#define DUMTAB1SIZE 256 #define DUMTAB2SIZE 1024 #include #include /* sigsqrt - square root good to 8 mantissa bits */ static float rsqrt_exptab[DUMTAB1SIZE], rsqrt_mantissatab[DUMTAB2SIZE]; static void init_rsqrt(void) { int i; for (i = 0; i < DUMTAB1SIZE; i++) { float f; long l = (i ? (i == DUMTAB1SIZE-1 ? DUMTAB1SIZE-2 : i) : 1)<< 23; *(long *)(&f) = l; rsqrt_exptab[i] = 1./sqrt(f); } for (i = 0; i < DUMTAB2SIZE; i++) { float f = 1 + (1./DUMTAB2SIZE) * i; rsqrt_mantissatab[i] = 1./sqrt(f); } } typedef struct sigsqrt { t_object x_obj; float x_f; } t_sigsqrt; static t_class *sigsqrt_class; static void *sigsqrt_new(void) { t_sigsqrt *x = (t_sigsqrt *)pd_new(sigsqrt_class); outlet_new(&x->x_obj, gensym("signal")); x->x_f = 0; return (x); } t_int *sigsqrt_perform(t_int *w) /* not static; also used in d_fft.c */ { float *in = *(t_float **)(w+1), *out = *(t_float **)(w+2); t_int n = *(t_int *)(w+3); while (n--) { float f = *in; long l = *(long *)(in++); if (f < 0) *out++ = 0; else { float g = rsqrt_exptab[(l >> 23) & 0xff] * rsqrt_mantissatab[(l >> 13) & 0x3ff]; *out++ = f * (1.5 * g - 0.5 * g * g * g * f); } } return (w + 4); } static void sigsqrt_dsp(t_sigsqrt *x, t_signal **sp) { dsp_add(sigsqrt_perform, 3, sp[0]->s_vec, sp[1]->s_vec, sp[0]->s_n); } void sqrt_tilde_setup(void) { init_rsqrt(); sigsqrt_class = class_new(gensym("sqrt~"), (t_newmethod)sigsqrt_new, 0, sizeof(t_sigsqrt), 0, 0); class_addcreator(sigsqrt_new, gensym("q8_sqrt~"), 0); /* old name */ CLASS_MAINSIGNALIN(sigsqrt_class, t_sigsqrt, x_f); class_addmethod(sigsqrt_class, (t_method)sigsqrt_dsp, gensym("dsp"), 0); }