rockbox/lib/rbcodec/dsp/compressor.c
Michael Sevakis 56f17c4164 Make rbcodec/dsp includes more specific.
Change-Id: Idb6af40df26f5b8499a40e8b98602261ef227044
2012-04-29 17:31:30 -04:00

403 lines
14 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2009 Jeffrey Goode
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include <stdbool.h>
#include <sys/types.h>
#include "fixedpoint.h"
#include "fracmul.h"
#include <string.h>
/* Define LOGF_ENABLE to enable logf output in this file */
/*#define LOGF_ENABLE*/
#include "logf.h"
#include "dsp_proc_entry.h"
#include "compressor.h"
static struct compressor_settings curr_set; /* Cached settings */
static int32_t comp_rel_slope IBSS_ATTR; /* S7.24 format */
static int32_t comp_makeup_gain IBSS_ATTR; /* S7.24 format */
static int32_t comp_curve[66] IBSS_ATTR; /* S7.24 format */
static int32_t release_gain IBSS_ATTR; /* S7.24 format */
#define UNITY (1L << 24) /* unity gain in S7.24 format */
/** COMPRESSOR UPDATE
* Called via the menu system to configure the compressor process */
static bool compressor_update(const struct compressor_settings *settings)
{
/* make settings values useful */
int threshold = settings->threshold;
bool auto_gain = settings->makeup_gain == 1;
static const int comp_ratios[] = { 2, 4, 6, 10, 0 };
int ratio = comp_ratios[settings->ratio];
bool soft_knee = settings->knee == 1;
int release = settings->release_time * NATIVE_FREQUENCY / 1000;
bool changed = false;
bool active = threshold < 0;
if (memcmp(settings, &curr_set, sizeof (curr_set)))
{
/* Compressor settings have changed since last call */
changed = true;
#if defined(ROCKBOX_HAS_LOGF) && defined(LOGF_ENABLE)
if (settings->threshold != curr_set.threshold)
{
logf(" Compressor Threshold: %d dB\tEnabled: %s",
threshold, active ? "Yes" : "No");
}
if (settings->makeup_gain != curr_set.makeup_gain)
{
logf(" Compressor Makeup Gain: %s",
auto_gain ? "Auto" : "Off");
}
if (settings->ratio != cur_set.ratio)
{
if (ratio)
{ logf(" Compressor Ratio: %d:1", ratio); }
else
{ logf(" Compressor Ratio: Limit"); }
}
if (settings->knee != cur_set.knee)
{
logf(" Compressor Knee: %s", soft_knee?"Soft":"Hard");
}
if (settings->release_time != cur_set.release_time)
{
logf(" Compressor Release: %d", release);
}
#endif
curr_set = *settings;
}
if (!changed || !active)
return active;
/* configure variables for compressor operation */
static const int32_t db[] = {
/* positive db equivalents in S15.16 format */
0x000000, 0x241FA4, 0x1E1A5E, 0x1A94C8,
0x181518, 0x1624EA, 0x148F82, 0x1338BD,
0x120FD2, 0x1109EB, 0x101FA4, 0x0F4BB6,
0x0E8A3C, 0x0DD840, 0x0D3377, 0x0C9A0E,
0x0C0A8C, 0x0B83BE, 0x0B04A5, 0x0A8C6C,
0x0A1A5E, 0x09ADE1, 0x094670, 0x08E398,
0x0884F6, 0x082A30, 0x07D2FA, 0x077F0F,
0x072E31, 0x06E02A, 0x0694C8, 0x064BDF,
0x060546, 0x05C0DA, 0x057E78, 0x053E03,
0x04FF5F, 0x04C273, 0x048726, 0x044D64,
0x041518, 0x03DE30, 0x03A89B, 0x037448,
0x03412A, 0x030F32, 0x02DE52, 0x02AE80,
0x027FB0, 0x0251D6, 0x0224EA, 0x01F8E2,
0x01CDB4, 0x01A359, 0x0179C9, 0x0150FC,
0x0128EB, 0x010190, 0x00DAE4, 0x00B4E1,
0x008F82, 0x006AC1, 0x004699, 0x002305};
struct curve_point
{
int32_t db; /* S15.16 format */
int32_t offset; /* S15.16 format */
} db_curve[5];
/** Set up the shape of the compression curve first as decibel
values */
/* db_curve[0] = bottom of knee
[1] = threshold
[2] = top of knee
[3] = 0 db input
[4] = ~+12db input (2 bits clipping overhead) */
db_curve[1].db = threshold << 16;
if (soft_knee)
{
/* bottom of knee is 3dB below the threshold for soft knee*/
db_curve[0].db = db_curve[1].db - (3 << 16);
/* top of knee is 3dB above the threshold for soft knee */
db_curve[2].db = db_curve[1].db + (3 << 16);
if (ratio)
/* offset = -3db * (ratio - 1) / ratio */
db_curve[2].offset = (int32_t)((long long)(-3 << 16)
* (ratio - 1) / ratio);
else
/* offset = -3db for hard limit */
db_curve[2].offset = (-3 << 16);
}
else
{
/* bottom of knee is at the threshold for hard knee */
db_curve[0].db = threshold << 16;
/* top of knee is at the threshold for hard knee */
db_curve[2].db = threshold << 16;
db_curve[2].offset = 0;
}
/* Calculate 0db and ~+12db offsets */
db_curve[4].db = 0xC0A8C; /* db of 2 bits clipping */
if (ratio)
{
/* offset = threshold * (ratio - 1) / ratio */
db_curve[3].offset = (int32_t)((long long)(threshold << 16)
* (ratio - 1) / ratio);
db_curve[4].offset = (int32_t)((long long)-db_curve[4].db
* (ratio - 1) / ratio) + db_curve[3].offset;
}
else
{
/* offset = threshold for hard limit */
db_curve[3].offset = (threshold << 16);
db_curve[4].offset = -db_curve[4].db + db_curve[3].offset;
}
/** Now set up the comp_curve table with compression offsets in the
form of gain factors in S7.24 format */
/* comp_curve[0] is 0 (-infinity db) input */
comp_curve[0] = UNITY;
/* comp_curve[1 to 63] are intermediate compression values
corresponding to the 6 MSB of the input values of a non-clipped
signal */
for (int i = 1; i < 64; i++)
{
/* db constants are stored as positive numbers;
make them negative here */
int32_t this_db = -db[i];
/* no compression below the knee */
if (this_db <= db_curve[0].db)
comp_curve[i] = UNITY;
/* if soft knee and below top of knee,
interpolate along soft knee slope */
else if (soft_knee && (this_db <= db_curve[2].db))
comp_curve[i] = fp_factor(fp_mul(
((this_db - db_curve[0].db) / 6),
db_curve[2].offset, 16), 16) << 8;
/* interpolate along ratio slope above the knee */
else
comp_curve[i] = fp_factor(fp_mul(
fp_div((db_curve[1].db - this_db), db_curve[1].db, 16),
db_curve[3].offset, 16), 16) << 8;
}
/* comp_curve[64] is the compression level of a maximum level,
non-clipped signal */
comp_curve[64] = fp_factor(db_curve[3].offset, 16) << 8;
/* comp_curve[65] is the compression level of a maximum level,
clipped signal */
comp_curve[65] = fp_factor(db_curve[4].offset, 16) << 8;
#if defined(ROCKBOX_HAS_LOGF) && defined(LOGF_ENABLE)
logf("\n *** Compression Offsets ***");
/* some settings for display only, not used in calculations */
db_curve[0].offset = 0;
db_curve[1].offset = 0;
db_curve[3].db = 0;
for (int i = 0; i <= 4; i++)
{
logf("Curve[%d]: db: % 6.2f\toffset: % 6.2f", i,
(float)db_curve[i].db / (1 << 16),
(float)db_curve[i].offset / (1 << 16));
}
logf("\nGain factors:");
for (int i = 1; i <= 65; i++)
{
DEBUGF("%02d: %.6f ", i, (float)comp_curve[i] / UNITY);
if (i % 4 == 0) DEBUGF("\n");
}
DEBUGF("\n");
#endif
/* if using auto peak, then makeup gain is max offset -
.1dB headroom */
comp_makeup_gain = auto_gain ?
fp_factor(-(db_curve[3].offset) - 0x199A, 16) << 8 : UNITY;
logf("Makeup gain:\t%.6f", (float)comp_makeup_gain / UNITY);
/* calculate per-sample gain change a rate of 10db over release time
*/
comp_rel_slope = 0xAF0BB2 / release;
logf("Release slope:\t%.6f", (float)comp_rel_slope / UNITY);
release_gain = UNITY;
return active;
}
/** GET COMPRESSION GAIN
* Returns the required gain factor in S7.24 format in order to compress the
* sample in accordance with the compression curve. Always 1 or less.
*/
static inline int32_t get_compression_gain(struct sample_format *format,
int32_t sample)
{
const int frac_bits_offset = format->frac_bits - 15;
/* sample must be positive */
if (sample < 0)
sample = -(sample + 1);
/* shift sample into 15 frac bit range */
if (frac_bits_offset > 0)
sample >>= frac_bits_offset;
if (frac_bits_offset < 0)
sample <<= -frac_bits_offset;
/* normal case: sample isn't clipped */
if (sample < (1 << 15))
{
/* index is 6 MSB, rem is 9 LSB */
int index = sample >> 9;
int32_t rem = (sample & 0x1FF) << 22;
/* interpolate from the compression curve:
higher gain - ((rem / (1 << 31)) * (higher gain - lower gain)) */
return comp_curve[index] - (FRACMUL(rem,
(comp_curve[index] - comp_curve[index + 1])));
}
/* sample is somewhat clipped, up to 2 bits of overhead */
if (sample < (1 << 17))
{
/* straight interpolation:
higher gain - ((clipped portion of sample * 4/3
/ (1 << 31)) * (higher gain - lower gain)) */
return comp_curve[64] - (FRACMUL(((sample - (1 << 15)) / 3) << 16,
(comp_curve[64] - comp_curve[65])));
}
/* sample is too clipped, return invalid value */
return -1;
}
/** DSP interface **/
/** SET COMPRESSOR
* Enable or disable the compressor based upon the settings
*/
void dsp_set_compressor(const struct compressor_settings *settings)
{
/* enable/disable the compressor depending upon settings */
bool enable = compressor_update(settings);
struct dsp_config *dsp = dsp_get_config(CODEC_IDX_AUDIO);
dsp_proc_enable(dsp, DSP_PROC_COMPRESSOR, enable);
dsp_proc_activate(dsp, DSP_PROC_COMPRESSOR, true);
}
/** COMPRESSOR PROCESS
* Changes the gain of the samples according to the compressor curve
*/
static void compressor_process(struct dsp_proc_entry *this,
struct dsp_buffer **buf_p)
{
struct dsp_buffer *buf = *buf_p;
int count = buf->remcount;
int32_t *in_buf[2] = { buf->p32[0], buf->p32[1] };
const int num_chan = buf->format.num_channels;
while (count-- > 0)
{
/* use lowest (most compressed) gain factor of the output buffer
sample pair for both samples (mono is also handled correctly here)
*/
int32_t sample_gain = UNITY;
for (int ch = 0; ch < num_chan; ch++)
{
int32_t this_gain = get_compression_gain(&buf->format, *in_buf[ch]);
if (this_gain < sample_gain)
sample_gain = this_gain;
}
/* perform release slope; skip if no compression and no release slope
*/
if ((sample_gain != UNITY) || (release_gain != UNITY))
{
/* if larger offset than previous slope, start new release slope
*/
if ((sample_gain <= release_gain) && (sample_gain > 0))
{
release_gain = sample_gain;
}
else
/* keep sloping towards unity gain (and ignore invalid value) */
{
release_gain += comp_rel_slope;
if (release_gain > UNITY)
{
release_gain = UNITY;
}
}
}
/* total gain factor is the product of release gain and makeup gain,
but avoid computation if possible */
int32_t total_gain = ((release_gain == UNITY) ? comp_makeup_gain :
(comp_makeup_gain == UNITY) ? release_gain :
FRACMUL_SHL(release_gain, comp_makeup_gain, 7));
/* Implement the compressor: apply total gain factor (if any) to the
output buffer sample pair/mono sample */
if (total_gain != UNITY)
{
for (int ch = 0; ch < num_chan; ch++)
{
*in_buf[ch] = FRACMUL_SHL(total_gain, *in_buf[ch], 7);
}
}
in_buf[0]++;
in_buf[1]++;
}
(void)this;
}
/* DSP message hook */
static intptr_t compressor_configure(struct dsp_proc_entry *this,
struct dsp_config *dsp,
unsigned int setting,
intptr_t value)
{
switch (setting)
{
case DSP_PROC_INIT:
if (value != 0)
break; /* Already enabled */
this->process[0] = compressor_process;
case DSP_RESET:
case DSP_FLUSH:
release_gain = UNITY;
break;
}
return 1;
(void)dsp;
}
/* Database entry */
DSP_PROC_DB_ENTRY(
COMPRESSOR,
compressor_configure);