interrupt would disable DMA callbacks systemwide
* and that is not something that is desireable.
*
* Lock explanation [++.locked]:
* Trivial, just increment .locked.
*
* Unlock explanation [if (--.locked == 0 && .state != 0)]:
* If int occurred and saw .locked as nonzero, we'll get a pending
* and it will have taken no action other than to set the flag to the
* value of .state. If it saw zero for .locked, it will have proceeded
* normally into the pcm callbacks. If cb set the pending flag, it has
* to be called to kickstart the callback mechanism and DMA. If the unlock
* came after a stop, we won't be in the block and DMA will be off. If
* we're still doing transfers, cb will see 0 for .locked and if pending,
* it won't be called by DMA again. */
struct dma_data
{
int locked;
int callback_pending; /* DMA interrupt happened while locked */
int state;
};
static struct dma_data dma_play_data =
{
/* Initialize to an unlocked, stopped state */
.locked = 0,
.callback_pending = 0,
.state = 0
};
static void play_dma_callback(void)
{
void *start;
size_t size;
bool rror;
if (dma_play_data.locked != 0)
{
/* Callback is locked out */
dma_play_data.callback_pending = dma_play_data.state;
return;
}
rror = dma_play_bd.mode.status & BD_RROR;
pcm_play_get_more_callback(rror ? NULL : &start, &size);
if (size == 0)
return;
/* Flush any pending cache writes */
clean_dcache_range(start, size);
dma_play_bd.buf_addr = (void *)addr_virt_to_phys((unsigned long)start);
dma_play_bd.mode.count = size;
dma_play_bd.mode.command = TRANSFER_16BIT;
dma_play_bd.mode.status = BD_DONE | BD_WRAP | BD_INTR;
sdma_channel_run(DMA_PLAY_CH_NUM);
}
void pcm_play_lock(void)
{
++dma_play_data.locked;
}
void pcm_play_unlock(void)
{
if (--dma_play_data.locked == 0 && dma_play_data.state != 0)
{
int oldstatus = disable_irq_save();
int pending = dma_play_data.callback_pending;
dma_play_data.callback_pending = 0;
restore_irq(oldstatus);
if (pending != 0)
play_dma_callback();
}
}
void pcm_dma_apply_settings(void)
{
audiohw_set_frequency(pcm_fsel);
}
void pcm_play_dma_init(void)
{
/* Init channel information */
sdma_channel_init(DMA_PLAY_CH_NUM, &dma_play_cd, &dma_play_bd);
sdma_channel_set_priority(DMA_PLAY_CH_NUM, DMA_PLAY_CH_PRIORITY);
ccm_module_clock_gating(CG_SSI1, CGM_ON_RUN_WAIT);
ccm_module_clock_gating(CG_SSI2, CGM_ON_RUN_WAIT);
/* Reset & disable SSIs */
SSI_SCR1 &= ~SSI_SCR_SSIEN;
SSI_SCR2 &= ~SSI_SCR_SSIEN;
SSI_SIER1 = 0;
SSI_SIER2 = 0;
/* Set up audio mux */
/* Port 2 (internally connected to SSI2)
* All clocking is output sourced from port 4 */
AUDMUX_PTCR2 = AUDMUX_PTCR_TFS_DIR | AUDMUX_PTCR_TFSEL_PORT4 |
AUDMUX_PTCR_TCLKDIR | AUDMUX_PTCR_TCSEL_PORT4 |
AUDMUX_PTCR_SYN;
/* Receive data from port 4 */
AUDMUX_PDCR2 = AUDMUX_PDCR_RXDSEL_PORT4;
/* All clock lines are inputs sourced from the master mode codec and
* sent back to SSI2 through port 2 */
AUDMUX_PTCR4 = AUDMUX_PTCR_SYN;
/* Receive data from port 2 */
AUDMUX_PDCR4 = AUDMUX_PDCR_RXDSEL_PORT2;
/* PORT1 (internally connected to SSI1) routes clocking to PORT5 to
* provide MCLK to the codec */
/* TX clocks are inputs taken from SSI2 */
/* RX clocks are outputs taken from PORT4 */
AUDMUX_PTCR1 = AUDMUX_PTCR_RFS_DIR | AUDMUX_PTCR_RFSSEL_PORT4 |
AUDMUX_PTCR_RCLKDIR | AUDMUX_PTCR_RCSEL_PORT4;
/* RX data taken from PORT4 */
AUDMUX_PDCR1 = AUDMUX_PDCR_RXDSEL_PORT4;
/* PORT5 outputs TCLK sourced from PORT1 (SSI1) */
AUDMUX_PTCR5 = AUDMUX_PTCR_TCLKDIR | AUDMUX_PTCR_TCSEL_PORT1;
AUDMUX_PDCR5 = 0;
/* Setup SSIs */
/* SSI2 - SoC software interface for all I2S data out */
SSI_SCR2 = SSI_SCR_SYN | SSI_SCR_I2S_MODE_SLAVE;
SSI_STCR2 = SSI_STCR_TXBIT0 | SSI_STCR_TSCKP | SSI_STCR_TFSI |
SSI_STCR_TEFS | SSI_STCR_TFEN0;
/* 16 bits per word, 2 words per frame */
SSI_STCCR2 = SSI_STRCCR_WL16 | ((2-1) << SSI_STRCCR_DC_POS) |
((4-1) << SSI_STRCCR_PM_POS);
/* Transmit low watermark */
SSI_SFCSR2 = (SSI_SFCSR2 & ~SSI_SFCSR_TFWM0) |
((8-SDMA_SSI_TXFIFO_WML) << SSI_SFCSR_TFWM0_POS);
SSI_STMSK2 = 0;
/* SSI1 - provides MCLK to codec. Receives data from codec. */
SSI_STCR1 = SSI_STCR_TXDIR;
/* f(INT_BIT_CLK) =
* f(SYS_CLK) / [(DIV2 + 1)*(7*PSR + 1)*(PM + 1)*2] =
* 677737600 / [(1 + 1)*(7*0 + 1)*(0 + 1)*2] =
* 677737600 / 4 = 169344000 Hz
*
* 45.4.2.2 DIV2, PSR, and PM Bit Description states:
* Bits DIV2, PSR, and PM should not be all set to zero at the same
* time.
*
* The hardware seems to force a divide by 4 even if all bits are
* zero but comply by setting DIV2 and the others to zero.
*/
SSI_STCCR1 = SSI_STRCCR_DIV2 | ((1-1) << SSI_STRCCR_PM_POS);
/* SSI1 - receive - asynchronous clocks */
SSI_SCR1 = SSI_SCR_I2S_MODE_SLAVE;
SSI_SRCR1 = SSI_SRCR_RXBIT0 | SSI_SRCR_RSCKP | SSI_SRCR_RFSI |
SSI_SRCR_REFS;
/* 16 bits per word, 2 words per frame */
SSI_SRCCR1 = SSI_STRCCR_WL16 | ((2-1) << SSI_STRCCR_DC_POS) |
((4-1) << SSI_STRCCR_PM_POS);
/* Receive high watermark */
SSI_SFCSR1 = (SSI_SFCSR1 & ~SSI_SFCSR_RFWM0) |
(SDMA_SSI_RXFIFO_WML << SSI_SFCSR_RFWM0_POS);
SSI_SRMSK1 = 0;
/* Enable SSI1 (codec clock) */
SSI_SCR1 |= SSI_SCR_SSIEN;
audiohw_init();
}
void pcm_postinit(void)
{
audiohw_postinit();
}
static void play_start_pcm(void)
{
/* Stop transmission (if in progress) */
SSI_SCR2 &= ~SSI_SCR_TE;
SSI_SCR2 |= SSI_SCR_SSIEN; /* Enable SSI */
SSI_STCR2 |= SSI_STCR_TFEN0; /* Enable TX FIFO */
dma_play_data.state = 1; /* Check callback on unlock */
/* Do prefill to prevent swapped channels (see TLSbo61214 in MCIMX31CE).
* No actual solution was offered but this appears to work. */
SSI_STX0_2 = 0;
SSI_STX0_2 = 0;
SSI_STX0_2 = 0;
SSI_STX0_2 = 0;
SSI_SIER2 |= SSI_SIER_TDMAE; /* Enable DMA req. */
SSI_SCR2 |= SSI_SCR_TE; /* Start transmitting */
}
static void play_stop_pcm(void)
{
SSI_SIER2 &= ~SSI_SIER_TDMAE; /* Disable DMA req. */
/* Set state before pending to prevent race with interrupt */
dma_play_data.state = 0;
/* Wait for FIFO to empty */
while (SSI_SFCSR_TFCNT0 & SSI_SFCSR2);
SSI_STCR2 &= ~SSI_STCR_TFEN0; /* Disable TX */
SSI_SCR2 &= ~(SSI_SCR_TE | SSI_SCR_SSIEN); /* Disable transmission, SSI */
/* Clear any pending callback */
dma_play_data.callback_pending = 0;
}
void pcm_play_dma_start(const void *addr, size_t size)
{
sdma_channel_stop(DMA_PLAY_CH_NUM);
/* Disable transmission */
SSI_STCR2 &= ~SSI_STCR_TFEN0;
SSI_SCR2 &= ~(SSI_SCR_TE | SSI_SCR_SSIEN);
if (!sdma_channel_reset(DMA_PLAY_CH_NUM))
return;
clean_dcache_range(addr, size);
dma_play_bd.buf_addr =
(void *)addr_virt_to_phys((unsigned long)(void *)addr);
dma_play_bd.mode.count = size;
dma_play_bd.mode.command = TRANSFER_16BIT;
dma_play_bd.mode.status = BD_DONE | BD_WRAP | BD_INTR;
play_start_pcm();
sdma_channel_run(DMA_PLAY_CH_NUM);
}
void pcm_play_dma_stop(void)
{
sdma_channel_stop(DMA_PLAY_CH_NUM);
play_stop_pcm();
}
void pcm_play_dma_pause(bool pause)
{
if (pause)
{
sdma_channel_pause(DMA_PLAY_CH_NUM);
play_stop_pcm();
}
else
{
play_start_pcm();
sdma_channel_run(DMA_PLAY_CH_NUM);
}
}
/* Return the number of bytes waiting - full L-R sample pairs only */
size_t pcm_get_bytes_waiting(void)
{
static unsigned long dsa NOCACHEBSS_ATTR;
long offs, size;
int oldstatus;
/* read burst dma source address register in channel context */
sdma_read_words(&dsa, CHANNEL_CONTEXT_ADDR(DMA_PLAY_CH_NUM)+0x0b, 1);
oldstatus = disable_irq_save();
offs = dsa - (unsigned long)dma_play_bd.buf_addr;
size = dma_play_bd.mode.count;
restore_irq(oldstatus);
/* Be addresses are coherent (no buffer change during read) */
if (offs >= 0 && offs < size)
{
return (size - offs) & ~3;
}
return 0;
}
/* Return a pointer to the samples and the number of them in *count */
const void * pcm_play_dma_get_peak_buffer(int *count)
{
static unsigned long dsa NOCACHEBSS_ATTR;
unsigned long addr;
long offs, size;
int oldstatus;
/* read burst dma source address register in channel context */
sdma_read_words(&dsa, CHANNEL_CONTEXT_ADDR(DMA_PLAY_CH_NUM)+0x0b, 1);
oldstatus = disable_irq_save();
addr = dsa;
offs = addr - (unsigned long)dma_play_bd.buf_addr;
size = dma_play_bd.mode.count;
restore_irq(oldstatus);
/* Be addresses are coherent (no buffer change during read) */
if (offs >= 0 && offs < size)
{
*count = (size - offs) >> 2;
return (void *)((addr + 2) & ~3);
}
*count = 0;
return NULL;
}
void * pcm_dma_addr(void *addr)
{
return (void *)addr_virt_to_phys((unsigned long)addr);
}
#ifdef HAVE_RECORDING
static struct buffer_descriptor dma_rec_bd NOCACHEBSS_ATTR;
static void rec_dma_callback(void);
static struct channel_descriptor dma_rec_cd =
{
.bd_count = 1,
.callback = rec_dma_callback,
.shp_addr = SDMA_PER_ADDR_SSI1_RX1,
.wml = SDMA_SSI_RXFIFO_WML*2,
.per_type = SDMA_PER_SSI,
.tran_type = SDMA_TRAN_PER_2_EMI,
.event_id1 = SDMA_REQ_SSI1_RX1,
};
static struct dma_data dma_rec_data =
{
/* Initialize to an unlocked, stopped state */
.locked = 0,
.callback_pending = 0,
.state = 0
};
static void rec_dma_callback(void)
{
int status = 0;
void *start;
size_t size;
if (dma_rec_data.locked != 0)
{
dma_rec_data.callback_pending = dma_rec_data.state;
return; /* Callback is locked out */
}
if (dma_rec_bd.mode.status & BD_RROR)
status = DMA_REC_ERROR_DMA;
pcm_rec_more_ready_callback(status, &start, &size);
if (size == 0)
return;
/* Invalidate - buffer must be coherent */
dump_dcache_range(start, size);
start = (void *)addr_virt_to_phys((unsigned long)start);
dma_rec_bd.buf_addr = start;
dma_rec_bd.mode.count = size;
dma_rec_bd.mode.command = TRANSFER_16BIT;
dma_rec_bd.mode.status = BD_DONE | BD_WRAP | BD_INTR;
sdma_channel_run(DMA_REC_CH_NUM);
}
void pcm_rec_lock(void)
{
++dma_rec_data.locked;
}
void pcm_rec_unlock(void)
{
if (--dma_rec_data.locked == 0 && dma_rec_data.state != 0)
{
int oldstatus = disable_irq_save();
int pending = dma_rec_data.callback_pending;
dma_rec_data.callback_pending = 0;
restore_irq(oldstatus);
if (pending != 0)
rec_dma_callback();
}
}
void pcm_rec_dma_stop(void)
{
SSI_SIER1 &= ~SSI_SIER_RDMAE; /* Disable DMA req. */
/* Set state before pending to prevent race with interrupt */
dma_rec_data.state = 0;
/* Stop receiving data */
sdma_channel_stop(DMA_REC_CH_NUM);
bitclr32(&SSI_SIER1, SSI_SIER_RDMAE);
SSI_SCR1 &= ~SSI_SCR_RE; /* Disable RX */
SSI_SRCR1 &= ~SSI_SRCR_RFEN0; /* Disable RX FIFO */
/* Clear any pending callback */
dma_rec_data.callback_pending = 0;
}
void pcm_rec_dma_start(void *addr, size_t size)
{
pcm_rec_dma_stop();
if (!sdma_channel_reset(DMA_REC_CH_NUM))
return;
/* Invalidate - buffer must be coherent */
dump_dcache_range(addr, size);
addr = (void *)addr_virt_to_phys((unsigned long)addr);
dma_rec_bd.buf_addr = addr;
dma_rec_bd.mode.count = size;
dma_rec_bd.mode.command = TRANSFER_16BIT;
dma_rec_bd.mode.status = BD_DONE | BD_WRAP | BD_INTR;
dma_rec_data.state = 1; /* Check callback on unlock */
SSI_SRCR1 |= SSI_SRCR_RFEN0; /* Enable RX FIFO */
/* Ensure clear FIFO */
while (SSI_SFCSR1 & SSI_SFCSR_RFCNT0)
SSI_SRX0_1;
/* Enable receive */
SSI_SCR1 |= SSI_SCR_RE;
SSI_SIER1 |= SSI_SIER_RDMAE; /* Enable DMA req. */
sdma_channel_run(DMA_REC_CH_NUM);
}
void pcm_rec_dma_close(void)
{
pcm_rec_dma_stop();
sdma_channel_close(DMA_REC_CH_NUM);
}
void pcm_rec_dma_init(void)
{
pcm_rec_dma_stop();
/* Init channel information */
sdma_channel_init(DMA_REC_CH_NUM, &dma_rec_cd, &dma_rec_bd);
sdma_channel_set_priority(DMA_REC_CH_NUM, DMA_REC_CH_PRIORITY);
}
const void * pcm_rec_dma_get_peak_buffer(void)
{
static unsigned long pda NOCACHEBSS_ATTR;
unsigned long buf, end, bufend;
int oldstatus;
/* read burst dma destination address register in channel context */
sdma_read_words(&pda, CHANNEL_CONTEXT_ADDR(DMA_REC_CH_NUM)+0x0a, 1);
oldstatus = disable_irq_save();
end = pda;
buf = (unsigned long)dma_rec_bd.buf_addr;
bufend = buf + dma_rec_bd.mode.count;
restore_irq(oldstatus);
/* Be addresses are coherent (no buffer change during read) */
if (end >= buf && end < bufend)
return (void *)(end & ~3);
return NULL;
}
#endif /* HAVE_RECORDING */