rockbox/utils/nwztools/database/nvp/nvptool.cpp
Amaury Pouly 44bb2856a5 nwztools/database: add database of information on Sony NWZ linux players
There must be an evil genius in Sony's Walkman division. Someone who made sure
that each model is close enough to the previous one so that little code is needed
but different enough so that an educated guess is not enough.

Each linux-based Sony player has a model ID (mid) which is a 32-bit integer.
I was able to extract a list of all model IDs and the correspoding name of
the player (see README). This gives us 1) a nice list of all players (because
NWZ-A729 vs NWZ-A729B, really Sony?) 2) an easy way to find the name of player
programatically. It seems that the lower 8-bit of the model ID gives the storage
size but don't bet your life on it. The remaining bytes seem to follow some kind
of pattern but there are exceptions.

From this list, I was able to build a list of all Sony's series (up to quite
recent one). The only safe way to build that is by hand, with a list of series,
each series having a list of model IDs. The notion of series is very important
because all models in a series share the same firmware.

A very important concept on Sony's players is the NVP, an area of the flash
that stores data associated with keys. The README contains more information but
basically this is where is record the model ID, the destination, the boot flags,
the firmware upgrade flags, the boot image, the DRM keys, and a lot of other stuff.
Of course Sony decided to slightly tweak the index of the keys regularly over time
which means that each series has a potentially different map, and we need this map
to talk to the NVP driver. Fortunately, Sony distributes the kernel for all its
players and they contain a kernel header with this information. I wrote a script
to unpack kernel sources and parse this header, producing a bunch of nw-*.txt
files, included in this commit. This map is very specific though: it maps Sony's
3-letter names (bti) to indexes (1). This is not very useful without the
decription (bti = boot image) and its size (262144). This information is harder
to come by, and is only stored in one place: if icx_nvp_emmc.ko drivers, found
on the device. Fortunately, Sony distributes a number of firmware upgrade, that
contain the rootfs, than once extracted contain this driver. The driver is a
standard ELF files with symbols. I wrote a parsing tool (nvptool) that is able
to extract this information from the drivers. Using that, I produced a bunch
of nodes-nw*.txt files. A reasonable assumption is that nodes meaning and
size do not change over time (bti is always the boot image and is always
262144 bytes), so by merging a few of those file, we can get a complete picture
(note that some nodes that existed in older player do not exists anymore so
we really need to merge several ones from different generations).

The advantage of storing all this information in plain text files, is that it
now makes it easy to parse it and produce whatever format we want to use it.
I wrote a python script that parses all this mess and produces a C file and
header with all this information (nwz_db.{c,h}).

Change-Id: Id790581ddd527d64418fe9e4e4df8e0546117b80
2016-11-11 16:07:14 +01:00

754 lines
22 KiB
C++

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2016 Amaury Pouly
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include <cstdio>
#include <stdint.h>
#include <cstdlib>
#include <cstring>
#include <getopt.h>
#include <cstdarg>
#include <string>
#include <fstream>
#include <elf.h>
bool g_verbose = false;
bool g_unsafe = false;
uint8_t *read_file(const std::string& path, size_t& size)
{
std::ifstream fin(path.c_str(), std::ios::binary);
if(!fin)
{
printf("Error: cannot open '%s'\n", path.c_str());
return 0;
}
fin.seekg(0, std::ios::end);
size = fin.tellg();
fin.seekg(0, std::ios::beg);
uint8_t *buf = new uint8_t[size];
fin.read((char *)buf, size);
return buf;
}
bool write_file(const std::string& path, uint8_t *buf, size_t size)
{
std::ofstream fout(path.c_str(), std::ios::binary);
if(!fout)
{
printf("Error: cannot open '%s'\n", path.c_str());
return false;
}
fout.write((char *)buf, size);
fout.close();
return true;
}
/* ELF code */
uint8_t *g_elf_buf;
size_t g_elf_size;
Elf32_Shdr *g_elf_symtab;
Elf32_Shdr *g_elf_symtab_strtab;
Elf32_Shdr *g_elf_shstrtab;
Elf32_Ehdr *elf_ehdr()
{
return (Elf32_Ehdr *)g_elf_buf;
}
#define NTH_SHDR_OFF(n) \
(elf_ehdr()->e_shoff + elf_ehdr()->e_shentsize * (n))
Elf32_Shdr *elf_shdr(size_t index)
{
if(index >= elf_ehdr()->e_shnum)
{
printf("Warning: section index is out of bounds\n");
return nullptr;
}
return (Elf32_Shdr *)(g_elf_buf + NTH_SHDR_OFF(index));
}
size_t elf_shnum()
{
return elf_ehdr()->e_shnum;
}
const char *elf_get_str(Elf32_Shdr *strtab, Elf32_Word index)
{
/* sanity checks */
if(strtab->sh_type != SHT_STRTAB)
{
printf("Warning: string access to a non-string-table section\n");
return nullptr;
}
if(strtab->sh_offset + strtab->sh_size > g_elf_size)
{
printf("Warning: string table section does not fit in the file\n");
return nullptr;
}
if(index >= strtab->sh_size)
{
printf("Warning: string access to string table is out of bounds\n");
return nullptr;
}
char *buf = (char *)(g_elf_buf + strtab->sh_offset);
if(buf[strtab->sh_size - 1] != 0)
{
printf("Warning: string table is not zero terminated\n");
return nullptr;
}
return buf + index;
}
const char *elf_get_section_name(size_t index)
{
Elf32_Shdr *shdr = elf_shdr(index);
return shdr ? elf_get_str(g_elf_shstrtab, shdr->sh_name) : nullptr;
}
const char *elf_get_symbol_name(Elf32_Sym *sym)
{
if(ELF32_ST_TYPE(sym->st_info) == STT_SECTION)
return elf_get_section_name(sym->st_shndx);
else
return elf_get_str(g_elf_symtab_strtab, sym->st_name);
}
Elf32_Sym *elf_get_symbol_by_name(const char *name)
{
Elf32_Sym *sym = (Elf32_Sym *)(g_elf_buf + g_elf_symtab->sh_offset);
size_t nr_syms = g_elf_symtab->sh_size / sizeof(Elf32_Sym);
for(size_t i = 0; i < nr_syms; i++)
{
const char *s = elf_get_symbol_name(&sym[i]);
if(s != nullptr && strcmp(name, s) == 0)
return &sym[i];
}
return nullptr;
}
Elf32_Sym *elf_get_symbol_by_address(size_t shndx, Elf32_Word address)
{
Elf32_Sym *sym = (Elf32_Sym *)(g_elf_buf + g_elf_symtab->sh_offset);
size_t nr_syms = g_elf_symtab->sh_size / sizeof(Elf32_Sym);
for(size_t i = 0; i < nr_syms; i++)
{
if(sym[i].st_shndx == shndx && sym[i].st_value == address)
return &sym[i];
}
return nullptr;
}
Elf32_Sym *elf_get_symbol_by_index(size_t index)
{
Elf32_Sym *sym = (Elf32_Sym *)(g_elf_buf + g_elf_symtab->sh_offset);
size_t nr_syms = g_elf_symtab->sh_size / sizeof(Elf32_Sym);
if(index >= nr_syms)
return nullptr;
return &sym[index];
}
void *elf_get_section_ptr(size_t shndx, Elf32_Word address, size_t size)
{
Elf32_Shdr *shdr = elf_shdr(shndx);
if(shdr == nullptr)
return nullptr;
if(address + size > shdr->sh_size)
return nullptr;
if(shdr->sh_offset + shdr->sh_size > g_elf_size)
return nullptr;
return g_elf_buf + shdr->sh_offset + address;
}
/* make sure the string has a final zero in the section, optionally check characters
* are printable */
const char *elf_get_string_ptr_safe(size_t shndx, Elf32_Word offset, bool want_print = true)
{
Elf32_Shdr *shdr = elf_shdr(shndx);
if(shdr == nullptr)
return nullptr;
/* address must be in the section */
if(offset >= shdr->sh_size)
return nullptr;
/* determine maximum size */
size_t max_sz = shdr->sh_size - offset;
const char *ptr = (const char *)(g_elf_buf + shdr->sh_offset + offset);
for(size_t i = 0; i < max_sz; i++)
{
if(ptr[i] == 0) /* found final 0, everything is fine */
return ptr;
if(want_print && !isprint(ptr[i]))
return nullptr;
}
return nullptr;
}
size_t elf_find_reloc_section(size_t shndx)
{
/* find the relocation section */
for(size_t i = 0; i < elf_ehdr()->e_shnum; i++)
{
Elf32_Shdr *shdr = elf_shdr(i);
if(shdr->sh_type != SHT_REL && shdr->sh_type != SHT_RELA)
continue;
if(shdr->sh_info != shndx)
continue;
return i;
}
return 0;
}
void *elf_get_symbol_ptr(Elf32_Sym *sym, size_t size)
{
/* NOTE: also works for STT_SECTION since offset will be 0 */
return elf_get_section_ptr(sym->st_shndx, sym->st_value, size);
}
/* take the position of a 32-bit address in the section and apply relocation if
* any */
void *elf_reloc_addr32(size_t shndx, Elf32_Word offset)
{
/* read value */
uint32_t *val = (uint32_t *)elf_get_section_ptr(shndx, offset, 4);
if(val == nullptr)
return 0; /* invalid */
/* find reloc section if any */
size_t relshndx = elf_find_reloc_section(shndx);
if(relshndx == 0)
return g_elf_buf + *val; /* no relocation applies */
Elf32_Shdr *shdr = elf_shdr(relshndx);
/* find relocation that applies */
if(shdr->sh_type == SHT_RELA)
{
printf("Warning: unsupported RELA relocation type\n");
return 0;
}
Elf32_Rel *rel = (Elf32_Rel *)elf_get_section_ptr(relshndx, 0, shdr->sh_size);
if(rel == nullptr)
{
printf("Warning: invalid relocation section\n");
return 0;
}
size_t sym_count = shdr->sh_size / sizeof(Elf32_Rel);
for(size_t i = 0; i < sym_count; i++)
{
/* for relocatable files, r_offset is the offset in the section */
if(rel[i].r_offset != offset)
continue;
/* find symbol, ignore shdr->sh_link and assume it is g_elf_symtab
* since the file should have only one symbol table anyway */
Elf32_Sym *sym = elf_get_symbol_by_index(ELF32_R_SYM(rel[i].r_info));
/* found it! */
if(g_verbose)
{
printf("[section %zu (%s) offset %#x reloc val %#x type %d sym %d (%s)]\n",
shndx, elf_get_section_name(shndx), offset, *val,
ELF32_R_TYPE(rel[i].r_info), ELF32_R_SYM(rel[i].r_info),
sym ? elf_get_symbol_name(sym) : "<undef>");
}
/* apply reloc */
if(ELF32_R_TYPE(rel[i].r_info) == R_ARM_ABS32)
{
if(sym == nullptr)
{
printf("Warning: R_ARM_ABS32 reloc with invalid symbol reference\n");
return 0;
}
return *val + (uint8_t *)elf_get_symbol_ptr(sym, 0);
}
else
{
printf("Warning: unsupported relocation type %d\n", ELF32_R_TYPE(rel[i].r_info));
return 0;
}
}
/* no reloc applies */
if(g_verbose)
{
printf("[section %zu (%s) offset %#x no reloc found]\n", shndx,
elf_get_section_name(shndx), offset);
}
return g_elf_buf + *val; /* no relocation applies */
}
size_t elf_map_virt_addr(uint32_t address, Elf32_Word& out_off)
{
/* for relocatable file, this is trivial */
for(size_t i = 0; i < elf_ehdr()->e_shnum; i++)
{
Elf32_Shdr *shdr = elf_shdr(i);
if(shdr->sh_offset <= address && address < shdr->sh_offset + shdr->sh_size)
{
out_off = address - shdr->sh_offset;
if(g_verbose)
{
printf("[map %#x to section %zi (%s) at %#x]\n", address, i,
elf_get_section_name(i), out_off);
}
return i;
}
}
return 0; /* section 0 is always invalid */
}
size_t elf_map_ptr(void *ptr, Elf32_Word& out_off)
{
uint32_t addr = (uint32_t)((uint8_t *)ptr - g_elf_buf);
return elf_map_virt_addr(addr, out_off);
}
/* same as elf_reloc_addr32 but find section automatically from pointer */
void *elf_reloc_addr32_ptr(uint32_t *val)
{
Elf32_Word off;
size_t sec = elf_map_ptr((void *)val, off);
/* if it does not belong to any section, don't do anything */
if(sec == 0)
{
printf("Warning: reloc addr pointer not in any section\n");
return g_elf_buf + *val;
}
return elf_reloc_addr32(sec, off);
}
Elf32_Sym *elf_get_symbol_by_ptr(void *ptr)
{
Elf32_Word off;
size_t sec = elf_map_ptr(ptr, off);
return sec ? elf_get_symbol_by_address(sec, off) : nullptr;
}
/* check if a string is safe */
bool elf_is_str_ptr_safe(const char *str)
{
Elf32_Word name_off;
/* find the section it belongs to */
size_t name_shndx = elf_map_ptr((void *)str, name_off);
if(name_shndx == 0)
return false;
/* check the string fit in the section */
return elf_get_string_ptr_safe(name_shndx, name_off) != nullptr;
}
bool elf_is_ptr_safe(void *ptr, size_t sz)
{
Elf32_Word ptr_off;
/* find the section it belongs to */
size_t ptr_shndx = elf_map_ptr((void *)ptr, ptr_off);
if(ptr_shndx == 0)
return false;
/* check the string fit in the section */
return elf_get_section_ptr(ptr_shndx, ptr_off, sz) != nullptr;
}
bool elf_init()
{
if(g_elf_size < sizeof(Elf32_Ehdr))
{
printf("Invalid ELF file: too small\n");
return false;
}
Elf32_Ehdr *ehdr = elf_ehdr();
if(ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
ehdr->e_ident[EI_MAG3] != ELFMAG3)
{
printf("Invalid ELF file: invalid ident\n");
return false;
}
/* we only support relocatable files */
if(ehdr->e_type != ET_REL)
{
printf("Unsupported ELF file: this is not a relocatable file\n");
return false;
}
if(ehdr->e_ident[EI_CLASS] != ELFCLASS32 || ehdr->e_machine != EM_ARM)
{
printf("Unsupported ELF file: this is not a 32-bit ARM ELF file\n");
return false;
}
/* go through sections */
if(ehdr->e_shoff == 0)
{
printf("Invalid ELF file: no sections\n");
return false;
}
if(ehdr->e_shentsize < sizeof(Elf32_Shdr))
{
printf("Invalid ELF file: section entry size too small\n");
return false;
}
if(NTH_SHDR_OFF(ehdr->e_shnum) > g_elf_size)
{
printf("Invalid ELF file: sections header does not fit in the file\n");
return false;
}
for(size_t i = 0; i < ehdr->e_shnum; i++)
{
Elf32_Shdr *shdr = (Elf32_Shdr *)(g_elf_buf + NTH_SHDR_OFF(i));
if(shdr->sh_type == SHT_SYMTAB)
g_elf_symtab = shdr;
}
/* handle symbol table */
if(g_elf_symtab)
{
if(g_elf_symtab->sh_offset + g_elf_symtab->sh_size > g_elf_size)
{
printf("Invalid ELF file: symtab does not file in the file\n");
return false;
}
g_elf_symtab_strtab = elf_shdr(g_elf_symtab->sh_link);
if(g_elf_symtab_strtab == nullptr)
{
printf("Invalid ELF file: symtab's strtab is not valid\n");
}
if(g_elf_symtab_strtab->sh_type != SHT_STRTAB)
{
printf("Invalid ELF file: symtab's strtab is not a string table\n");
return false;
}
}
/* handle section string table */
if(ehdr->e_shstrndx != SHN_UNDEF)
{
g_elf_shstrtab = elf_shdr(ehdr->e_shstrndx);
if(g_elf_shstrtab == nullptr)
{
printf("Invalid ELF file: section string table is invalid\n");
return false;
}
}
return true;
}
/* main code */
void usage()
{
printf("usage: nvptool [options] inputs...\n");
printf("options:\n");
printf(" -h/--help Display help\n");
printf(" -x/--extract Extract nvp map from icx_nvp_emmc.ko\n");
printf(" -o/--output Set output file\n");
printf(" -v/--verbose Enable debug output\n");
printf(" -u/--unsafe Perform potentially unsafe operations\n");
exit(1);
}
struct zone_info_v1_t
{
uint32_t node;
uint32_t start;
uint32_t count;
uint32_t size;
uint32_t semaphore[4]; /* a 16-byte structure, useless for us */
uint32_t name; /* pointer to string */
} __attribute__((packed));
struct zone_info_v2_t
{
uint32_t node;
uint32_t start;
uint32_t count;
uint32_t size;
uint32_t semaphore[3]; /* a 12-byte structure, useless for us */
uint32_t name; /* pointer to string */
} __attribute__((packed));
struct area_info_v1_t
{
uint32_t type; /* 1 = large, 2 = small */
uint32_t zoneinfo; /* pointer to zone_info_t[] */
uint32_t zonecount;
uint32_t semaphore[4]; /* a 16-byte structure, useless for us */
uint32_t name; /* pointer to string */
} __attribute__((packed));
struct area_info_v2_t
{
uint32_t type; /* 1 = large, 2 = small */
uint32_t zoneinfo; /* pointer to zone_info_t[] */
uint32_t zonecount;
uint32_t semaphore[3]; /* a 16-byte structure, useless for us */
uint32_t name; /* pointer to string */
} __attribute__((packed));
int guess_version(void *area_info_ptr)
{
/* the "semaphore" part is always filled with zeroes, so simply check if there
* are 3 or 4 of them */
area_info_v1_t *ai_v1 = (area_info_v1_t *)area_info_ptr;
if(ai_v1->semaphore[3] == 0)
return 1; /* v1: semaphore has 4 fields */
else
return 2; /* v2: semaphore has 3 fields */
}
int do_extract(const char *output, int argc, char **argv)
{
if(argc != 1)
{
printf("You need to specify exactly one input file to extract from.\n");
return 3;
}
FILE *fout = NULL;
if(output)
{
fout = fopen(output, "w");
if(fout == NULL)
{
printf("Cannot open output file '%s'\n", output);
return 4;
}
}
/* read elf file */
g_elf_buf = read_file(argv[0], g_elf_size);
if(g_elf_buf == nullptr)
{
printf("Cannot open input file '%s'\n", argv[0]);
return 1;
}
if(!elf_init())
{
printf("This is not a valid ELF file\n");
return 1;
}
if(g_elf_symtab == nullptr)
{
printf("This ELF file does not have a symbol table\n");
return 1;
}
/* look for symbol 'AreaInfo' */
Elf32_Sym *sym_AreaInfo = elf_get_symbol_by_name("AreaInfo");
if(sym_AreaInfo == nullptr)
{
printf("Cannot find symbol 'AreaInfo'\n");
return 1;
}
printf("AreaInfo:\n");
if(g_verbose)
{
printf("[%u bytes at address %#x in section %u (%s)]\n",
(unsigned)sym_AreaInfo->st_size, (unsigned)sym_AreaInfo->st_value,
(unsigned)sym_AreaInfo->st_shndx, elf_get_section_name(sym_AreaInfo->st_shndx));
}
/* guess version */
int ver = guess_version(elf_get_symbol_ptr(sym_AreaInfo, sizeof(area_info_v1_t)));
if(g_verbose)
printf("[guessed version: %d]\n", ver);
size_t sizeof_area_info = (ver == 1) ? sizeof(area_info_v1_t) : sizeof(area_info_v2_t);
size_t sizeof_zone_info = (ver == 1) ? sizeof(zone_info_v1_t) : sizeof(zone_info_v2_t);
/* sanity check AreaInfo */
size_t area_count = sym_AreaInfo->st_size / sizeof_area_info;
if(!g_unsafe && (sym_AreaInfo->st_size % sizeof_area_info) != 0)
{
printf("AreaInfo size (%u) is a not a multiple of area_info_t size (%zu).\n",
(unsigned)sym_AreaInfo->st_size, sizeof_area_info);
printf("Use unsafe option to override this check\n");
return 1;
}
area_info_v1_t *AreaInfo_v1 = (area_info_v1_t *)elf_get_symbol_ptr(sym_AreaInfo,
sym_AreaInfo->st_size);
area_info_v2_t *AreaInfo_v2 = (area_info_v2_t *)AreaInfo_v1;
if(AreaInfo_v1 == nullptr)
{
printf("Symbol does not point to a valid address\n");
return 1;
}
for(size_t i = 0; i < area_count; i++)
{
uint32_t type;
uint32_t *zoneinfo_ptr;
uint32_t zonecount;
uint32_t *name_ptr;
if(ver == 1)
{
type = AreaInfo_v1[i].type;
zoneinfo_ptr = &AreaInfo_v1[i].zoneinfo;
zonecount = AreaInfo_v1[i].zonecount;
name_ptr = &AreaInfo_v1[i].name;
}
else
{
type = AreaInfo_v2[i].type;
zoneinfo_ptr = &AreaInfo_v2[i].zoneinfo;
zonecount = AreaInfo_v2[i].zonecount;
name_ptr = &AreaInfo_v2[i].name;
}
if(g_verbose)
{
printf(" [type=%u info=%#x count=%u name=%#x]\n", type, *zoneinfo_ptr,
zonecount, *name_ptr);
}
/* translate name address */
const char *name = (const char *)elf_reloc_addr32_ptr(name_ptr);
if(name == nullptr || !elf_is_str_ptr_safe(name))
{
printf(" Entry name is not a string\n");
continue;
}
/* skip reserved entries */
if(*zoneinfo_ptr == 0)
{
printf(" %s\n", name);
continue;
}
/* relocate the zoneinfo pointer */
void *Zone = elf_reloc_addr32_ptr(zoneinfo_ptr);;
if(Zone == nullptr)
{
printf(" %s\n", name);
printf(" Zone info pointer is not valid\n");
continue;
}
/* in safe mode, make sure the zone info pointer is a symbol */
Elf32_Sym *zoneinfo_sym = elf_get_symbol_by_ptr((void *)Zone);
const char *zoneinfo_sym_name = "<no symbol>";
if(zoneinfo_sym)
zoneinfo_sym_name = elf_get_symbol_name(zoneinfo_sym);
printf(" %s (%s)\n", name, zoneinfo_sym_name);
if(!g_unsafe && !zoneinfo_sym)
{
printf(" Zone info pointer does not correspond to any symbol.\n");
printf(" Use unsafe option to override this check\n");
continue;
}
/* if we have the symbol, make sure the claimed size match */
if(!g_unsafe && zoneinfo_sym)
{
if(zoneinfo_sym->st_size != sizeof_zone_info * zonecount)
{
printf(" Zone info symbol size (%u) does not match expected size (%zu)\n",
(unsigned)zoneinfo_sym->st_size, sizeof_zone_info * zonecount);
printf(" Use unsafe option to override this check\n");
continue;
}
}
/* sanity check */
if(!elf_is_ptr_safe((void *)Zone, sizeof_zone_info * zonecount))
{
printf(" Zone info pointer is not valid\n");
continue;
}
/* read zone */
zone_info_v1_t *Zone_v1 = (zone_info_v1_t *)Zone;
zone_info_v2_t *Zone_v2 = (zone_info_v2_t *)Zone;
for(size_t j = 0; j < zonecount; j++)
{
uint32_t node, start, count, size;
uint32_t *name_ptr;
if(ver == 1)
{
node = Zone_v1[j].node;
start = Zone_v1[j].start;
count = Zone_v1[j].count;
size = Zone_v1[j].size;
name_ptr = &Zone_v1[j].name;
}
else
{
node = Zone_v2[j].node;
start = Zone_v2[j].start;
count = Zone_v2[j].count;
size = Zone_v2[j].size;
name_ptr = &Zone_v2[j].name;
}
if(g_verbose)
{
printf(" [node=%u start=%#x count=%u size=%u name=%#x]\n",
node, start, count, size, *name_ptr);
}
/* translate name address */
const char *name = (const char *)elf_reloc_addr32_ptr(name_ptr);
if(name == nullptr || !elf_is_str_ptr_safe(name))
{
printf(" Entry name is not a string\n");
continue;
}
printf(" %s: node %03u, size %u\n", name, node, size);
if(fout)
fprintf(fout, "%u,%u,%s\n", node, size, name);
}
}
if(fout)
fclose(fout);
/* success */
return 0;
}
int main(int argc, char **argv)
{
const char *output = NULL;
bool extract = false;
if(argc <= 1)
usage();
while(1)
{
static struct option long_options[] =
{
{"help", no_argument, 0, 'h'},
{"extract", no_argument, 0, 'x'},
{"output", required_argument, 0, 'o'},
{"verbose", no_argument, 0, 'v'},
{"unsafe", no_argument, 0, 'u'},
{0, 0, 0, 0}
};
int c = getopt_long(argc, argv, "hxo:vu", long_options, NULL);
if(c == -1)
break;
switch(c)
{
case -1:
break;
case 'h':
usage();
break;
case 'o':
output = optarg;
break;
case 'x':
extract = true;
break;
case 'v':
g_verbose = true;
break;
case 'u':
g_unsafe = true;
break;
default:
abort();
}
}
if(extract)
return do_extract(output, argc - optind, argv + optind);
printf("You need to specify an operation. Run nvptool -h for help\n");
return 1;
}