// Gb_Snd_Emu 0.1.4. http://www.slack.net/~ant/ #include "gb_apu.h" //#include "gb_apu_logger.h" /* Copyright (C) 2003-2008 Shay Green. This module is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "blargg_source.h" int const vol_reg = 0xFF24; int const stereo_reg = 0xFF25; int const status_reg = 0xFF26; int const wave_ram = 0xFF30; int const power_mask = 0x80; static inline int calc_output( struct Gb_Apu* this, int osc ) { int bits = this->regs [stereo_reg - io_addr] >> osc; return (bits >> 3 & 2) | (bits & 1); } void Apu_set_output( struct Gb_Apu* this, int i, struct Blip_Buffer* center, struct Blip_Buffer* left, struct Blip_Buffer* right ) { // Must be silent (all NULL), mono (left and right NULL), or stereo (none NULL) require( !center || (center && !left && !right) || (center && left && right) ); require( (unsigned) i < osc_count ); // fails if you pass invalid osc index if ( !center || !left || !right ) { left = center; right = center; } struct Gb_Osc* o = this->oscs [i]; o->outputs [1] = right; o->outputs [2] = left; o->outputs [3] = center; o->output = o->outputs [calc_output( this, i )]; } static void synth_volume( struct Gb_Apu* this, int iv ) { int v = (this->volume_ * 6) / 10 / osc_count / 15 /*steps*/ / 8 /*master vol range*/ * iv; Synth_volume( &this->synth, v ); } static void apply_volume( struct Gb_Apu* this ) { // TODO: Doesn't handle differing left and right volumes (panning). // Not worth the complexity. int data = this->regs [vol_reg - io_addr]; int left = data >> 4 & 7; int right = data & 7; //if ( data & 0x88 ) dprintf( "Vin: %02X\n", data & 0x88 ); //if ( left != right ) dprintf( "l: %d r: %d\n", left, right ); synth_volume( this, max( left, right ) + 1 ); } void Apu_volume( struct Gb_Apu* this, int v ) { if ( this->volume_ != v ) { this->volume_ = v; apply_volume( this ); } } static void reset_regs( struct Gb_Apu* this ) { int i; for ( i = 0; i < 0x20; i++ ) this->regs [i] = 0; Sweep_reset ( &this->square1 ); Square_reset( &this->square2 ); Wave_reset ( &this->wave ); Noise_reset ( &this->noise ); apply_volume( this ); } static void reset_lengths( struct Gb_Apu* this ) { this->square1.osc.length_ctr = 64; this->square2.osc.length_ctr = 64; this->wave .osc.length_ctr = 256; this->noise .osc.length_ctr = 64; } void Apu_reduce_clicks( struct Gb_Apu* this, bool reduce ) { this->reduce_clicks_ = reduce; // Click reduction makes DAC off generate same output as volume 0 int dac_off_amp = 0; if ( reduce && this->wave.osc.mode != mode_agb ) // AGB already eliminates clicks dac_off_amp = -dac_bias; int i; for ( i = 0; i < osc_count; i++ ) this->oscs [i]->dac_off_amp = dac_off_amp; // AGB always eliminates clicks on wave channel using same method if ( this->wave.osc.mode == mode_agb ) this->wave.osc.dac_off_amp = -dac_bias; } void Apu_reset( struct Gb_Apu* this, enum gb_mode_t mode, bool agb_wave ) { // Hardware mode if ( agb_wave ) mode = mode_agb; // using AGB wave features implies AGB hardware this->wave.agb_mask = agb_wave ? 0xFF : 0; int i; for ( i = 0; i < osc_count; i++ ) this->oscs [i]->mode = mode; Apu_reduce_clicks( this, this->reduce_clicks_ ); // Reset state this->frame_time = 0; this->last_time = 0; this->frame_phase = 0; reset_regs( this ); reset_lengths( this ); // Load initial wave RAM static byte const initial_wave [2] [16] = { {0x84,0x40,0x43,0xAA,0x2D,0x78,0x92,0x3C,0x60,0x59,0x59,0xB0,0x34,0xB8,0x2E,0xDA}, {0x00,0xFF,0x00,0xFF,0x00,0xFF,0x00,0xFF,0x00,0xFF,0x00,0xFF,0x00,0xFF,0x00,0xFF}, }; int b; for ( b = 2; --b >= 0; ) { // Init both banks (does nothing if not in AGB mode) // TODO: verify that this works Apu_write_register( this, 0, 0xFF1A, b * 0x40 ); unsigned i; for ( i = 0; i < sizeof initial_wave [0]; i++ ) Apu_write_register( this, 0, i + wave_ram, initial_wave [(mode != mode_dmg)] [i] ); } } void Apu_set_tempo( struct Gb_Apu* this, int t ) { this->frame_period = 4194304 / 512; // 512 Hz if ( t != (int)FP_ONE_TEMPO ) this->frame_period = t ? (blip_time_t) ((this->frame_period * FP_ONE_TEMPO) / t) : (blip_time_t) (0); } void Apu_init( struct Gb_Apu* this ) { this->wave.wave_ram = &this->regs [wave_ram - io_addr]; Synth_init( &this->synth ); this->oscs [0] = &this->square1.osc; this->oscs [1] = &this->square2.osc; this->oscs [2] = &this->wave.osc; this->oscs [3] = &this->noise.osc; int i; for ( i = osc_count; --i >= 0; ) { struct Gb_Osc* o = this->oscs [i]; o->regs = &this->regs [i * 5]; o->output = NULL; o->outputs [0] = NULL; o->outputs [1] = NULL; o->outputs [2] = NULL; o->outputs [3] = NULL; o->synth = &this->synth; } this->reduce_clicks_ = false; Apu_set_tempo( this, (int)FP_ONE_TEMPO ); this->volume_ = (int)FP_ONE_VOLUME; Apu_reset( this, mode_cgb, false ); } static void run_until_( struct Gb_Apu* this, blip_time_t end_time ) { if ( !this->frame_period ) this->frame_time += end_time - this->last_time; while ( true ) { // run oscillators blip_time_t time = end_time; if ( time > this->frame_time ) time = this->frame_time; Square_run( &this->square1, this->last_time, time ); Square_run( &this->square2, this->last_time, time ); Wave_run ( &this->wave, this->last_time, time ); Noise_run ( &this->noise, this->last_time, time ); this->last_time = time; if ( time == end_time ) break; // run frame sequencer assert( this->frame_period ); this->frame_time += this->frame_period * clk_mul; switch ( this->frame_phase++ ) { case 2: case 6: // 128 Hz clock_sweep( &this->square1 ); case 0: case 4: // 256 Hz Osc_clock_length( &this->square1.osc ); Osc_clock_length( &this->square2.osc); Osc_clock_length( &this->wave.osc); Osc_clock_length( &this->noise.osc); break; case 7: // 64 Hz this->frame_phase = 0; Square_clock_envelope( &this->square1 ); Square_clock_envelope( &this->square2 ); Noise_clock_envelope( &this->noise ); } } } static inline void run_until( struct Gb_Apu* this, blip_time_t time ) { require( time >= this->last_time ); // end_time must not be before previous time if ( time > this->last_time ) run_until_( this, time ); } void Apu_end_frame( struct Gb_Apu* this, blip_time_t end_time ) { #ifdef LOG_FRAME LOG_FRAME( end_time ); #endif if ( end_time > this->last_time ) run_until( this, end_time ); this->frame_time -= end_time; assert( this->frame_time >= 0 ); this->last_time -= end_time; assert( this->last_time >= 0 ); } static void silence_osc( struct Gb_Apu* this, struct Gb_Osc* o ) { int delta = -o->last_amp; if ( this->reduce_clicks_ ) delta += o->dac_off_amp; if ( delta ) { o->last_amp = o->dac_off_amp; if ( o->output ) { Blip_set_modified( o->output ); Synth_offset( &this->synth, this->last_time, delta, o->output ); } } } static void apply_stereo( struct Gb_Apu* this ) { int i; for ( i = osc_count; --i >= 0; ) { struct Gb_Osc* o = this->oscs [i]; struct Blip_Buffer* out = o->outputs [calc_output( this, i )]; if ( o->output != out ) { silence_osc( this, o ); o->output = out; } } } void Apu_write_register( struct Gb_Apu* this, blip_time_t time, int addr, int data ) { require( (unsigned) data < 0x100 ); int reg = addr - io_addr; if ( (unsigned) reg >= io_size ) { require( false ); return; } #ifdef LOG_WRITE LOG_WRITE( time, addr, data ); #endif if ( addr < status_reg && !(this->regs [status_reg - io_addr] & power_mask) ) { // Power is off // length counters can only be written in DMG mode if ( this->wave.osc.mode != mode_dmg || (reg != 1 && reg != 5+1 && reg != 10+1 && reg != 15+1) ) return; if ( reg < 10 ) data &= 0x3F; // clear square duty } run_until( this, time ); if ( addr >= wave_ram ) { Wave_write( &this->wave, addr, data ); } else { int old_data = this->regs [reg]; this->regs [reg] = data; if ( addr < vol_reg ) { // Oscillator write_osc( this, reg, old_data, data ); } else if ( addr == vol_reg && data != old_data ) { // Master volume int i; for ( i = osc_count; --i >= 0; ) silence_osc( this, this->oscs [i] ); apply_volume( this ); } else if ( addr == stereo_reg ) { // Stereo panning apply_stereo( this ); } else if ( addr == status_reg && (data ^ old_data) & power_mask ) { // Power control this->frame_phase = 0; int i; for ( i = osc_count; --i >= 0; ) silence_osc( this, this->oscs [i] ); reset_regs( this ); if ( this->wave.osc.mode != mode_dmg ) reset_lengths( this ); this->regs [status_reg - io_addr] = data; } } } int Apu_read_register( struct Gb_Apu* this, blip_time_t time, int addr ) { if ( addr >= status_reg ) run_until( this, time ); int reg = addr - io_addr; if ( (unsigned) reg >= io_size ) { require( false ); return 0; } if ( addr >= wave_ram ) return Wave_read( &this->wave, addr ); // Value read back has some bits always set static byte const masks [] = { 0x80,0x3F,0x00,0xFF,0xBF, 0xFF,0x3F,0x00,0xFF,0xBF, 0x7F,0xFF,0x9F,0xFF,0xBF, 0xFF,0xFF,0x00,0x00,0xBF, 0x00,0x00,0x70, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF }; int mask = masks [reg]; if ( this->wave.agb_mask && (reg == 10 || reg == 12) ) mask = 0x1F; // extra implemented bits in wave regs on AGB int data = this->regs [reg] | mask; // Status register if ( addr == status_reg ) { data &= 0xF0; data |= (int) this->square1.osc.enabled << 0; data |= (int) this->square2.osc.enabled << 1; data |= (int) this->wave .osc.enabled << 2; data |= (int) this->noise .osc.enabled << 3; } return data; }