/* Copyright (c) 2007-2008 CSIRO Copyright (c) 2007-2009 Xiph.Org Foundation Written by Jean-Marc Valin */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H #include "opus_config.h" #endif #include "quant_bands.h" #include "laplace.h" #include #include "os_support.h" #include "arch.h" #include "mathops.h" #include "stack_alloc.h" #include "rate.h" #ifdef FIXED_POINT /* Mean energy in each band quantized in Q6 */ static const signed char eMeans[25] = { 103,100, 92, 85, 81, 77, 72, 70, 78, 75, 73, 71, 78, 74, 69, 72, 70, 74, 76, 71, 60, 60, 60, 60, 60 }; #else /* Mean energy in each band quantized in Q6 and converted back to float */ static const opus_val16 eMeans[25] = { 6.437500f, 6.250000f, 5.750000f, 5.312500f, 5.062500f, 4.812500f, 4.500000f, 4.375000f, 4.875000f, 4.687500f, 4.562500f, 4.437500f, 4.875000f, 4.625000f, 4.312500f, 4.500000f, 4.375000f, 4.625000f, 4.750000f, 4.437500f, 3.750000f, 3.750000f, 3.750000f, 3.750000f, 3.750000f }; #endif /* prediction coefficients: 0.9, 0.8, 0.65, 0.5 */ #ifdef FIXED_POINT static const opus_val16 pred_coef[4] = {29440, 26112, 21248, 16384}; static const opus_val16 beta_coef[4] = {30147, 22282, 12124, 6554}; static const opus_val16 beta_intra = 4915; #else static const opus_val16 pred_coef[4] = {29440/32768., 26112/32768., 21248/32768., 16384/32768.}; static const opus_val16 beta_coef[4] = {30147/32768., 22282/32768., 12124/32768., 6554/32768.}; static const opus_val16 beta_intra = 4915/32768.; #endif /*Parameters of the Laplace-like probability models used for the coarse energy. There is one pair of parameters for each frame size, prediction type (inter/intra), and band number. The first number of each pair is the probability of 0, and the second is the decay rate, both in Q8 precision.*/ static const unsigned char e_prob_model[4][2][42] = { /*120 sample frames.*/ { /*Inter*/ { 72, 127, 65, 129, 66, 128, 65, 128, 64, 128, 62, 128, 64, 128, 64, 128, 92, 78, 92, 79, 92, 78, 90, 79, 116, 41, 115, 40, 114, 40, 132, 26, 132, 26, 145, 17, 161, 12, 176, 10, 177, 11 }, /*Intra*/ { 24, 179, 48, 138, 54, 135, 54, 132, 53, 134, 56, 133, 55, 132, 55, 132, 61, 114, 70, 96, 74, 88, 75, 88, 87, 74, 89, 66, 91, 67, 100, 59, 108, 50, 120, 40, 122, 37, 97, 43, 78, 50 } }, /*240 sample frames.*/ { /*Inter*/ { 83, 78, 84, 81, 88, 75, 86, 74, 87, 71, 90, 73, 93, 74, 93, 74, 109, 40, 114, 36, 117, 34, 117, 34, 143, 17, 145, 18, 146, 19, 162, 12, 165, 10, 178, 7, 189, 6, 190, 8, 177, 9 }, /*Intra*/ { 23, 178, 54, 115, 63, 102, 66, 98, 69, 99, 74, 89, 71, 91, 73, 91, 78, 89, 86, 80, 92, 66, 93, 64, 102, 59, 103, 60, 104, 60, 117, 52, 123, 44, 138, 35, 133, 31, 97, 38, 77, 45 } }, /*480 sample frames.*/ { /*Inter*/ { 61, 90, 93, 60, 105, 42, 107, 41, 110, 45, 116, 38, 113, 38, 112, 38, 124, 26, 132, 27, 136, 19, 140, 20, 155, 14, 159, 16, 158, 18, 170, 13, 177, 10, 187, 8, 192, 6, 175, 9, 159, 10 }, /*Intra*/ { 21, 178, 59, 110, 71, 86, 75, 85, 84, 83, 91, 66, 88, 73, 87, 72, 92, 75, 98, 72, 105, 58, 107, 54, 115, 52, 114, 55, 112, 56, 129, 51, 132, 40, 150, 33, 140, 29, 98, 35, 77, 42 } }, /*960 sample frames.*/ { /*Inter*/ { 42, 121, 96, 66, 108, 43, 111, 40, 117, 44, 123, 32, 120, 36, 119, 33, 127, 33, 134, 34, 139, 21, 147, 23, 152, 20, 158, 25, 154, 26, 166, 21, 173, 16, 184, 13, 184, 10, 150, 13, 139, 15 }, /*Intra*/ { 22, 178, 63, 114, 74, 82, 84, 83, 92, 82, 103, 62, 96, 72, 96, 67, 101, 73, 107, 72, 113, 55, 118, 52, 125, 52, 118, 52, 117, 55, 135, 49, 137, 39, 157, 32, 145, 29, 97, 33, 77, 40 } } }; static const unsigned char small_energy_icdf[3]={2,1,0}; static opus_val32 loss_distortion(const opus_val16 *eBands, opus_val16 *oldEBands, int start, int end, int len, int C) { int c, i; opus_val32 dist = 0; c=0; do { for (i=start;inbEBands]; oldE = MAX16(-QCONST16(9.f,DB_SHIFT), oldEBands[i+c*m->nbEBands]); #ifdef FIXED_POINT f = SHL32(EXTEND32(x),7) - PSHR32(MULT16_16(coef,oldE), 8) - prev[c]; /* Rounding to nearest integer here is really important! */ qi = (f+QCONST32(.5f,DB_SHIFT+7))>>(DB_SHIFT+7); decay_bound = EXTRACT16(MAX32(-QCONST16(28.f,DB_SHIFT), SUB32((opus_val32)oldEBands[i+c*m->nbEBands],max_decay))); #else f = x-coef*oldE-prev[c]; /* Rounding to nearest integer here is really important! */ qi = (int)floor(.5f+f); decay_bound = MAX16(-QCONST16(28.f,DB_SHIFT), oldEBands[i+c*m->nbEBands]) - max_decay; #endif /* Prevent the energy from going down too quickly (e.g. for bands that have just one bin) */ if (qi < 0 && x < decay_bound) { qi += (int)SHR16(SUB16(decay_bound,x), DB_SHIFT); if (qi > 0) qi = 0; } qi0 = qi; /* If we don't have enough bits to encode all the energy, just assume something safe. */ tell = ec_tell(enc); bits_left = budget-tell-3*C*(end-i); if (i!=start && bits_left < 30) { if (bits_left < 24) qi = IMIN(1, qi); if (bits_left < 16) qi = IMAX(-1, qi); } if (budget-tell >= 15) { int pi; pi = 2*IMIN(i,20); ec_laplace_encode(enc, &qi, prob_model[pi]<<7, prob_model[pi+1]<<6); } else if(budget-tell >= 2) { qi = IMAX(-1, IMIN(qi, 1)); ec_enc_icdf(enc, 2*qi^-(qi<0), small_energy_icdf, 2); } else if(budget-tell >= 1) { qi = IMIN(0, qi); ec_enc_bit_logp(enc, -qi, 1); } else qi = -1; error[i+c*m->nbEBands] = PSHR32(f,7) - SHL16(qi,DB_SHIFT); badness += abs(qi0-qi); q = (opus_val32)SHL32(EXTEND32(qi),DB_SHIFT); tmp = PSHR32(MULT16_16(coef,oldE),8) + prev[c] + SHL32(q,7); #ifdef FIXED_POINT tmp = MAX32(-QCONST32(28.f, DB_SHIFT+7), tmp); #endif oldEBands[i+c*m->nbEBands] = PSHR32(tmp, 7); prev[c] = prev[c] + SHL32(q,7) - MULT16_16(beta,PSHR32(q,8)); } while (++c < C); } return badness; } void quant_coarse_energy(const CELTMode *m, int start, int end, int effEnd, const opus_val16 *eBands, opus_val16 *oldEBands, opus_uint32 budget, opus_val16 *error, ec_enc *enc, int C, int LM, int nbAvailableBytes, int force_intra, opus_val32 *delayedIntra, int two_pass, int loss_rate) { int intra; opus_val16 max_decay; VARDECL(opus_val16, oldEBands_intra); VARDECL(opus_val16, error_intra); ec_enc enc_start_state; opus_uint32 tell; int badness1=0; opus_int32 intra_bias; opus_val32 new_distortion; SAVE_STACK; intra = force_intra || (!two_pass && *delayedIntra>2*C*(end-start) && nbAvailableBytes > (end-start)*C); intra_bias = (opus_int32)((budget**delayedIntra*loss_rate)/(C*512)); new_distortion = loss_distortion(eBands, oldEBands, start, effEnd, m->nbEBands, C); tell = ec_tell(enc); if (tell+3 > budget) two_pass = intra = 0; /* Encode the global flags using a simple probability model (first symbols in the stream) */ #ifdef FIXED_POINT max_decay = MIN32(QCONST16(16.f,DB_SHIFT), SHL32(EXTEND32(nbAvailableBytes),DB_SHIFT-3)); #else max_decay = MIN32(16.f, .125f*nbAvailableBytes); #endif enc_start_state = *enc; ALLOC(oldEBands_intra, C*m->nbEBands, opus_val16); ALLOC(error_intra, C*m->nbEBands, opus_val16); OPUS_COPY(oldEBands_intra, oldEBands, C*m->nbEBands); if (two_pass || intra) { badness1 = quant_coarse_energy_impl(m, start, end, eBands, oldEBands_intra, budget, tell, e_prob_model[LM][1], error_intra, enc, C, LM, 1, max_decay); } if (!intra) { unsigned char *intra_buf; ec_enc enc_intra_state; opus_int32 tell_intra; opus_uint32 nstart_bytes; opus_uint32 nintra_bytes; int badness2; VARDECL(unsigned char, intra_bits); tell_intra = ec_tell_frac(enc); enc_intra_state = *enc; nstart_bytes = ec_range_bytes(&enc_start_state); nintra_bytes = ec_range_bytes(&enc_intra_state); intra_buf = ec_get_buffer(&enc_intra_state) + nstart_bytes; ALLOC(intra_bits, nintra_bytes-nstart_bytes, unsigned char); /* Copy bits from intra bit-stream */ OPUS_COPY(intra_bits, intra_buf, nintra_bytes - nstart_bytes); *enc = enc_start_state; badness2 = quant_coarse_energy_impl(m, start, end, eBands, oldEBands, budget, tell, e_prob_model[LM][intra], error, enc, C, LM, 0, max_decay); if (two_pass && (badness1 < badness2 || (badness1 == badness2 && ((opus_int32)ec_tell_frac(enc))+intra_bias > tell_intra))) { *enc = enc_intra_state; /* Copy intra bits to bit-stream */ OPUS_COPY(intra_buf, intra_bits, nintra_bytes - nstart_bytes); OPUS_COPY(oldEBands, oldEBands_intra, C*m->nbEBands); OPUS_COPY(error, error_intra, C*m->nbEBands); intra = 1; } } else { OPUS_COPY(oldEBands, oldEBands_intra, C*m->nbEBands); OPUS_COPY(error, error_intra, C*m->nbEBands); } if (intra) *delayedIntra = new_distortion; else *delayedIntra = ADD32(MULT16_32_Q15(MULT16_16_Q15(pred_coef[LM], pred_coef[LM]),*delayedIntra), new_distortion); RESTORE_STACK; } void quant_fine_energy(const CELTMode *m, int start, int end, opus_val16 *oldEBands, opus_val16 *error, int *fine_quant, ec_enc *enc, int C) { int i, c; /* Encode finer resolution */ for (i=start;inbEBands]+QCONST16(.5f,DB_SHIFT))>>(DB_SHIFT-fine_quant[i]); #else q2 = (int)floor((error[i+c*m->nbEBands]+.5f)*frac); #endif if (q2 > frac-1) q2 = frac-1; if (q2<0) q2 = 0; ec_enc_bits(enc, q2, fine_quant[i]); #ifdef FIXED_POINT offset = SUB16(SHR32(SHL32(EXTEND32(q2),DB_SHIFT)+QCONST16(.5f,DB_SHIFT),fine_quant[i]),QCONST16(.5f,DB_SHIFT)); #else offset = (q2+.5f)*(1<<(14-fine_quant[i]))*(1.f/16384) - .5f; #endif oldEBands[i+c*m->nbEBands] += offset; error[i+c*m->nbEBands] -= offset; /*printf ("%f ", error[i] - offset);*/ } while (++c < C); } } void quant_energy_finalise(const CELTMode *m, int start, int end, opus_val16 *oldEBands, opus_val16 *error, int *fine_quant, int *fine_priority, int bits_left, ec_enc *enc, int C) { int i, prio, c; /* Use up the remaining bits */ for (prio=0;prio<2;prio++) { for (i=start;i=C ;i++) { if (fine_quant[i] >= MAX_FINE_BITS || fine_priority[i]!=prio) continue; c=0; do { int q2; opus_val16 offset; q2 = error[i+c*m->nbEBands]<0 ? 0 : 1; ec_enc_bits(enc, q2, 1); #ifdef FIXED_POINT offset = SHR16(SHL16(q2,DB_SHIFT)-QCONST16(.5f,DB_SHIFT),fine_quant[i]+1); #else offset = (q2-.5f)*(1<<(14-fine_quant[i]-1))*(1.f/16384); #endif oldEBands[i+c*m->nbEBands] += offset; bits_left--; } while (++c < C); } } } void unquant_coarse_energy(const CELTMode *m, int start, int end, opus_val16 *oldEBands, int intra, ec_dec *dec, int C, int LM) { const unsigned char *prob_model = e_prob_model[LM][intra]; int i, c; opus_val32 prev[2] = {0, 0}; opus_val16 coef; opus_val16 beta; opus_int32 budget; opus_int32 tell; if (intra) { coef = 0; beta = beta_intra; } else { beta = beta_coef[LM]; coef = pred_coef[LM]; } budget = dec->storage*8; /* Decode at a fixed coarse resolution */ for (i=start;i=15) { int pi; pi = 2*IMIN(i,20); qi = ec_laplace_decode(dec, prob_model[pi]<<7, prob_model[pi+1]<<6); } else if(budget-tell>=2) { qi = ec_dec_icdf(dec, small_energy_icdf, 2); qi = (qi>>1)^-(qi&1); } else if(budget-tell>=1) { qi = -ec_dec_bit_logp(dec, 1); } else qi = -1; q = (opus_val32)SHL32(EXTEND32(qi),DB_SHIFT); oldEBands[i+c*m->nbEBands] = MAX16(-QCONST16(9.f,DB_SHIFT), oldEBands[i+c*m->nbEBands]); tmp = PSHR32(MULT16_16(coef,oldEBands[i+c*m->nbEBands]),8) + prev[c] + SHL32(q,7); #ifdef FIXED_POINT tmp = MAX32(-QCONST32(28.f, DB_SHIFT+7), tmp); #endif oldEBands[i+c*m->nbEBands] = PSHR32(tmp, 7); prev[c] = prev[c] + SHL32(q,7) - MULT16_16(beta,PSHR32(q,8)); } while (++c < C); } } void unquant_fine_energy(const CELTMode *m, int start, int end, opus_val16 *oldEBands, int *fine_quant, ec_dec *dec, int C) { int i, c; /* Decode finer resolution */ for (i=start;inbEBands] += offset; } while (++c < C); } } void unquant_energy_finalise(const CELTMode *m, int start, int end, opus_val16 *oldEBands, int *fine_quant, int *fine_priority, int bits_left, ec_dec *dec, int C) { int i, prio, c; /* Use up the remaining bits */ for (prio=0;prio<2;prio++) { for (i=start;i=C ;i++) { if (fine_quant[i] >= MAX_FINE_BITS || fine_priority[i]!=prio) continue; c=0; do { int q2; opus_val16 offset; q2 = ec_dec_bits(dec, 1); #ifdef FIXED_POINT offset = SHR16(SHL16(q2,DB_SHIFT)-QCONST16(.5f,DB_SHIFT),fine_quant[i]+1); #else offset = (q2-.5f)*(1<<(14-fine_quant[i]-1))*(1.f/16384); #endif oldEBands[i+c*m->nbEBands] += offset; bits_left--; } while (++c < C); } } } void log2Amp(const CELTMode *m, int start, int end, celt_ener *eBands, const opus_val16 *oldEBands, int C) { int c, i; c=0; do { for (i=0;inbEBands] = 0; for (;inbEBands], SHL16((opus_val16)eMeans[i],6)); eBands[i+c*m->nbEBands] = PSHR32(celt_exp2(lg),4); } for (;inbEBands;i++) eBands[i+c*m->nbEBands] = 0; } while (++c < C); } void amp2Log2(const CELTMode *m, int effEnd, int end, celt_ener *bandE, opus_val16 *bandLogE, int C) { int c, i; c=0; do { for (i=0;inbEBands] = celt_log2(SHL32(bandE[i+c*m->nbEBands],2)) - SHL16((opus_val16)eMeans[i],6); for (i=effEnd;inbEBands+i] = -QCONST16(14.f,DB_SHIFT); } while (++c < C); }