/*********************************************************************************** emu2413.c -- YM2413 emulator written by Mitsutaka Okazaki 2001 2001 01-08 : Version 0.10 -- 1st version. 2001 01-15 : Version 0.20 -- semi-public version. 2001 01-16 : Version 0.30 -- 1st public version. 2001 01-17 : Version 0.31 -- Fixed bassdrum problem. : Version 0.32 -- LPF implemented. 2001 01-18 : Version 0.33 -- Fixed the drum problem, refine the mix-down method. -- Fixed the LFO bug. 2001 01-24 : Version 0.35 -- Fixed the drum problem, support undocumented EG behavior. 2001 02-02 : Version 0.38 -- Improved the performance. Fixed the hi-hat and cymbal model. Fixed the default percussive datas. Noise reduction. Fixed the feedback problem. 2001 03-03 : Version 0.39 -- Fixed some drum bugs. Improved the performance. 2001 03-04 : Version 0.40 -- Improved the feedback. Change the default table size. Clock and Rate can be changed during play. 2001 06-24 : Version 0.50 -- Improved the hi-hat and the cymbal tone. Added VRC7 patch (OPLL_reset_patch is changed). Fixed OPLL_reset() bug. Added OPLL_setMask, OPLL_getMask and OPLL_toggleMask. Added OPLL_writeIO. 2001 09-28 : Version 0.51 -- Removed the noise table. 2002 01-28 : Version 0.52 -- Added Stereo mode. 2002 02-07 : Version 0.53 -- Fixed some drum bugs. 2002 02-20 : Version 0.54 -- Added the best quality mode. 2002 03-02 : Version 0.55 -- Removed OPLL_init & OPLL_close. 2002 05-30 : Version 0.60 -- Fixed HH&CYM generator and all voice datas. 2004 04-10 : Version 0.61 -- Added YMF281B tone (defined by Chabin). 2011 03-22 : --------------- Modified by gama to use precalculated tables. References: fmopl.c -- 1999,2000 written by Tatsuyuki Satoh (MAME development). fmopl.c(fixed) -- (C) 2002 Jarek Burczynski. s_opl.c -- 2001 written by Mamiya (NEZplug development). fmgen.cpp -- 1999,2000 written by cisc. fmpac.ill -- 2000 created by NARUTO. MSX-Datapack YMU757 data sheet YM2143 data sheet **************************************************************************************/ #include #include #include #include #include "emu2413.h" #include "emutables.h" #if !defined(ROCKBOX) #define EMU2413_CALCUL_TABLES #else #define EMU2413_COMPACTION #include "emutables.h" #endif #if defined(EMU2413_COMPACTION) && !defined(ROCKBOX) #define OPLL_TONE_NUM 1 static unsigned char default_inst[OPLL_TONE_NUM][(16 + 3) * 16] = { { #include "2413tone.h" } }; #else #define OPLL_TONE_NUM 3 static unsigned char default_inst[OPLL_TONE_NUM][(16 + 3) * 16] = { { #include "2413tone.h" }, { #include "vrc7tone.h" }, { #include "281btone.h" } }; #endif /* Size of Sintable ( 8 -- 18 can be used. 9 recommended.) */ #define PG_BITS 9 #define PG_WIDTH (1<>(b)) /* Leave the lower b bit(s). */ #define LOWBITS(c,b) ((c)&((1<<(b))-1)) /* Expand x which is s bits to d bits. */ #define EXPAND_BITS(x,s,d) ((x)<<((d)-(s))) /* Expand x which is s bits to d bits and fill expanded bits '1' */ #define EXPAND_BITS_X(x,s,d) (((x)<<((d)-(s)))|((1<<((d)-(s)))-1)) /* Adjust envelope speed which depends on sampling rate. */ #define RATE_ADJUST(x) (rate==49716?(e_uint32)x:(e_uint32)(((long long)(x)*clk/rate+36)/72)) #define MOD(o,x) (&(o)->slot[(x)<<1]) #define CAR(o,x) (&(o)->slot[((x)<<1)|1]) #define BIT(s,b) (((s)>>(b))&1) /* Input clock */ static e_uint32 clk = 844451141; /* Sampling rate */ static e_uint32 rate = 3354932; /* WaveTable for each envelope amp */ static e_uint16 fullsintable[PG_WIDTH]; static e_uint16 halfsintable[PG_WIDTH]; static e_uint16 *waveform[2] = { fullsintable, halfsintable }; /* LFO Table */ #ifdef EMU2413_CALCUL_TABLES static e_int32 pmtable[PM_PG_WIDTH]; static e_int32 amtable[AM_PG_WIDTH]; #define PMTABLE(x) pmtable[x] #define AMTABLE(x) amtable[x] #else #define PMTABLE(x) (e_int32)pm_coeff[x] #if (PM_PG_WIDTH != 256) #error PM_PG_WIDTH must be set to 256 if EMU2413_CALCUL_TABLES is not defined #endif #define AMTABLE(x) (e_int32)am_coeff[x] #if (AM_PG_WIDTH != 256) #error AM_PG_WIDTH must be set to 256 if EMU2413_CALCUL_TABLES is not defined #endif #endif /* Phase delta for LFO */ static e_uint32 pm_dphase; static e_uint32 am_dphase; /* dB to Liner table */ static e_int16 DB2LIN_TABLE[(DB_MUTE + DB_MUTE) * 2]; /* Liner to Log curve conversion table (for Attack rate). */ #ifdef EMU2413_CALCUL_TABLES static e_uint16 ar_adjust_table[1 << EG_BITS]; #define AR_ADJUST_TABLE(x) ar_adjust_table[x] #else #define AR_ADJUST_TABLE(x) ar_adjust_coeff[x] #if (EG_BITS != 7) #error EG_BITS must be set to 7 if EMU2413_CALCUL_TABLES is not defined #endif #endif /* Empty voice data */ static OPLL_PATCH null_patch = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; /* Basic voice Data */ static OPLL_PATCH default_patch[OPLL_TONE_NUM][(16 + 3) * 2]; /* Definition of envelope mode */ enum OPLL_EG_STATE { READY, ATTACK, DECAY, SUSHOLD, SUSTINE, RELEASE, SETTLE, FINISH }; /* Phase incr table for Attack */ static e_uint32 dphaseARTable[16][16]; /* Phase incr table for Decay and Release */ static e_uint32 dphaseDRTable[16][16]; /* KSL + TL Table */ e_uint8 tllTable[16][8][1 << TL_BITS][4]; static e_int32 rksTable[2][8][2]; /* We may not have too much SRAM in rockbox */ #if !defined(ROCKBOX) /* Phase incr table for PG */ static e_uint32 dphaseTable[512][8][16]; #endif /*************************************************** Create tables ****************************************************/ #ifdef EMU2413_CALCUL_TABLES INLINE static e_int32 Min (e_int32 i, e_int32 j) { if (i < j) return i; else return j; } /* Table for AR to LogCurve. */ static void makeAdjustTable (void) { e_int32 i; ar_adjust_table[0] = (1 << EG_BITS) - 1; for (i = 1; i < (1<= DB_MUTE) DB2LIN_TABLE[i] = 0; DB2LIN_TABLE[i + DB_MUTE + DB_MUTE] = (e_int16) (-DB2LIN_TABLE[i]); } } #ifdef EMU2413_CALCUL_TABLES /* Liner(+0.0 - +1.0) to dB((1<> (20 - DP_BITS)); } #endif static void makeTllTable (void) { /* Multiplication owith 8 to have an integer result. This allows to remove floating point operation. */ #define dB2(x) (int)((x)*2*8) static int kltable[16] = { dB2 ( 0.000), dB2 ( 9.000), dB2 (12.000), dB2 (13.875), dB2 (15.000), dB2 (16.125), dB2 (16.875), dB2 (17.625), dB2 (18.000), dB2 (18.750), dB2 (19.125), dB2 (19.500), dB2 (19.875), dB2 (20.250), dB2 (20.625), dB2 (21.000) }; e_int32 tmp; e_int32 fnum, block, TL, KL; for (fnum = 0; fnum < 16; fnum++) for (block = 0; block < 8; block++) for (TL = 0; TL < 64; TL++) for (KL = 0; KL < 4; KL++) { if (KL == 0) { tllTable[fnum][block][TL][KL] = TL2EG (TL); } else { tmp = (e_int32) ((kltable[fnum] - dB2 (3.000) * (7 - block))/8); if (tmp <= 0) tllTable[fnum][block][TL][KL] = TL2EG (TL); else /* tllTable[fnum][block][TL][KL] = (e_uint32) ((tmp >> (3 - KL)) / EG_STEP) + TL2EG (TL); */ tllTable[fnum][block][TL][KL] = (e_uint32) ((tmp << KL) / (int)(EG_STEP*8)) + TL2EG (TL); } } } #ifdef USE_SPEC_ENV_SPEED static double attacktime[16][4] = { {0, 0, 0, 0}, {1730.15, 1400.60, 1153.43, 988.66}, {865.08, 700.30, 576.72, 494.33}, {432.54, 350.15, 288.36, 247.16}, {216.27, 175.07, 144.18, 123.58}, {108.13, 87.54, 72.09, 61.79}, {54.07, 43.77, 36.04, 30.90}, {27.03, 21.88, 18.02, 15.45}, {13.52, 10.94, 9.01, 7.72}, {6.76, 5.47, 4.51, 3.86}, {3.38, 2.74, 2.25, 1.93}, {1.69, 1.37, 1.13, 0.97}, {0.84, 0.70, 0.60, 0.54}, {0.50, 0.42, 0.34, 0.30}, {0.28, 0.22, 0.18, 0.14}, {0.00, 0.00, 0.00, 0.00} }; static double decaytime[16][4] = { {0, 0, 0, 0}, {20926.60, 16807.20, 14006.00, 12028.60}, {10463.30, 8403.58, 7002.98, 6014.32}, {5231.64, 4201.79, 3501.49, 3007.16}, {2615.82, 2100.89, 1750.75, 1503.58}, {1307.91, 1050.45, 875.37, 751.79}, {653.95, 525.22, 437.69, 375.90}, {326.98, 262.61, 218.84, 187.95}, {163.49, 131.31, 109.42, 93.97}, {81.74, 65.65, 54.71, 46.99}, {40.87, 32.83, 27.36, 23.49}, {20.44, 16.41, 13.68, 11.75}, {10.22, 8.21, 6.84, 5.87}, {5.11, 4.10, 3.42, 2.94}, {2.55, 2.05, 1.71, 1.47}, {1.27, 1.27, 1.27, 1.27} }; #endif /* Rate Table for Attack */ static void makeDphaseARTable (void) { e_int32 AR, Rks, RM, RL; #ifdef USE_SPEC_ENV_SPEED e_uint32 attacktable[16][4]; for (RM = 0; RM < 16; RM++) for (RL = 0; RL < 4; RL++) { if (RM == 0) attacktable[RM][RL] = 0; else if (RM == 15) attacktable[RM][RL] = EG_DP_WIDTH; else attacktable[RM][RL] = (e_uint32) ((double) (1 << EG_DP_BITS) / (attacktime[RM][RL] * 3579545 / 72000)); } #endif for (AR = 0; AR < 16; AR++) for (Rks = 0; Rks < 16; Rks++) { RM = AR + (Rks >> 2); RL = Rks & 3; if (RM > 15) RM = 15; switch (AR) { case 0: dphaseARTable[AR][Rks] = 0; break; case 15: dphaseARTable[AR][Rks] = 0;/*EG_DP_WIDTH;*/ break; default: #ifdef USE_SPEC_ENV_SPEED dphaseARTable[AR][Rks] = RATE_ADJUST (attacktable[RM][RL]); #else dphaseARTable[AR][Rks] = RATE_ADJUST ((3 * (RL + 4) << (RM + 1))); #endif break; } } } /* Rate Table for Decay and Release */ static void makeDphaseDRTable (void) { e_int32 DR, Rks, RM, RL; #ifdef USE_SPEC_ENV_SPEED e_uint32 decaytable[16][4]; for (RM = 0; RM < 16; RM++) for (RL = 0; RL < 4; RL++) if (RM == 0) decaytable[RM][RL] = 0; else decaytable[RM][RL] = (e_uint32) ((double) (1 << EG_DP_BITS) / (decaytime[RM][RL] * 3579545 / 72000)); #endif for (DR = 0; DR < 16; DR++) for (Rks = 0; Rks < 16; Rks++) { RM = DR + (Rks >> 2); RL = Rks & 3; if (RM > 15) RM = 15; switch (DR) { case 0: dphaseDRTable[DR][Rks] = 0; break; default: #ifdef USE_SPEC_ENV_SPEED dphaseDRTable[DR][Rks] = RATE_ADJUST (decaytable[RM][RL]); #else dphaseDRTable[DR][Rks] = RATE_ADJUST ((RL + 4) << (RM - 1)); #endif break; } } } static void makeRksTable (void) { e_int32 fnum8, block, KR; for (fnum8 = 0; fnum8 < 2; fnum8++) for (block = 0; block < 8; block++) for (KR = 0; KR < 2; KR++) { if (KR != 0) rksTable[fnum8][block][KR] = (block << 1) + fnum8; else rksTable[fnum8][block][KR] = block >> 1; } } void OPLL_dump2patch (const e_uint8 * dump, OPLL_PATCH * patch) { patch[0].AM = (dump[0] >> 7) & 1; patch[1].AM = (dump[1] >> 7) & 1; patch[0].PM = (dump[0] >> 6) & 1; patch[1].PM = (dump[1] >> 6) & 1; patch[0].EG = (dump[0] >> 5) & 1; patch[1].EG = (dump[1] >> 5) & 1; patch[0].KR = (dump[0] >> 4) & 1; patch[1].KR = (dump[1] >> 4) & 1; patch[0].ML = (dump[0]) & 15; patch[1].ML = (dump[1]) & 15; patch[0].KL = (dump[2] >> 6) & 3; patch[1].KL = (dump[3] >> 6) & 3; patch[0].TL = (dump[2]) & 63; patch[0].FB = (dump[3]) & 7; patch[0].WF = (dump[3] >> 3) & 1; patch[1].WF = (dump[3] >> 4) & 1; patch[0].AR = (dump[4] >> 4) & 15; patch[1].AR = (dump[5] >> 4) & 15; patch[0].DR = (dump[4]) & 15; patch[1].DR = (dump[5]) & 15; patch[0].SL = (dump[6] >> 4) & 15; patch[1].SL = (dump[7] >> 4) & 15; patch[0].RR = (dump[6]) & 15; patch[1].RR = (dump[7]) & 15; } void OPLL_getDefaultPatch (e_int32 type, e_int32 num, OPLL_PATCH * patch) { OPLL_dump2patch (default_inst[type] + num * 16, patch); } static void makeDefaultPatch ( void ) { e_int32 i, j; for (i = 0; i < OPLL_TONE_NUM; i++) for (j = 0; j < 19; j++) OPLL_getDefaultPatch (i, j, &default_patch[i][j * 2]); } void OPLL_setPatch (OPLL * opll, const e_uint8 * dump) { OPLL_PATCH patch[2]; int i; for (i = 0; i < 19; i++) { OPLL_dump2patch (dump + i * 16, patch); memcpy (&opll->patch[i*2+0], &patch[0], sizeof (OPLL_PATCH)); memcpy (&opll->patch[i*2+1], &patch[1], sizeof (OPLL_PATCH)); } } void OPLL_patch2dump (const OPLL_PATCH * patch, e_uint8 * dump) { dump[0] = (e_uint8) ((patch[0].AM << 7) + (patch[0].PM << 6) + (patch[0].EG << 5) + (patch[0].KR << 4) + patch[0].ML); dump[1] = (e_uint8) ((patch[1].AM << 7) + (patch[1].PM << 6) + (patch[1].EG << 5) + (patch[1].KR << 4) + patch[1].ML); dump[2] = (e_uint8) ((patch[0].KL << 6) + patch[0].TL); dump[3] = (e_uint8) ((patch[1].KL << 6) + (patch[1].WF << 4) + (patch[0].WF << 3) + patch[0].FB); dump[4] = (e_uint8) ((patch[0].AR << 4) + patch[0].DR); dump[5] = (e_uint8) ((patch[1].AR << 4) + patch[1].DR); dump[6] = (e_uint8) ((patch[0].SL << 4) + patch[0].RR); dump[7] = (e_uint8) ((patch[1].SL << 4) + patch[1].RR); dump[8] = 0; dump[9] = 0; dump[10] = 0; dump[11] = 0; dump[12] = 0; dump[13] = 0; dump[14] = 0; dump[15] = 0; } /************************************************************ Calc Parameters ************************************************************/ INLINE static e_uint32 calc_eg_dphase (OPLL_SLOT * slot) { switch (slot->eg_mode) { case ATTACK: return dphaseARTable[slot->patch->AR][slot->rks]; case DECAY: return dphaseDRTable[slot->patch->DR][slot->rks]; case SUSHOLD: return 0; case SUSTINE: return dphaseDRTable[slot->patch->RR][slot->rks]; case RELEASE: if (slot->sustine) return dphaseDRTable[5][slot->rks]; else if (slot->patch->EG) return dphaseDRTable[slot->patch->RR][slot->rks]; else return dphaseDRTable[7][slot->rks]; case SETTLE: return dphaseDRTable[15][0]; case FINISH: return 0; default: return 0; } } /************************************************************* OPLL internal interfaces *************************************************************/ #define SLOT_BD1 12 #define SLOT_BD2 13 #define SLOT_HH 14 #define SLOT_SD 15 #define SLOT_TOM 16 #define SLOT_CYM 17 /* We will set this dinamically, but not sure if this affects playback */ #if defined(ROCKBOX) INLINE static void UPDATE_PG(OPLL_SLOT * slot) { static const e_uint32 mltable[16] = { 1, 1 * 2, 2 * 2, 3 * 2, 4 * 2, 5 * 2, 6 * 2, 7 * 2, 8 * 2, 9 * 2, 10 * 2, 10 * 2, 12 * 2, 12 * 2, 15 * 2, 15 * 2 }; slot->dphase = RATE_ADJUST (((slot->fnum * mltable[slot->patch->ML]) << slot->block) >> (20 - DP_BITS)); } #else #define UPDATE_PG(S) (S)->dphase = dphaseTable[(S)->fnum][(S)->block][(S)->patch->ML] #endif #define UPDATE_TLL(S)\ (((S)->type==0)?\ ((S)->tll = tllTable[((S)->fnum)>>5][(S)->block][(S)->patch->TL][(S)->patch->KL]):\ ((S)->tll = tllTable[((S)->fnum)>>5][(S)->block][(S)->volume][(S)->patch->KL])) #define UPDATE_RKS(S) (S)->rks = rksTable[((S)->fnum)>>8][(S)->block][(S)->patch->KR] #define UPDATE_WF(S) (S)->sintbl = waveform[(S)->patch->WF] #define UPDATE_EG(S) (S)->eg_dphase = calc_eg_dphase(S) #define UPDATE_ALL(S)\ UPDATE_PG(S);\ UPDATE_TLL(S);\ UPDATE_RKS(S);\ UPDATE_WF(S); \ UPDATE_EG(S) /* EG should be updated last. */ /* Slot key on */ INLINE static void slotOn (OPLL_SLOT * slot) { slot->eg_mode = ATTACK; slot->eg_phase = 0; slot->phase = 0; UPDATE_EG(slot); } /* Slot key on without reseting the phase */ INLINE static void slotOn2 (OPLL_SLOT * slot) { slot->eg_mode = ATTACK; slot->eg_phase = 0; UPDATE_EG(slot); } /* Slot key off */ INLINE static void slotOff (OPLL_SLOT * slot) { if (slot->eg_mode == ATTACK) slot->eg_phase = EXPAND_BITS (AR_ADJUST_TABLE(HIGHBITS (slot->eg_phase, EG_DP_BITS - EG_BITS)), EG_BITS, EG_DP_BITS); slot->eg_mode = RELEASE; UPDATE_EG(slot); } /* Channel key on */ INLINE static void keyOn (OPLL * opll, e_int32 i) { if (!opll->slot_on_flag[i * 2]) slotOn (MOD(opll,i)); if (!opll->slot_on_flag[i * 2 + 1]) slotOn (CAR(opll,i)); opll->key_status[i] = 1; } /* Channel key off */ INLINE static void keyOff (OPLL * opll, e_int32 i) { if (opll->slot_on_flag[i * 2 + 1]) slotOff (CAR(opll,i)); opll->key_status[i] = 0; } INLINE static void keyOn_BD (OPLL * opll) { keyOn (opll, 6); } INLINE static void keyOn_SD (OPLL * opll) { if (!opll->slot_on_flag[SLOT_SD]) slotOn (CAR(opll,7)); } INLINE static void keyOn_TOM (OPLL * opll) { if (!opll->slot_on_flag[SLOT_TOM]) slotOn (MOD(opll,8)); } INLINE static void keyOn_HH (OPLL * opll) { if (!opll->slot_on_flag[SLOT_HH]) slotOn2 (MOD(opll,7)); } INLINE static void keyOn_CYM (OPLL * opll) { if (!opll->slot_on_flag[SLOT_CYM]) slotOn2 (CAR(opll,8)); } /* Drum key off */ INLINE static void keyOff_BD (OPLL * opll) { keyOff (opll, 6); } INLINE static void keyOff_SD (OPLL * opll) { if (opll->slot_on_flag[SLOT_SD]) slotOff (CAR(opll,7)); } INLINE static void keyOff_TOM (OPLL * opll) { if (opll->slot_on_flag[SLOT_TOM]) slotOff (MOD(opll,8)); } INLINE static void keyOff_HH (OPLL * opll) { if (opll->slot_on_flag[SLOT_HH]) slotOff (MOD(opll,7)); } INLINE static void keyOff_CYM (OPLL * opll) { if (opll->slot_on_flag[SLOT_CYM]) slotOff (CAR(opll,8)); } /* Change a voice */ INLINE static void setPatch (OPLL * opll, e_int32 i, e_int32 num) { opll->patch_number[i] = num; MOD(opll,i)->patch = &opll->patch[num * 2 + 0]; CAR(opll,i)->patch = &opll->patch[num * 2 + 1]; } /* Change a rhythm voice */ INLINE static void setSlotPatch (OPLL_SLOT * slot, OPLL_PATCH * patch) { slot->patch = patch; } /* Set sustine parameter */ INLINE static void setSustine (OPLL * opll, e_int32 c, e_int32 sustine) { CAR(opll,c)->sustine = sustine; if (MOD(opll,c)->type) MOD(opll,c)->sustine = sustine; } /* Volume : 6bit ( Volume register << 2 ) */ INLINE static void setVolume (OPLL * opll, e_int32 c, e_int32 volume) { CAR(opll,c)->volume = volume; } INLINE static void setSlotVolume (OPLL_SLOT * slot, e_int32 volume) { slot->volume = volume; } /* Set F-Number ( fnum : 9bit ) */ INLINE static void setFnumber (OPLL * opll, e_int32 c, e_int32 fnum) { CAR(opll,c)->fnum = fnum; MOD(opll,c)->fnum = fnum; } /* Set Block data (block : 3bit ) */ INLINE static void setBlock (OPLL * opll, e_int32 c, e_int32 block) { CAR(opll,c)->block = block; MOD(opll,c)->block = block; } /* Change Rhythm Mode */ INLINE static void update_rhythm_mode (OPLL * opll) { if (opll->patch_number[6] & 0x10) { if (!(opll->slot_on_flag[SLOT_BD2] | (opll->reg[0x0e] & 32))) { opll->slot[SLOT_BD1].eg_mode = FINISH; opll->slot[SLOT_BD2].eg_mode = FINISH; setPatch (opll, 6, opll->reg[0x36] >> 4); } } else if (opll->reg[0x0e] & 32) { opll->patch_number[6] = 16; opll->slot[SLOT_BD1].eg_mode = FINISH; opll->slot[SLOT_BD2].eg_mode = FINISH; setSlotPatch (&opll->slot[SLOT_BD1], &opll->patch[16 * 2 + 0]); setSlotPatch (&opll->slot[SLOT_BD2], &opll->patch[16 * 2 + 1]); } if (opll->patch_number[7] & 0x10) { if (!((opll->slot_on_flag[SLOT_HH] && opll->slot_on_flag[SLOT_SD]) | (opll->reg[0x0e] & 32))) { opll->slot[SLOT_HH].type = 0; opll->slot[SLOT_HH].eg_mode = FINISH; opll->slot[SLOT_SD].eg_mode = FINISH; setPatch (opll, 7, opll->reg[0x37] >> 4); } } else if (opll->reg[0x0e] & 32) { opll->patch_number[7] = 17; opll->slot[SLOT_HH].type = 1; opll->slot[SLOT_HH].eg_mode = FINISH; opll->slot[SLOT_SD].eg_mode = FINISH; setSlotPatch (&opll->slot[SLOT_HH], &opll->patch[17 * 2 + 0]); setSlotPatch (&opll->slot[SLOT_SD], &opll->patch[17 * 2 + 1]); } if (opll->patch_number[8] & 0x10) { if (!((opll->slot_on_flag[SLOT_CYM] && opll->slot_on_flag[SLOT_TOM]) | (opll->reg[0x0e] & 32))) { opll->slot[SLOT_TOM].type = 0; opll->slot[SLOT_TOM].eg_mode = FINISH; opll->slot[SLOT_CYM].eg_mode = FINISH; setPatch (opll, 8, opll->reg[0x38] >> 4); } } else if (opll->reg[0x0e] & 32) { opll->patch_number[8] = 18; opll->slot[SLOT_TOM].type = 1; opll->slot[SLOT_TOM].eg_mode = FINISH; opll->slot[SLOT_CYM].eg_mode = FINISH; setSlotPatch (&opll->slot[SLOT_TOM], &opll->patch[18 * 2 + 0]); setSlotPatch (&opll->slot[SLOT_CYM], &opll->patch[18 * 2 + 1]); } } INLINE static void update_key_status (OPLL * opll) { int ch; for (ch = 0; ch < 9; ch++) opll->slot_on_flag[ch * 2] = opll->slot_on_flag[ch * 2 + 1] = (opll->reg[0x20 + ch]) & 0x10; if (opll->reg[0x0e] & 32) { opll->slot_on_flag[SLOT_BD1] |= (opll->reg[0x0e] & 0x10); opll->slot_on_flag[SLOT_BD2] |= (opll->reg[0x0e] & 0x10); opll->slot_on_flag[SLOT_SD] |= (opll->reg[0x0e] & 0x08); opll->slot_on_flag[SLOT_HH] |= (opll->reg[0x0e] & 0x01); opll->slot_on_flag[SLOT_TOM] |= (opll->reg[0x0e] & 0x04); opll->slot_on_flag[SLOT_CYM] |= (opll->reg[0x0e] & 0x02); } } void OPLL_copyPatch (OPLL * opll, e_int32 num, OPLL_PATCH * patch) { memcpy (&opll->patch[num], patch, sizeof (OPLL_PATCH)); } /*********************************************************** Initializing ***********************************************************/ static void OPLL_SLOT_reset (OPLL_SLOT * slot, int type) { slot->type = type; slot->sintbl = waveform[0]; slot->phase = 0; slot->dphase = 0; slot->output[0] = 0; slot->output[1] = 0; slot->feedback = 0; slot->eg_mode = FINISH; slot->eg_phase = EG_DP_WIDTH; slot->eg_dphase = 0; slot->rks = 0; slot->tll = 0; slot->sustine = 0; slot->fnum = 0; slot->block = 0; slot->volume = 0; slot->pgout = 0; slot->egout = 0; slot->patch = &null_patch; } static void internal_refresh (void) { #if !defined(ROCKBOX) makeDphaseTable (); #endif makeDphaseARTable (); makeDphaseDRTable (); pm_dphase = (e_uint32) RATE_ADJUST ((int)(PM_SPEED * PM_DP_WIDTH) / (clk / 72)); am_dphase = (e_uint32) RATE_ADJUST ((int)(AM_SPEED * AM_DP_WIDTH) / (clk / 72)); } static void maketables (e_uint32 c, e_uint32 r) { if (c != clk) { clk = c; #ifdef EMU2413_CALCUL_TABLES makePmTable (); makeAmTable (); makeAdjustTable (); #endif makeDB2LinTable (); makeTllTable (); makeRksTable (); makeSinTable (); makeDefaultPatch (); } if (r != rate) { rate = r; internal_refresh (); } } void OPLL_new (OPLL *opll, e_uint32 clk, e_uint32 rate) { e_int32 i; maketables (clk, rate); memset(opll, 0, sizeof (OPLL)); for (i = 0; i < 19 * 2; i++) memcpy(&opll->patch[i],&null_patch,sizeof(OPLL_PATCH)); opll->mask = 0; OPLL_reset (opll); OPLL_reset_patch (opll, 0); } void OPLL_delete (OPLL * opll) { (void) opll; } /* Reset patch datas by system default. */ void OPLL_reset_patch (OPLL * opll, e_int32 type) { e_int32 i; for (i = 0; i < 19 * 2; i++) OPLL_copyPatch (opll, i, &default_patch[type % OPLL_TONE_NUM][i]); } /* Reset whole of OPLL except patch datas. */ void OPLL_reset (OPLL * opll) { e_int32 i; if (!opll) return; opll->adr = 0; opll->out = 0; opll->pm_phase = 0; opll->am_phase = 0; opll->noise_seed = 0xffff; opll->mask = 0; for (i = 0; i <18; i++) OPLL_SLOT_reset(&opll->slot[i], i%2); for (i = 0; i < 9; i++) { opll->key_status[i] = 0; setPatch (opll, i, 0); } for (i = 0; i < 0x40; i++) OPLL_writeReg (opll, i, 0); #ifndef EMU2413_COMPACTION opll->realstep = (e_uint32) ((1 << 31) / rate); opll->opllstep = (e_uint32) ((1 << 31) / (clk / 72)); opll->oplltime = 0; for (i = 0; i < 14; i++) opll->pan[i] = 2; opll->sprev[0] = opll->sprev[1] = 0; opll->snext[0] = opll->snext[1] = 0; #endif } /* Force Refresh (When external program changes some parameters). */ void OPLL_forceRefresh (OPLL * opll) { e_int32 i; if (opll == NULL) return; for (i = 0; i < 9; i++) setPatch(opll,i,opll->patch_number[i]); for (i = 0; i < 18; i++) { UPDATE_PG (&opll->slot[i]); UPDATE_RKS (&opll->slot[i]); UPDATE_TLL (&opll->slot[i]); UPDATE_WF (&opll->slot[i]); UPDATE_EG (&opll->slot[i]); } } void OPLL_set_rate (OPLL * opll, e_uint32 r) { if (rate == r) return; if (opll->quality) rate = 49716; else rate = r; internal_refresh (); rate = r; } void OPLL_set_quality (OPLL * opll, e_uint32 q) { opll->quality = q; OPLL_set_rate (opll, rate); } /********************************************************* Generate wave data *********************************************************/ /* Convert Amp(0 to EG_HEIGHT) to Phase(0 to 2PI). */ #if ( SLOT_AMP_BITS - PG_BITS ) > 0 #define wave2_2pi(e) ( (e) >> ( SLOT_AMP_BITS - PG_BITS )) #else #define wave2_2pi(e) ( (e) << ( PG_BITS - SLOT_AMP_BITS )) #endif /* Convert Amp(0 to EG_HEIGHT) to Phase(0 to 4PI). */ #if ( SLOT_AMP_BITS - PG_BITS - 1 ) == 0 #define wave2_4pi(e) (e) #elif ( SLOT_AMP_BITS - PG_BITS - 1 ) > 0 #define wave2_4pi(e) ( (e) >> ( SLOT_AMP_BITS - PG_BITS - 1 )) #else #define wave2_4pi(e) ( (e) << ( 1 + PG_BITS - SLOT_AMP_BITS )) #endif /* Convert Amp(0 to EG_HEIGHT) to Phase(0 to 8PI). */ #if ( SLOT_AMP_BITS - PG_BITS - 2 ) == 0 #define wave2_8pi(e) (e) #elif ( SLOT_AMP_BITS - PG_BITS - 2 ) > 0 #define wave2_8pi(e) ( (e) >> ( SLOT_AMP_BITS - PG_BITS - 2 )) #else #define wave2_8pi(e) ( (e) << ( 2 + PG_BITS - SLOT_AMP_BITS )) #endif /* Update AM, PM unit */ INLINE static void update_ampm (OPLL * opll) { opll->pm_phase = (opll->pm_phase + pm_dphase) & (PM_DP_WIDTH - 1); opll->am_phase = (opll->am_phase + am_dphase) & (AM_DP_WIDTH - 1); opll->lfo_am = AMTABLE(HIGHBITS (opll->am_phase, AM_DP_BITS - AM_PG_BITS)); opll->lfo_pm = PMTABLE(HIGHBITS (opll->pm_phase, PM_DP_BITS - PM_PG_BITS)); } /* PG */ INLINE static void calc_phase (OPLL_SLOT * slot, e_int32 lfo) { if (slot->patch->PM) slot->phase += (slot->dphase * lfo) >> PM_AMP_BITS; else slot->phase += slot->dphase; slot->phase &= (DP_WIDTH - 1); slot->pgout = HIGHBITS (slot->phase, DP_BASE_BITS); } /* Update Noise unit */ INLINE static void update_noise (OPLL * opll) { if(opll->noise_seed&1) opll->noise_seed ^= 0x8003020; opll->noise_seed >>= 1; } /* EG */ INLINE static void calc_envelope (OPLL_SLOT * slot, e_int32 lfo) { #define S2E(x) (SL2EG((e_int32)(x/SL_STEP))<<(EG_DP_BITS-EG_BITS)) static e_uint32 SL[16] = { S2E (0.0), S2E (3.0), S2E (6.0), S2E (9.0), S2E (12.0), S2E (15.0), S2E (18.0), S2E (21.0), S2E (24.0), S2E (27.0), S2E (30.0), S2E (33.0), S2E (36.0), S2E (39.0), S2E (42.0), S2E (48.0) }; e_uint32 egout; switch (slot->eg_mode) { case ATTACK: egout = AR_ADJUST_TABLE(HIGHBITS (slot->eg_phase, EG_DP_BITS - EG_BITS)); slot->eg_phase += slot->eg_dphase; if((EG_DP_WIDTH & slot->eg_phase)||(slot->patch->AR==15)) { egout = 0; slot->eg_phase = 0; slot->eg_mode = DECAY; UPDATE_EG (slot); } break; case DECAY: egout = HIGHBITS (slot->eg_phase, EG_DP_BITS - EG_BITS); slot->eg_phase += slot->eg_dphase; if (slot->eg_phase >= SL[slot->patch->SL]) { if (slot->patch->EG) { slot->eg_phase = SL[slot->patch->SL]; slot->eg_mode = SUSHOLD; UPDATE_EG (slot); } else { slot->eg_phase = SL[slot->patch->SL]; slot->eg_mode = SUSTINE; UPDATE_EG (slot); } } break; case SUSHOLD: egout = HIGHBITS (slot->eg_phase, EG_DP_BITS - EG_BITS); if (slot->patch->EG == 0) { slot->eg_mode = SUSTINE; UPDATE_EG (slot); } break; case SUSTINE: case RELEASE: egout = HIGHBITS (slot->eg_phase, EG_DP_BITS - EG_BITS); slot->eg_phase += slot->eg_dphase; if (egout >= (1 << EG_BITS)) { slot->eg_mode = FINISH; egout = (1 << EG_BITS) - 1; } break; case SETTLE: egout = HIGHBITS (slot->eg_phase, EG_DP_BITS - EG_BITS); slot->eg_phase += slot->eg_dphase; if (egout >= (1 << EG_BITS)) { slot->eg_mode = ATTACK; egout = (1 << EG_BITS) - 1; UPDATE_EG(slot); } break; case FINISH: egout = (1 << EG_BITS) - 1; break; default: egout = (1 << EG_BITS) - 1; break; } if (slot->patch->AM) egout = EG2DB (egout + slot->tll) + lfo; else egout = EG2DB (egout + slot->tll); if (egout >= DB_MUTE) egout = DB_MUTE - 1; slot->egout = egout | 3; } /* CARRIOR */ INLINE static e_int32 calc_slot_car (OPLL_SLOT * slot, e_int32 fm) { if (slot->egout >= (DB_MUTE - 1)) { slot->output[0] = 0; } else { slot->output[0] = DB2LIN_TABLE[slot->sintbl[(slot->pgout+wave2_8pi(fm))&(PG_WIDTH-1)] + slot->egout]; } slot->output[1] = (slot->output[1] + slot->output[0]) >> 1; return slot->output[1]; } /* MODULATOR */ INLINE static e_int32 calc_slot_mod (OPLL_SLOT * slot) { e_int32 fm; slot->output[1] = slot->output[0]; if (slot->egout >= (DB_MUTE - 1)) { slot->output[0] = 0; } else if (slot->patch->FB != 0) { fm = wave2_4pi (slot->feedback) >> (7 - slot->patch->FB); slot->output[0] = DB2LIN_TABLE[slot->sintbl[(slot->pgout+fm)&(PG_WIDTH-1)] + slot->egout]; } else { slot->output[0] = DB2LIN_TABLE[slot->sintbl[slot->pgout] + slot->egout]; } slot->feedback = (slot->output[1] + slot->output[0]) >> 1; return slot->feedback; } /* TOM */ INLINE static e_int32 calc_slot_tom (OPLL_SLOT * slot) { if (slot->egout >= (DB_MUTE - 1)) return 0; return DB2LIN_TABLE[slot->sintbl[slot->pgout] + slot->egout]; } /* SNARE */ INLINE static e_int32 calc_slot_snare (OPLL_SLOT * slot, e_uint32 noise) { if(slot->egout>=(DB_MUTE-1)) return 0; if(BIT(slot->pgout,7)) return DB2LIN_TABLE[(noise?DB_POS(0):DB_POS(15))+slot->egout]; else return DB2LIN_TABLE[(noise?DB_NEG(0):DB_NEG(15))+slot->egout]; } /* TOP-CYM */ INLINE static e_int32 calc_slot_cym (OPLL_SLOT * slot, e_uint32 pgout_hh) { e_uint32 dbout; if (slot->egout >= (DB_MUTE - 1)) return 0; else if( /* the same as fmopl.c */ ((BIT(pgout_hh,PG_BITS-8)^BIT(pgout_hh,PG_BITS-1))|BIT(pgout_hh,PG_BITS-7)) ^ /* different from fmopl.c */ (BIT(slot->pgout,PG_BITS-7)&!BIT(slot->pgout,PG_BITS-5)) ) dbout = DB_NEG(3); else dbout = DB_POS(3); return DB2LIN_TABLE[dbout + slot->egout]; } /* HI-HAT */ INLINE static e_int32 calc_slot_hat (OPLL_SLOT *slot, e_int32 pgout_cym, e_uint32 noise) { e_uint32 dbout; if (slot->egout >= (DB_MUTE - 1)) return 0; else if( /* the same as fmopl.c */ ((BIT(slot->pgout,PG_BITS-8)^BIT(slot->pgout,PG_BITS-1))|BIT(slot->pgout,PG_BITS-7)) ^ /* different from fmopl.c */ (BIT(pgout_cym,PG_BITS-7)&!BIT(pgout_cym,PG_BITS-5)) ) { if(noise) dbout = DB_NEG(12); else dbout = DB_NEG(24); } else { if(noise) dbout = DB_POS(12); else dbout = DB_POS(24); } return DB2LIN_TABLE[dbout + slot->egout]; } static e_int16 calc (OPLL * opll) EMU2413_CALC_ICODE; static e_int16 calc (OPLL * opll) { e_int32 i; update_ampm (opll); update_noise (opll); for (i = 0; i < 18; i++) { calc_phase(&opll->slot[i],opll->lfo_pm); calc_envelope(&opll->slot[i],opll->lfo_am); } e_uint32 channel_mask = opll->mask; for (i = 0; i < 9; i++) { if (CAR(opll,i)->eg_mode != FINISH) channel_mask |= (1 << i); } e_int32 mix = 0; /* CH6 */ if (opll->patch_number[6] & 0x10) { if (channel_mask & OPLL_MASK_CH (6)) { mix += calc_slot_car (CAR(opll,6), calc_slot_mod(MOD(opll,6))); channel_mask &= ~(1 << 6); } } /* CH7 */ if (opll->patch_number[7] & 0x10) { if (MOD(opll,7)->eg_mode != FINISH) mix += calc_slot_hat (MOD(opll,7), CAR(opll,8)->pgout, opll->noise_seed&1); if (channel_mask & OPLL_MASK_SD) { mix -= calc_slot_snare (CAR(opll,7), opll->noise_seed&1); channel_mask &= ~OPLL_MASK_SD; } } /* CH8 */ if (opll->patch_number[8] & 0x10) { if (MOD(opll,8)->eg_mode != FINISH) mix += calc_slot_tom (MOD(opll,8)); if (channel_mask & OPLL_MASK_CYM) { mix -= calc_slot_cym (CAR(opll,8), MOD(opll,7)->pgout); channel_mask &= ~OPLL_MASK_CYM; } } mix <<= 1; opll->current_mask = channel_mask; for (i = 0; channel_mask; channel_mask >>= 1, ++i) { if (channel_mask & 1) { mix += calc_slot_car (CAR(opll,i), calc_slot_mod(MOD(opll,i))); } } return (e_int16) mix << 3; } void OPLL_set_internal_mute(OPLL * opll, e_uint32 mute) { opll->internal_mute = mute; } e_uint32 OPLL_is_internal_muted(OPLL * opll) { return opll->internal_mute; } static e_uint32 check_mute_helper(OPLL * opll) { for (int i = 0; i < 6; i++) { /* if (ch[i].car.eg_mode != FINISH) return 0; */ if (!(opll->current_mask & OPLL_MASK_CH (i)) && (CAR(opll,i)->eg_mode != FINISH)) return 0; } if (!(opll->reg[0x0e] & 0x20)) { for(int i = 6; i < 9; i++) { /* if (ch[i].car.eg_mode != FINISH) return 0; */ if (!(opll->current_mask & OPLL_MASK_CH (i)) && (CAR(opll,i)->eg_mode != FINISH)) return 0; } } else { /* if (ch[6].car.eg_mode != FINISH) return false; if (ch[7].mod.eg_mode != FINISH) return false; if (ch[7].car.eg_mode != FINISH) return false; if (ch[8].mod.eg_mode != FINISH) return false; if (ch[8].car.eg_mode != FINISH) return false; */ if (!(opll->current_mask & OPLL_MASK_CH (6)) && (CAR(opll,6)->eg_mode != FINISH)) return 0; if (!(opll->current_mask & OPLL_MASK_CH (7)) && (MOD(opll,7)->eg_mode != FINISH)) return 0; if (!(opll->current_mask & OPLL_MASK_CH (7)) && (CAR(opll,7)->eg_mode != FINISH)) return 0; if (!(opll->current_mask & OPLL_MASK_CH (8)) && (MOD(opll,8)->eg_mode != FINISH)) return 0; if (!(opll->current_mask & OPLL_MASK_CH (8)) && (CAR(opll,8)->eg_mode != FINISH)) return 0; } return 1; /* nothing is playing, then mute */ } static void check_mute(OPLL * opll) { OPLL_set_internal_mute (opll, check_mute_helper (opll)); } EMU2413_API e_int16 *OPLL_update_buffer(OPLL * opll, e_uint32 length) { e_int16* buf = opll->buffer; while (length--) { *(buf++) = calc (opll); } check_mute (opll); return opll->buffer; } #ifdef EMU2413_COMPACTION e_int16 OPLL_calc (OPLL * opll) { return calc (opll); } #else e_int16 OPLL_calc (OPLL * opll) { if (!opll->quality) return calc (opll); while (opll->realstep > opll->oplltime) { opll->oplltime += opll->opllstep; opll->prev = opll->next; opll->next = calc (opll); } opll->oplltime -= opll->realstep; opll->out = (e_int16) (((double) opll->next * (opll->opllstep - opll->oplltime) + (double) opll->prev * opll->oplltime) / opll->opllstep); return (e_int16) opll->out; } #endif e_uint32 OPLL_setMask (OPLL * opll, e_uint32 mask) { e_uint32 ret; if (opll) { ret = opll->mask; opll->mask = mask; return ret; } else return 0; } e_uint32 OPLL_toggleMask (OPLL * opll, e_uint32 mask) { e_uint32 ret; if (opll) { ret = opll->mask; opll->mask ^= mask; return ret; } else return 0; } /**************************************************** I/O Ctrl *****************************************************/ void OPLL_writeReg (OPLL * opll, e_uint32 reg, e_uint32 data) { e_int32 i, v, ch; data = data & 0xff; reg = reg & 0x3f; opll->reg[reg] = (e_uint8) data; switch (reg) { case 0x00: opll->patch[0].AM = (data >> 7) & 1; opll->patch[0].PM = (data >> 6) & 1; opll->patch[0].EG = (data >> 5) & 1; opll->patch[0].KR = (data >> 4) & 1; opll->patch[0].ML = (data) & 15; for (i = 0; i < 9; i++) { if (opll->patch_number[i] == 0) { UPDATE_PG (MOD(opll,i)); UPDATE_RKS (MOD(opll,i)); UPDATE_EG (MOD(opll,i)); } } break; case 0x01: opll->patch[1].AM = (data >> 7) & 1; opll->patch[1].PM = (data >> 6) & 1; opll->patch[1].EG = (data >> 5) & 1; opll->patch[1].KR = (data >> 4) & 1; opll->patch[1].ML = (data) & 15; for (i = 0; i < 9; i++) { if (opll->patch_number[i] == 0) { UPDATE_PG (CAR(opll,i)); UPDATE_RKS (CAR(opll,i)); UPDATE_EG (CAR(opll,i)); } } break; case 0x02: opll->patch[0].KL = (data >> 6) & 3; opll->patch[0].TL = (data) & 63; for (i = 0; i < 9; i++) { if (opll->patch_number[i] == 0) { UPDATE_TLL(MOD(opll,i)); } } break; case 0x03: opll->patch[1].KL = (data >> 6) & 3; opll->patch[1].WF = (data >> 4) & 1; opll->patch[0].WF = (data >> 3) & 1; opll->patch[0].FB = (data) & 7; for (i = 0; i < 9; i++) { if (opll->patch_number[i] == 0) { UPDATE_WF(MOD(opll,i)); UPDATE_WF(CAR(opll,i)); } } break; case 0x04: opll->patch[0].AR = (data >> 4) & 15; opll->patch[0].DR = (data) & 15; for (i = 0; i < 9; i++) { if (opll->patch_number[i] == 0) { UPDATE_EG (MOD(opll,i)); } } break; case 0x05: opll->patch[1].AR = (data >> 4) & 15; opll->patch[1].DR = (data) & 15; for (i = 0; i < 9; i++) { if (opll->patch_number[i] == 0) { UPDATE_EG(CAR(opll,i)); } } break; case 0x06: opll->patch[0].SL = (data >> 4) & 15; opll->patch[0].RR = (data) & 15; for (i = 0; i < 9; i++) { if (opll->patch_number[i] == 0) { UPDATE_EG (MOD(opll,i)); } } break; case 0x07: opll->patch[1].SL = (data >> 4) & 15; opll->patch[1].RR = (data) & 15; for (i = 0; i < 9; i++) { if (opll->patch_number[i] == 0) { UPDATE_EG (CAR(opll,i)); } } break; case 0x0e: update_rhythm_mode (opll); if (data & 32) { if (data & 0x10) keyOn_BD (opll); else keyOff_BD (opll); if (data & 0x8) keyOn_SD (opll); else keyOff_SD (opll); if (data & 0x4) keyOn_TOM (opll); else keyOff_TOM (opll); if (data & 0x2) keyOn_CYM (opll); else keyOff_CYM (opll); if (data & 0x1) keyOn_HH (opll); else keyOff_HH (opll); } update_key_status (opll); UPDATE_ALL (MOD(opll,6)); UPDATE_ALL (CAR(opll,6)); UPDATE_ALL (MOD(opll,7)); UPDATE_ALL (CAR(opll,7)); UPDATE_ALL (MOD(opll,8)); UPDATE_ALL (CAR(opll,8)); break; case 0x0f: break; case 0x10: case 0x11: case 0x12: case 0x13: case 0x14: case 0x15: case 0x16: case 0x17: case 0x18: ch = reg - 0x10; setFnumber (opll, ch, data + ((opll->reg[0x20 + ch] & 1) << 8)); UPDATE_ALL (MOD(opll,ch)); UPDATE_ALL (CAR(opll,ch)); break; case 0x20: case 0x21: case 0x22: case 0x23: case 0x24: case 0x25: case 0x26: case 0x27: case 0x28: ch = reg - 0x20; setFnumber (opll, ch, ((data & 1) << 8) + opll->reg[0x10 + ch]); setBlock (opll, ch, (data >> 1) & 7); setSustine (opll, ch, (data >> 5) & 1); if (data & 0x10) keyOn (opll, ch); else keyOff (opll, ch); UPDATE_ALL (MOD(opll,ch)); UPDATE_ALL (CAR(opll,ch)); update_key_status (opll); update_rhythm_mode (opll); break; case 0x30: case 0x31: case 0x32: case 0x33: case 0x34: case 0x35: case 0x36: case 0x37: case 0x38: i = (data >> 4) & 15; v = data & 15; if ((opll->reg[0x0e] & 32) && (reg >= 0x36)) { switch (reg) { case 0x37: setSlotVolume (MOD(opll,7), i << 2); break; case 0x38: setSlotVolume (MOD(opll,8), i << 2); break; default: break; } } else { setPatch (opll, reg - 0x30, i); } setVolume (opll, reg - 0x30, v << 2); UPDATE_ALL (MOD(opll,reg - 0x30)); UPDATE_ALL (CAR(opll,reg - 0x30)); break; default: break; } } void OPLL_writeIO (OPLL * opll, e_uint32 adr, e_uint32 val) { if (adr & 1) OPLL_writeReg (opll, opll->adr, val); else opll->adr = val; } e_uint32 OPLL_read(OPLL * opll, e_uint32 a) { if( !(a&1) ) { /* status port */ return opll->status; } return 0xff; } #ifndef EMU2413_COMPACTION /* STEREO MODE (OPT) */ void OPLL_set_pan (OPLL * opll, e_uint32 ch, e_uint32 pan) { opll->pan[ch & 15] = pan & 3; } static void calc_stereo (OPLL * opll, e_int32 out[2]) { e_int32 b[4] = { 0, 0, 0, 0 }; /* Ignore, Right, Left, Center */ e_int32 r[4] = { 0, 0, 0, 0 }; /* Ignore, Right, Left, Center */ e_int32 i; update_ampm (opll); update_noise (opll); for(i=0;i<18;i++) { calc_phase(&opll->slot[i],opll->lfo_pm); calc_envelope(&opll->slot[i],opll->lfo_am); } for (i = 0; i < 6; i++) if (!(opll->mask & OPLL_MASK_CH (i)) && (CAR(opll,i)->eg_mode != FINISH)) b[opll->pan[i]] += calc_slot_car (CAR(opll,i), calc_slot_mod (MOD(opll,i))); if (opll->patch_number[6] <= 15) { if (!(opll->mask & OPLL_MASK_CH (6)) && (CAR(opll,6)->eg_mode != FINISH)) b[opll->pan[6]] += calc_slot_car (CAR(opll,6), calc_slot_mod (MOD(opll,6))); } else { if (!(opll->mask & OPLL_MASK_BD) && (CAR(opll,6)->eg_mode != FINISH)) r[opll->pan[9]] += calc_slot_car (CAR(opll,6), calc_slot_mod (MOD(opll,6))); } if (opll->patch_number[7] <= 15) { if (!(opll->mask & OPLL_MASK_CH (7)) && (CAR (opll,7)->eg_mode != FINISH)) b[opll->pan[7]] += calc_slot_car (CAR (opll,7), calc_slot_mod (MOD (opll,7))); } else { if (!(opll->mask & OPLL_MASK_HH) && (MOD (opll,7)->eg_mode != FINISH)) r[opll->pan[10]] += calc_slot_hat (MOD (opll,7), CAR(opll,8)->pgout, opll->noise_seed&1); if (!(opll->mask & OPLL_MASK_SD) && (CAR (opll,7)->eg_mode != FINISH)) r[opll->pan[11]] -= calc_slot_snare (CAR (opll,7), opll->noise_seed&1); } if (opll->patch_number[8] <= 15) { if (!(opll->mask & OPLL_MASK_CH (8)) && (CAR (opll,8)->eg_mode != FINISH)) b[opll->pan[8]] += calc_slot_car (CAR (opll,8), calc_slot_mod (MOD (opll,8))); } else { if (!(opll->mask & OPLL_MASK_TOM) && (MOD (opll,8)->eg_mode != FINISH)) r[opll->pan[12]] += calc_slot_tom (MOD (opll,8)); if (!(opll->mask & OPLL_MASK_CYM) && (CAR (opll,8)->eg_mode != FINISH)) r[opll->pan[13]] -= calc_slot_cym (CAR (opll,8), MOD(opll,7)->pgout); } out[1] = (b[1] + b[3] + ((r[1] + r[3]) << 1)) <<3; out[0] = (b[2] + b[3] + ((r[2] + r[3]) << 1)) <<3; } void OPLL_calc_stereo (OPLL * opll, e_int32 out[2]) { if (!opll->quality) { calc_stereo (opll, out); return; } while (opll->realstep > opll->oplltime) { opll->oplltime += opll->opllstep; opll->sprev[0] = opll->snext[0]; opll->sprev[1] = opll->snext[1]; calc_stereo (opll, opll->snext); } opll->oplltime -= opll->realstep; out[0] = (e_int16) (((double) opll->snext[0] * (opll->opllstep - opll->oplltime) + (double) opll->sprev[0] * opll->oplltime) / opll->opllstep); out[1] = (e_int16) (((double) opll->snext[1] * (opll->opllstep - opll->oplltime) + (double) opll->sprev[1] * opll->oplltime) / opll->opllstep); } #endif /* EMU2413_COMPACTION */