rockbox/apps/plugins/sudoku/generator.c
Andrew Mahone 23d9812273 loader-initialized global plugin API:
struct plugin_api *rb is declared in PLUGIN_HEADER, and pointed to by
__header.api

the loader uses this pointer to initialize rb before calling entry_point

entry_point is no longer passed a pointer to the plugin API

all plugins, and pluginlib functions, are modified to refer to the
global rb

pluginlib functions which only served to copy the API pointer are
removed

git-svn-id: svn://svn.rockbox.org/rockbox/trunk@19776 a1c6a512-1295-4272-9138-f99709370657
2009-01-16 10:34:40 +00:00

1155 lines
30 KiB
C

/* sudoku.c - sudoku game
*
* Writing a fun Su-Do-Ku game has turned out to be a difficult exercise.
* The biggest difficulty is keeping the game fun - and this means allowing
* the user to make mistakes. The game is not much fun if it prevents the
* user from making moves, or if it informs them of an incorrect move.
* With movement constraints, the 'game' is little more than an automated
* solver (and no fun at all).
*
* Another challenge is generating good puzzles that are entertaining to
* solve. It is certainly true that there is an art to creating good
* Su-Do-Ku puzzles, and that good hand generated puzzles are more
* entertaining than many computer generated puzzles - I just hope that
* the algorithm implemented here provides fun puzzles. It is an area
* that needs work. The puzzle classification is very simple, and could
* also do with work. Finally, understanding the automatically generated
* hints is sometimes more work than solving the puzzle - a better, and
* more human friendly, mechanism is needed.
*
* Comments, suggestions, and contributions are always welcome - send email
* to: mike 'at' laurasia.com.au. Note that this code assumes a single
* threaded process, makes extensive use of global variables, and has
* not been written to be reused in other applications. The code makes no
* use of dynamic memory allocation, and hence, requires no heap. It should
* also run with minimal stack space.
*
* This code and accompanying files have been placed into the public domain
* by Michael Kennett, July 2005. It is provided without any warranty
* whatsoever, and in no event shall Michael Kennett be liable for
* any damages of any kind, however caused, arising from this software.
*/
#include "plugin.h"
#include "sudoku.h"
#include "templates.h"
#define assert(x)
/* Common state encoding in a 32-bit integer:
* bits 0-6 index
* 7-15 state [bit high signals digits not possible]
* 16-19 digit
* 20 fixed [set if digit initially fixed]
* 21 choice [set if solver chose this digit]
* 22 ignore [set if ignored by reapply()]
* 23 unused
* 24-26 hint
* 27-31 unused
*/
#define INDEX_MASK 0x0000007f
#define GET_INDEX(val) (INDEX_MASK&(val))
#define SET_INDEX(val) (val)
#define STATE_MASK 0x0000ff80
#define STATE_SHIFT (7-1) /* digits 1..9 */
#define DIGIT_STATE(digit) (1<<(STATE_SHIFT+(digit)))
#define DIGIT_MASK 0x000f0000
#define DIGIT_SHIFT 16
#define GET_DIGIT(val) (((val)&DIGIT_MASK)>>(DIGIT_SHIFT))
#define SET_DIGIT(val) ((val)<<(DIGIT_SHIFT))
#define FIXED 0x00100000
#define CHOICE 0x00200000
#define IGNORED 0x00400000
/* Hint codes (c.f. singles(), pairs(), findmoves()) */
#define HINT_ROW 0x01000000
#define HINT_COLUMN 0x02000000
#define HINT_BLOCK 0x04000000
/* For a general board it may be necessary to do backtracking (i.e. to
* rewind the board to an earlier state), and make choices during the
* solution process. This can be implemented naturally using recursion,
* but it is more efficient to maintain a single board.
*/
static int board[ 81 ];
/* Addressing board elements: linear array 0..80 */
#define ROW(idx) ((idx)/9)
#define COLUMN(idx) ((idx)%9)
#define BLOCK(idx) (3*(ROW(idx)/3)+(COLUMN(idx)/3))
#define INDEX(row,col) (9*(row)+(col))
/* Blocks indexed 0..9 */
#define IDX_BLOCK(row,col) (3*((row)/3)+((col)/3))
#define TOP_LEFT(block) (INDEX(block/3,block%3))
/* Board state */
#define STATE(idx) ((board[idx])&STATE_MASK)
#define DIGIT(idx) (GET_DIGIT(board[idx]))
#define HINT(idx) ((board[idx])&HINT_MASK)
#define IS_EMPTY(idx) (0 == DIGIT(idx))
#define DISALLOWED(idx,digit) ((board[idx])&DIGIT_STATE(digit))
#define IS_FIXED(idx) (board[idx]&FIXED)
/* Record move history, and maintain a counter for the current
* move number. Concessions are made for the user interface, and
* allow digit 0 to indicate clearing a square. The move history
* is used to support 'undo's for the user interface, and hence
* is larger than required - there is sufficient space to solve
* the puzzle, undo every move, and then redo the puzzle - and
* if the user requires more space, then the full history will be
* lost.
*/
static int idx_history;
static int history[ 3 * 81 ];
/* Possible moves for a given board (c.f. fillmoves()).
* Also used by choice() when the deterministic solver has failed,
* and for calculating user hints. The number of hints is stored
* in num_hints, or -1 if no hints calculated. The number of hints
* requested by the user since their last move is stored in req_hints;
* if the user keeps requesting hints, start giving more information.
* Finally, record the last hint issued to the user; attempt to give
* different hints each time.
*/
static int idx_possible;
static int possible[ 81 ];
static int pass; /* count # passes of deterministic solver */
/* Support for template file */
static int tmplt[ 81 ]; /* Template indices */
static int len_tmplt; /* Number of template indices */
/* Reset global state */
static
void
reset( void )
{
rb->memset( board, 0x00, sizeof( board ) );
rb->memset( history, 0x00, sizeof( history ) );
idx_history = 0;
pass = 0;
}
/* Management of the move history - compression */
static
void
compress( int limit )
{
int i, j;
for( i = j = 0 ; i < idx_history && j < limit ; ++i )
if( !( history[ i ] & IGNORED ) )
history[ j++ ] = history[ i ];
for( ; i < idx_history ; ++i )
history[ j++ ] = history[ i ];
idx_history = j;
}
/* Management of the move history - adding a move */
static
void
add_move( int idx, int digit, int choice )
{
int i;
if( sizeof( history ) / sizeof( int ) == idx_history )
compress( 81 );
/* Never ignore the last move */
history[ idx_history++ ] = SET_INDEX( idx ) | SET_DIGIT( digit ) | choice;
/* Ignore all previous references to idx */
for( i = idx_history - 2 ; 0 <= i ; --i )
if( GET_INDEX( history[ i ] ) == idx )
{
history[ i ] |= IGNORED;
break;
}
}
/* Iteration over rows/columns/blocks handled by specialised code.
* Each function returns a block index - call must manage element/idx.
*/
static
int
idx_row( int el, int idx ) /* Index within a row */
{
return INDEX( el, idx );
}
static
int
idx_column( int el, int idx ) /* Index within a column */
{
return INDEX( idx, el );
}
static
int
idx_block( int el, int idx ) /* Index within a block */
{
return INDEX( 3 * ( el / 3 ) + idx / 3, 3 * ( el % 3 ) + idx % 3 );
}
/* Update board state after setting a digit (clearing not handled)
*/
static
void
update( int idx )
{
const int row = ROW( idx );
const int col = COLUMN( idx );
const int block = IDX_BLOCK( row, col );
const int mask = DIGIT_STATE( DIGIT( idx ) );
int i;
board[ idx ] |= STATE_MASK; /* filled - no choice possible */
/* Digit cannot appear in row, column or block */
for( i = 0 ; i < 9 ; ++i )
{
board[ idx_row( row, i ) ] |= mask;
board[ idx_column( col, i ) ] |= mask;
board[ idx_block( block, i ) ] |= mask;
}
}
/* Refresh board state, given move history. Note that this can yield
* an incorrect state if the user has made errors - return -1 if an
* incorrect state is generated; else return 0 for a correct state.
*/
static
int
reapply( void )
{
int digit, idx, j;
int allok = 0;
rb->memset( board, 0x00, sizeof( board ) );
for( j = 0 ; j < idx_history ; ++j )
if( !( history[ j ] & IGNORED ) && 0 != GET_DIGIT( history[ j ] ) )
{
idx = GET_INDEX( history[ j ] );
digit = GET_DIGIT( history[ j ] );
if( !IS_EMPTY( idx ) || DISALLOWED( idx, digit ) )
allok = -1;
board[ idx ] = SET_DIGIT( digit );
if( history[ j ] & FIXED )
board[ idx ] |= FIXED;
update( idx );
}
return allok;
}
/* Clear moves, leaving fixed squares
*/
static
void
clear_moves( void )
{
for( idx_history = 0 ; history[ idx_history ] & FIXED ; ++idx_history )
;
reapply( );
}
static int digits[ 9 ]; /* # digits expressed in element square */
static int counts[ 9 ]; /* Count of digits (c.f. count_set_digits()) */
/* Count # set bits (within STATE_MASK) */
static
int
numset( int mask )
{
int i, n = 0;
for( i = STATE_SHIFT + 1 ; i <= STATE_SHIFT + 9 ; ++i )
if( mask & (1<<i) )
++n;
else
++counts[ i - STATE_SHIFT - 1 ];
return n;
}
static
void
count_set_digits( int el, int (*idx_fn)( int, int ) )
{
int i;
rb->memset( counts, 0x00, sizeof( counts ) );
for( i = 0 ; i < 9 ; ++i )
digits[ i ] = numset( board[ (*idx_fn)( el, i ) ] );
}
/* Fill square with given digit, and update state.
* Returns 0 on success, else -1 on error (i.e. invalid fill)
*/
static
int
fill( int idx, int digit )
{
assert( 0 != digit );
if( !IS_EMPTY( idx ) )
return ( DIGIT( idx ) == digit ) ? 0 : -1;
if( DISALLOWED( idx, digit ) )
return -1;
board[ idx ] = SET_DIGIT( digit );
update( idx );
add_move( idx, digit, 0 );
return 0;
}
/* Find all squares with a single digit allowed -- do not mutate board */
static
void
singles( int el, int (*idx_fn)( int, int ), int hintcode )
{
int i, j, idx;
count_set_digits( el, idx_fn );
for( i = 0 ; i < 9 ; ++i )
{
if( 1 == counts[ i ] )
{
/* Digit 'i+1' appears just once in the element */
for( j = 0 ; j < 9 ; ++j )
{
idx = (*idx_fn)( el, j );
if( !DISALLOWED( idx, i + 1 ) && idx_possible < 81 )
possible[ idx_possible++ ] = SET_INDEX( idx )
| SET_DIGIT( i + 1 )
| hintcode;
}
}
if( 8 == digits[ i ] )
{
/* 8 digits are masked at this position - just one remaining */
idx = (*idx_fn)( el, i );
for( j = 1 ; j <= 9 ; ++j )
if( 0 == ( STATE( idx ) & DIGIT_STATE( j ) ) && idx_possible < 81 )
possible[ idx_possible++ ] = SET_INDEX( idx )
| SET_DIGIT( j )
| hintcode;
}
}
}
/* Given the board state, find all possible 'moves' (i.e. squares with just
* a single digit).
*
* Returns the number of (deterministic) moves (and fills the moves array),
* or 0 if no moves are possible. This function does not mutate the board
* state, and hence, can return the same move multiple times (with
* different hints).
*/
static
int
findmoves( void )
{
int i;
rb->yield();
idx_possible = 0;
for( i = 0 ; i < 9 ; ++i )
{
singles( i, idx_row, HINT_ROW );
singles( i, idx_column, HINT_COLUMN );
singles( i, idx_block, HINT_BLOCK );
}
return idx_possible;
}
/* Strategies for refining the board state
* - 'pairs' if there are two unfilled squares in a given row/column/
* block with the same state, and just two possibilities,
* then all other unfilled squares in the row/column/block
* CANNOT be either of these digits.
* - 'block' if the unknown squares in a block all appear in the same
* row or column, then all unknown squares outside the block
* and in the same row/column cannot be any of the unknown
* squares in the block.
* - 'common' if all possible locations for a digit in a block appear
* in a row or column, then that digit cannot appear outside
* the block in the same row or column.
* - 'position2' if the positions of 2 unknown digits in a block match
* identically in precisely 2 positions, then those 2 positions
* can only contain the 2 unknown digits.
*
* Recall that each state bit uses a 1 to prevent a digit from
* filling that square.
*/
static
void
pairs( int el, int (*idx_fn)( int, int ) )
{
int i, j, k, mask, idx;
rb->yield();
for( i = 0 ; i < 8 ; ++i )
if( 7 == digits[ i ] ) /* 2 digits unknown */
for( j = i + 1 ; j < 9 ; ++j )
{
idx = (*idx_fn)( el, i );
if( STATE( idx ) == STATE( (*idx_fn)( el, j ) ) )
{
/* Found a row/column pair - mask other entries */
mask = STATE_MASK ^ (STATE_MASK & board[ idx ] );
for( k = 0 ; k < i ; ++k )
board[ (*idx_fn)( el, k ) ] |= mask;
for( k = i + 1 ; k < j ; ++k )
board[ (*idx_fn)( el, k ) ] |= mask;
for( k = j + 1 ; k < 9 ; ++k )
board[ (*idx_fn)( el, k ) ] |= mask;
digits[ j ] = -1; /* now processed */
}
}
}
/* Worker: mask elements outside block */
static
void
exmask( int mask, int block, int el, int (*idx_fn)( int, int ) )
{
int i, idx;
rb->yield();
for( i = 0 ; i < 9 ; ++i )
{
idx = (*idx_fn)( el, i );
if( block != BLOCK( idx ) && IS_EMPTY( idx ) )
board[ idx ] |= mask;
}
}
/* Worker for block() */
static
void
exblock( int block, int el, int (*idx_fn)( int, int ) )
{
int i, idx, mask;
rb->yield();
/* By assumption, all unknown squares in the block appear in the
* same row/column, so to construct a mask for these squares, it
* is sufficient to invert the mask for the known squares in the
* block.
*/
mask = 0;
for( i = 0 ; i < 9 ; ++i )
{
idx = idx_block( block, i );
if( !IS_EMPTY( idx ) )
mask |= DIGIT_STATE( DIGIT( idx ) );
}
exmask( mask ^ STATE_MASK, block, el, idx_fn );
}
static
void
block( int el )
{
int i, idx = 0, row, col;
rb->yield();
/* Find first unknown square */
for( i = 0 ; i < 9 && !IS_EMPTY( idx = idx_block( el, i ) ) ; ++i )
;
if( i < 9 )
{
assert( IS_EMPTY( idx ) );
row = ROW( idx );
col = COLUMN( idx );
for( ++i ; i < 9 ; ++i )
{
idx = idx_block( el, i );
if( IS_EMPTY( idx ) )
{
if( ROW( idx ) != row )
row = -1;
if( COLUMN( idx ) != col )
col = -1;
}
}
if( 0 <= row )
exblock( el, row, idx_row );
if( 0 <= col )
exblock( el, col, idx_column );
}
}
static
void
common( int el )
{
int i, idx, row, col, digit, mask;
rb->yield();
for( digit = 1 ; digit <= 9 ; ++digit )
{
mask = DIGIT_STATE( digit );
row = col = -1; /* Value '9' indicates invalid */
for( i = 0 ; i < 9 ; ++i )
{
/* Digit possible? */
idx = idx_block( el, i );
if( IS_EMPTY( idx ) && 0 == ( board[ idx ] & mask ) )
{
if( row < 0 )
row = ROW( idx );
else
if( row != ROW( idx ) )
row = 9; /* Digit appears in multiple rows */
if( col < 0 )
col = COLUMN( idx );
else
if( col != COLUMN( idx ) )
col = 9; /* Digit appears in multiple columns */
}
}
if( -1 != row && row < 9 )
exmask( mask, el, row, idx_row );
if( -1 != col && col < 9 )
exmask( mask, el, col, idx_column );
}
}
/* Encoding of positions of a digit (c.f. position2()) - abuse DIGIT_STATE */
static int posn_digit[ 10 ];
static
void
position2( int el )
{
int digit, digit2, i, mask, mask2, posn, count, idx;
rb->yield();
/* Calculate positions of each digit within block */
for( digit = 1 ; digit <= 9 ; ++digit )
{
mask = DIGIT_STATE( digit );
posn_digit[ digit ] = count = posn = 0;
for( i = 0 ; i < 9 ; ++i )
if( 0 == ( mask & board[ idx_block( el, i ) ] ) )
{
++count;
posn |= DIGIT_STATE( i );
}
if( 2 == count )
posn_digit[ digit ] = posn;
}
/* Find pairs of matching positions, and mask */
for( digit = 1 ; digit < 9 ; ++digit )
if( 0 != posn_digit[ digit ] )
for( digit2 = digit + 1 ; digit2 <= 9 ; ++digit2 )
if( posn_digit[ digit ] == posn_digit[ digit2 ] )
{
mask = STATE_MASK
^ ( DIGIT_STATE( digit ) | DIGIT_STATE( digit2 ) );
mask2 = DIGIT_STATE( digit );
for( i = 0 ; i < 9 ; ++i )
{
idx = idx_block( el, i );
if( 0 == ( mask2 & board[ idx ] ) )
{
assert( 0 == (DIGIT_STATE(digit2) & board[idx]) );
board[ idx ] |= mask;
}
}
posn_digit[ digit ] = posn_digit[ digit2 ] = 0;
break;
}
}
/* Find some moves for the board; starts with a simple approach (finding
* singles), and if no moves found, starts using more involved strategies
* until a move is found. The more advanced strategies can mask states
* in the board, making this an efficient mechanism, but difficult for
* a human to understand.
*/
static
int
allmoves( void )
{
int i, n;
rb->yield();
n = findmoves( );
if( 0 < n )
return n;
for( i = 0 ; i < 9 ; ++i )
{
count_set_digits( i, idx_row );
pairs( i, idx_row );
count_set_digits( i, idx_column );
pairs( i, idx_column );
count_set_digits( i, idx_block );
pairs( i, idx_block );
}
n = findmoves( );
if( 0 < n )
return n;
for( i = 0 ; i < 9 ; ++i )
{
block( i );
common( i );
position2( i );
}
return findmoves( );
}
/* Helper: sort based on index */
static
int
cmpindex( const void * a, const void * b )
{
return GET_INDEX( *((const int *)b) ) - GET_INDEX( *((const int *)a) );
}
/* Return number of hints. The hints mechanism should attempt to find
* 'easy' moves first, and if none are possible, then try for more
* cryptic moves.
*/
int
findhints( void )
{
int i, n, mutated = 0;
rb->yield();
n = findmoves( );
if( n < 2 )
{
/* Each call to pairs() can mutate the board state, making the
* hints very, very cryptic... so later undo the mutations.
*/
for( i = 0 ; i < 9 ; ++i )
{
count_set_digits( i, idx_row );
pairs( i, idx_row );
count_set_digits( i, idx_column );
pairs( i, idx_column );
count_set_digits( i, idx_block );
pairs( i, idx_block );
}
mutated = 1;
n = findmoves( );
}
if( n < 2 )
{
for( i = 0 ; i < 9 ; ++i )
{
block( i );
common( i );
}
mutated = 1;
n = findmoves( );
}
/* Sort the possible moves, and allow just one hint per square */
if( 0 < n )
{
int i, j;
rb->qsort( possible, n, sizeof( int ), cmpindex );
for( i = 0, j = 1 ; j < n ; ++j )
{
if( GET_INDEX( possible[ i ] ) == GET_INDEX( possible[ j ] ) )
{
/* Let the user make mistakes - do not assume the
* board is in a consistent state.
*/
if( GET_DIGIT( possible[i] ) == GET_DIGIT( possible[j] ) )
possible[ i ] |= possible[ j ];
}
else
i = j;
}
n = i + 1;
}
/* Undo any mutations of the board state */
if( mutated )
reapply( );
return n;
}
/* Deterministic solver; return 0 on success, else -1 on error.
*/
static
int
deterministic( void )
{
int i, n;
rb->yield();
n = allmoves( );
while( 0 < n )
{
++pass;
for( i = 0 ; i < n ; ++i )
if( -1 == fill( GET_INDEX( possible[ i ] ),
GET_DIGIT( possible[ i ] ) ) )
return -1;
n = allmoves( );
}
return 0;
}
/* Return index of square for choice.
*
* If no choice is possible (i.e. board solved or inconsistent),
* return -1.
*
* The current implementation finds a square with the minimum
* number of unknown digits (i.e. maximum # masked digits).
*/
static
int
cmp( const void * e1, const void * e2 )
{
return GET_DIGIT( *(const int *)e2 ) - GET_DIGIT( *(const int *)e1 );
}
static
int
choice( void )
{
int i, n;
rb->yield();
for( n = i = 0 ; i < 81 ; ++i )
if( IS_EMPTY( i ) )
{
possible[ n ] = SET_INDEX( i ) | SET_DIGIT( numset( board[ i ] ) );
/* Inconsistency if square unknown, but nothing possible */
if( 9 == GET_DIGIT( possible[ n ] ) )
return -2;
++n;
}
if( 0 == n )
return -1; /* All squares known */
rb->qsort( possible, n, sizeof( possible[ 0 ] ), cmp );
return GET_INDEX( possible[ 0 ] );
}
/* Choose a digit for the given square.
* The starting digit is passed as a parameter.
* Returns -1 if no choice possible.
*/
static
int
choose( int idx, int digit )
{
rb->yield();
for( ; digit <= 9 ; ++digit )
if( !DISALLOWED( idx, digit ) )
{
board[ idx ] = SET_DIGIT( digit );
update( idx );
add_move( idx, digit, CHOICE );
return digit;
}
return -1;
}
/* Backtrack to a previous choice point, and attempt to reseed
* the search. Return -1 if no further choice possible, or
* the index of the changed square.
*
* Assumes that the move history and board are valid.
*/
static
int
backtrack( void )
{
int digit, idx;
rb->yield();
for( ; 0 <= --idx_history ; )
if( history[ idx_history ] & CHOICE )
{
/* Remember the last choice, and advance */
idx = GET_INDEX( history[ idx_history ] );
digit = GET_DIGIT( history[ idx_history ] ) + 1;
reapply( );
if( -1 != choose( idx, digit ) )
return idx;
}
return -1;
}
/* Attempt to solve 'board'; return 0 on success else -1 on error.
*
* The solution process attempts to fill-in deterministically as
* much of the board as possible. Once that is no longer possible,
* need to choose a square to fill in.
*/
static
int
solve( void )
{
int idx;
rb->yield();
while( 1 )
{
if( 0 == deterministic( ) )
{
/* Solved, make a new choice, or rewind a previous choice */
idx = choice( );
if( -1 == idx )
return 0;
else
if( ( idx < 0 || -1 == choose( idx, 1 ) ) && -1 == backtrack( ) )
return -1;
}
else /* rewind to a previous choice */
if( -1 == backtrack( ) )
return -1;
}
return -1;
}
static
int
init_template( int template )
{
int i, row, col;
int mask;
reset( );
len_tmplt = 0;
/* Consume grid - allow leading spaces and comments at end */
for( row = 0 ; row < 9 ; ++row )
{
mask=0x100;
for( col = 0 ; col < 9 ; ++col )
{
if (templates[template][row] & mask)
tmplt[ len_tmplt++ ] = INDEX( row, col );
mask /= 2;
}
}
/* Construct move history for a template */
idx_history = 0;
for( i = 0 ; i < 81 ; ++i )
if( 0 != DIGIT( i ) )
history[ idx_history++ ] = i | (DIGIT( i )<<8);
/* Finally, markup all of these moves as 'fixed' */
for( i = 0 ; i < idx_history ; ++i )
history[ i ] |= FIXED;
return 0;
}
/* Classify a SuDoKu, given its solution.
*
* The classification is based on the average number of possible moves
* for each pass of the deterministic solver - it is a rather simplistic
* measure, but gives reasonable results. Note also that the classification
* is based on the first solution found (but does handle the pathological
* case of multiple solutions). Note that the average moves per pass
* depends just on the number of squares initially set... this simplifies
* the statistics collection immensely, requiring just the number of passes
* to be counted.
*
* Return 0 on error, else a string classification.
*/
static
char *
classify( void )
{
int i, score;
rb->yield();
pass = 0;
clear_moves( );
if( -1 == solve( ) )
return 0;
score = 81;
for( i = 0 ; i < 81 ; ++i )
if( IS_FIXED( i ) )
--score;
assert( 81 == idx_history );
for( i = 0 ; i < 81 ; ++i )
if( history[ i ] & CHOICE )
score -= 5;
if( 15 * pass < score )
return "very easy";
else
if( 11 * pass < score )
return "easy";
else
if( 7 * pass < score )
return "medium";
else
if( 4 * pass < score )
return "hard";
else
return "fiendish";
}
/* exchange disjoint, identical length blocks of data */
static
void
exchange( int * a, int * b, int len )
{
int i, tmp;
for( i = 0 ; i < len ; ++i )
{
tmp = a[ i ];
a[ i ] = b[ i ];
b[ i ] = tmp;
}
}
/* rotate left */
static
void
rotate1_left( int * a, int len )
{
int i, tmp;
tmp = a[ 0 ];
for( i = 1 ; i < len ; ++i )
a[ i - 1 ] = a[ i ];
a[ len - 1 ] = tmp;
}
/* rotate right */
static
void
rotate1_right( int * a, int len )
{
int i, tmp;
tmp = a[ len - 1 ];
for( i = len - 1 ; 0 < i ; --i )
a[ i ] = a[ i - 1 ];
a[ 0 ] = tmp;
}
/* Generalised left rotation - there is a naturally recursive
* solution that is best implementation using iteration.
* Note that it is not necessary to do repeated unit rotations.
*
* This function is analogous to 'cutting' a 'pack of cards'.
*
* On entry: 0 < idx < len
*/
static
void
rotate( int * a, int len, int idx )
{
int xdi = len - idx;
int delta = idx - xdi;
while( 0 != delta && 0 != idx )
{
if( delta < 0 )
{
if( 1 == idx )
{
rotate1_left( a, len );
idx = 0;
}
else
{
exchange( a, a + xdi, idx );
len = xdi;
}
}
else /* 0 < delta */
{
if( 1 == xdi )
{
rotate1_right( a, len );
idx = 0;
}
else
{
exchange( a, a + idx, xdi );
a += xdi;
len = idx;
idx -= xdi;
}
}
xdi = len - idx;
delta = idx - xdi;
}
if( 0 < idx )
exchange( a, a + idx, idx );
}
/* Shuffle an array of integers */
static
void
shuffle( int * a, int len )
{
int i, j, tmp;
i = len;
while( 1 <= i )
{
j = rb->rand( ) % i;
tmp = a[ --i ];
a[ i ] = a[ j ];
a[ j ] = tmp;
}
}
/* Generate a SuDoKu puzzle
*
* The generation process selects a random template, and then attempts
* to fill in the exposed squares to generate a board. The order of the
* digits and of filling in the exposed squares are random.
*/
/* Select random template; sets tmplt, len_tmplt */
static
void
select_template( void )
{
int i = rb->rand( ) % NUM_TEMPLATES;
init_template( i );
}
static bool check_buttons(void)
{
int button = rb->button_get(false);
return (button && (!(button & BUTTON_REL)) && (!(button & BUTTON_REPEAT)));
}
static
bool
generate( void )
{
static int digits[ 9 ];
int i;
start:
/* Allow the user to abort generation by pressing any button */
if (check_buttons())
return false;
for( i = 0 ; i < 9 ; ++i )
digits[ i ] = i + 1;
rotate( digits, 9, 1 + rb->rand( ) % 8 );
shuffle( digits, 9 );
select_template( );
rotate( tmplt, len_tmplt, 1 + rb->rand( ) % ( len_tmplt - 1 ) );
shuffle( tmplt, len_tmplt );
reset( ); /* construct a new board */
for( i = 0 ; i < len_tmplt ; ++i )
fill( tmplt[ i ], digits[ i % 9 ] );
/* Allow the user to abort generation by pressing any button */
if (check_buttons())
return false;
rb->yield();
if( 0 != solve( ) || idx_history < 81 )
goto start;
/* Allow the user to abort generation by pressing any button */
if (check_buttons())
return false;
rb->yield();
for( i = 0 ; i < len_tmplt ; ++i )
board[ tmplt[ i ] ] |= FIXED;
/* Construct fixed squares */
for( idx_history = i = 0 ; i < 81 ; ++i )
if( IS_FIXED( i ) )
history[ idx_history++ ] = SET_INDEX( i )
| SET_DIGIT( DIGIT( i ) )
| FIXED;
clear_moves( );
if( 0 != solve( ) || idx_history < 81 )
goto start;
if( -1 != backtrack( ) && 0 == solve( ) )
goto start;
clear_moves( );
return true;
}
bool sudoku_generate_board(struct sudoku_state_t* state, char** difficulty)
{
int r,c,i;
rb->srand(*rb->current_tick);
rb->button_clear_queue();
if (!generate()) {
/* User has aborted with a button press */
return false;
}
i=0;
for (r=0;r<9;r++) {
for (c=0;c<9;c++) {
if( IS_EMPTY( i ) )
state->startboard[r][c]='0';
else
state->startboard[r][c]='0'+GET_DIGIT( board[ i ] );
state->currentboard[r][c]=state->startboard[r][c];
i++;
}
}
*difficulty = classify( );
return true;
}