/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2002 by Philipp Pertermann * * All files in this archive are subject to the GNU General Public License. * See the file COPYING in the source tree root for full license agreement. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "config.h" #include "mas.h" #include "thread.h" #include "kernel.h" #include "settings.h" #include "lcd.h" #include "widgets.h" #include "wps-display.h" #include "sprintf.h" #include "button.h" #include "system.h" #include "font.h" #include "icons.h" #include "lang.h" #include "peakmeter.h" /* no inline in simulator mode */ #ifdef SIMULATOR #define inline #endif /* buffer the read peak value */ static int peak_meter_max_l; static int peak_meter_max_r; /* point in time when peak_meter_max_x becomes invalid */ static long peak_meter_timeout_l; static long peak_meter_timeout_r; /* when true a clip has occurred */ static bool peak_meter_l_clip = false; static bool peak_meter_r_clip = false; /* point in time when peak_meter_x_oveflow becomes invalid */ static long peak_meter_clip_timeout_l; static long peak_meter_clip_timeout_r; static int peak_meter_clip_hold; /* specifies the value range in peak volume values */ unsigned short peak_meter_range_min; unsigned short peak_meter_range_max; static unsigned short peak_meter_range; /* if set to true clip timeout is disabled */ static bool peak_meter_clip_eternal = false; static bool peak_meter_use_dbfs = true; static unsigned short db_min = 0; static unsigned short db_max = 9000; static unsigned short db_range = 9000; #ifdef HAVE_RECORDING static unsigned short trig_strt_threshold; static long trig_strt_duration; static long trig_strt_dropout; static unsigned short trig_stp_threshold; static long trig_stp_hold; static long trig_rstrt_gap; /* point in time when the threshold was exceeded */ static long trig_hightime; /* point in time when the volume fell below the threshold*/ static long trig_lowtime; /* The output value of the trigger. See TRIG_XXX constants for valid values */ static int trig_status = TRIG_OFF; static void (*trigger_listener)(int) = NULL; #endif #if CONFIG_HWCODEC == MASNONE #define MAS_REG_DQPEAK_L 0 #define MAS_REG_DQPEAK_R 0 #endif #if !defined(SIMULATOR) && CONFIG_HWCODEC != MASNONE static int peak_meter_src_l = MAS_REG_DQPEAK_L; static int peak_meter_src_r = MAS_REG_DQPEAK_R; #endif /* temporarily en- / disables peak meter. This is especially for external applications to detect if the peak_meter is in use and needs drawing at all */ bool peak_meter_enabled = true; /* bool peak_meter_use_thread = false; static char peak_meter_stack[DEFAULT_STACK_SIZE]; */ /* used in wps.c to set the display frame rate of the peak meter */ int peak_meter_fps = 20; static int peak_meter_l; static int peak_meter_r; static int peak_meter_hold = 1; static int peak_meter_release = 8; /* debug only */ #ifdef PM_DEBUG static int peek_calls = 0; #define PEEKS_PER_DRAW_SIZE 40 static unsigned int peeks_per_redraw[PEEKS_PER_DRAW_SIZE]; #define TICKS_PER_DRAW_SIZE 20 static unsigned int ticks_per_redraw[TICKS_PER_DRAW_SIZE]; #endif /* time out values for max */ static const long max_time_out[] = { 0 * HZ, HZ / 5, 30, HZ / 2, HZ, 2 * HZ, 3 * HZ, 4 * HZ, 5 * HZ, 6 * HZ, 7 * HZ, 8 * HZ, 9 * HZ, 10 * HZ, 15 * HZ, 20 * HZ, 30 * HZ, 60 * HZ }; /* time out values for clip */ static const long clip_time_out[] = { 0 * HZ, 1 * HZ, 2 * HZ, 3 * HZ, 4 * HZ, 5 * HZ, 6 * HZ, 7 * HZ, 8 * HZ, 9 * HZ, 10 * HZ, 15 * HZ, 20 * HZ, 25 * HZ, 30 * HZ, 45 * HZ, 60 * HZ, 90 * HZ, 120 * HZ, 180 * HZ, 300 * HZ, 600L * HZ, 1200L * HZ, 2700L * HZ, 5400L * HZ }; /* precalculated peak values that represent magical dBfs values. Used to draw the scale */ #define DB_SCALE_SRC_VALUES_SIZE 12 #if 0 static const int db_scale_src_values[DB_SCALE_SRC_VALUES_SIZE] = { 32767, /* 0 db */ 23197, /* - 3 db */ 16422, /* - 6 db */ 11626, /* - 9 db */ 8231, /* -12 db */ 4125, /* -18 db */ 2067, /* -24 db */ 1036, /* -30 db */ 328, /* -40 db */ 104, /* -50 db */ 33, /* -60 db */ 1, /* -inf */ }; #else static const int db_scale_src_values[DB_SCALE_SRC_VALUES_SIZE] = { 32752, /* 0 db */ 22784, /* - 3 db */ 14256, /* - 6 db */ 11752, /* - 9 db */ 9256, /* -12 db */ 4256, /* -18 db */ 2186, /* -24 db */ 1186, /* -30 db */ 373, /* -40 db */ 102, /* -50 db */ 33, /* -60 db */ 0, /* -inf */ }; #endif static int db_scale_count = DB_SCALE_SRC_VALUES_SIZE; /* if db_scale_valid is false the content of db_scale_lcd_coord needs recalculation */ static bool db_scale_valid = false; /* contains the lcd x coordinates of the magical scale values in db_scale_src_values */ static int db_scale_lcd_coord[sizeof db_scale_src_values / sizeof (int)]; /** * Calculates dB Value for the peak meter, uses peak value as input * @param int sample - The input value * Make sure that 0 <= value < SAMPLE_RANGE * * @return int - The 2 digit fixed comma result of the euation * 20 * log (sample / SAMPLE_RANGE) + 90 * Output range is 0-8961 (that is 0,0 - 89,6 dB). * Normally 0dB is full scale, here it is shifted +90dB. * The calculation is based on the results of a linear * approximation tool written specifically for this problem * by Andreas Zwirtes (radhard@gmx.de). The result hat an * accurracy of better than 2%. It is highly runtime optimized, * the cascading if-clauses do an successive approximation on * the input value. This avoids big lookup-tables and * for-loops. */ int calc_db (int isample) { /* return n+m*(isample-istart)/100 */ int n; long m; int istart; /* Range 1-4 */ if (isample < 119) { /* Range 1-2 */ if (isample < 5) { /* Range 1 */ if (isample < 1) { istart = 0; n = 0; m = 5900; } /* Range 2 */ else { istart = 1; n = 59; m = 34950; } } /* Range 3-4 */ else { /* Range 3 */ if (isample < 24) { istart = 5; n = 1457; m = 7168; } /* Range 4 */ else { istart = 24; n = 2819; m = 1464; } } } /* Range 5-8 */ else { /* Range 5-6 */ if (isample < 2918) { /* Range 5 */ if (isample < 592) { istart = 119; n = 4210; m = 295; } /* Range 6 */ else { istart = 592; n = 5605; m = 60; } } /* Range 7-8 */ else { /* Range 7 */ if (isample < 15352) { istart = 2918; n = 7001; m = 12; } /* Range 8 */ else { istart = 15352; n = 8439; m = 3; } } } return n + (m * (long)(isample - istart)) / 100L; } /** * A helper function for peak_meter_db2sample. Don't call it separately but * use peak_meter_db2sample. If one or both of min and max are outside the * range 0 <= min (or max) < 8961 the behaviour of this function is * undefined. It may not return. * @param int min - The minimum of the value range that is searched. * @param int max - The maximum of the value range that is searched. * @param int db - The value in dBfs * (-100) for which the according * minimal peak sample is searched. * @return int - A linear volume value with 0 <= value < MAX_PEAK */ static int db_to_sample_bin_search(int min, int max, int db){ int test = min + (max - min) / 2; if (min < max) { if (calc_db(test) < db) { test = db_to_sample_bin_search(test, max, db); } else { if (calc_db(test-1) > db) { test = db_to_sample_bin_search(min, test, db); } } } return test; } /** * Converts a value representing dBfs to a linear * scaled volume info as it is used by the MAS. * An incredibly inefficiant function which is * the vague inverse of calc_db. This really * should be replaced by something better soon. * * @param int db - A dBfs * 100 value with * -9000 < value <= 0 * @return int - The return value is in the range of * 0 <= return value < MAX_PEAK */ int peak_meter_db2sample(int db) { int retval = 0; /* what is the maximum pseudo db value */ int max_peak_db = calc_db(MAX_PEAK - 1); /* range check: db value to big */ if (max_peak_db + db < 0) { retval = 0; } /* range check: db value too small */ else if (max_peak_db + db >= max_peak_db) { retval = MAX_PEAK -1; } /* value in range: find the matching linear value */ else { retval = db_to_sample_bin_search(0, MAX_PEAK, max_peak_db + db); /* as this is a dirty function anyway, we want to adjust the full scale hit manually to avoid users complaining that when they adjust maximum for 0 dBfs and display it in percent it shows 99%. That is due to precision loss and this is the optical fix */ } return retval; } /** * Set the min value for restriction of the value range. * @param int newmin - depending wether dBfs is used * newmin is a value in dBfs * 100 or in linear percent values. * for dBfs: -9000 < newmin <= 0 * for linear: 0 <= newmin <= 100 */ void peak_meter_set_min(int newmin) { if (peak_meter_use_dbfs) { peak_meter_range_min = peak_meter_db2sample(newmin); } else { if (newmin < peak_meter_range_max) { peak_meter_range_min = newmin * MAX_PEAK / 100; } } peak_meter_range = peak_meter_range_max - peak_meter_range_min; db_min = calc_db(peak_meter_range_min); db_range = db_max - db_min; db_scale_valid = false; } /** * Returns the minimum value of the range the meter * displays. If the scale is set to dBfs it returns * dBfs values * 100 or linear percent values. * @return: using dBfs : -9000 < value <= 0 * using linear scale: 0 <= value <= 100 */ int peak_meter_get_min(void) { int retval = 0; if (peak_meter_use_dbfs) { retval = calc_db(peak_meter_range_min) - calc_db(MAX_PEAK - 1); } else { retval = peak_meter_range_min * 100 / MAX_PEAK; } return retval; } /** * Set the max value for restriction of the value range. * @param int newmax - depending wether dBfs is used * newmax is a value in dBfs * 100 or in linear percent values. * for dBfs: -9000 < newmax <= 0 * for linear: 0 <= newmax <= 100 */ void peak_meter_set_max(int newmax) { if (peak_meter_use_dbfs) { peak_meter_range_max = peak_meter_db2sample(newmax); } else { if (newmax > peak_meter_range_min) { peak_meter_range_max = newmax * MAX_PEAK / 100; } } peak_meter_range = peak_meter_range_max - peak_meter_range_min; db_max = calc_db(peak_meter_range_max); db_range = db_max - db_min; db_scale_valid = false; } /** * Returns the minimum value of the range the meter * displays. If the scale is set to dBfs it returns * dBfs values * 100 or linear percent values * @return: using dBfs : -9000 < value <= 0 * using linear scale: 0 <= value <= 100 */ int peak_meter_get_max(void) { int retval = 0; if (peak_meter_use_dbfs) { retval = calc_db(peak_meter_range_max) - calc_db(MAX_PEAK - 1); } else { retval = peak_meter_range_max * 100 / MAX_PEAK; } return retval; } /** * Returns 1 if the meter currently is * displaying dBfs values, 0 if the meter * displays percent values. * @return int - returns 0 or 1. */ int peak_meter_get_use_dbfs(void) { return peak_meter_use_dbfs ? 1 : 0; } /** * Specifies wether the values displayed are scaled * as dBfs or as linear percent values. * @param int - Set to 0 for linear percent scale. Any other value * switches on dBfs. */ void peak_meter_set_use_dbfs(int use){ peak_meter_use_dbfs = ((use & 1) == 1); db_scale_valid = false; } /** * Initialize the range of the meter. Only values * that are in the range of [range_min ... range_max] * are displayed. * @param bool dbfs - set to true for dBfs, * set to false for linear scaling in percent * @param int range_min - Specifies the lower value of the range. * Pass a value dBfs * 100 when dbfs is set to true. * Pass a percent value when dbfs is set to false. * @param int range_max - Specifies the upper value of the range. * Pass a value dBfs * 100 when dbfs is set to true. * Pass a percent value when dbfs is set to false. */ void peak_meter_init_range( bool dbfs, int range_min, int range_max) { peak_meter_use_dbfs = dbfs; peak_meter_set_min(range_min); peak_meter_set_max(range_max); } /** * Initialize the peak meter with all relevant values concerning times. * @param int release - Set the maximum amount of pixels the meter is allowed * to decrease with each redraw * @param int hold - Select the time preset for the time the peak indicator * is reset after a peak occurred. The preset values are * stored in max_time_out. * @param int clip_hold - Select the time preset for the time the peak * indicator is reset after a peak occurred. The preset * values are stored in clip_time_out. */ void peak_meter_init_times(int release, int hold, int clip_hold) { peak_meter_hold = hold; peak_meter_release = release; peak_meter_clip_hold = clip_hold; } /** * Set the source of the peak meter to playback or to * record. * @param: bool playback - If true playback peak meter is used. * If false recording peak meter is used. */ void peak_meter_playback(bool playback) { #ifdef SIMULATOR (void)playback; #elif CONFIG_HWCODEC == MASNONE /* FIX: not for the sw-based ones yes */ (void)playback; #else if (playback) { peak_meter_src_l = MAS_REG_DQPEAK_L; peak_meter_src_r = MAS_REG_DQPEAK_R; } else { peak_meter_src_l = MAS_REG_QPEAK_L; peak_meter_src_r = MAS_REG_QPEAK_R; } #endif } #ifdef HAVE_RECORDING static void set_trig_status(int new_state) { if (trig_status != new_state) { trig_status = new_state; if (trigger_listener != NULL) { trigger_listener(trig_status); } } } #endif /** * Reads peak values from the MAS, and detects clips. The * values are stored in peak_meter_l peak_meter_r for later * evauluation. Consecutive calls to peak_meter_peek detect * that ocurred. This function could be used by a thread for * busy reading the MAS. */ inline void peak_meter_peek(void) { #ifdef SIMULATOR int left = 8000; int right = 9000; #elif CONFIG_HWCODEC == MASNONE /* FIX */ int left = 9000; int right = 8000; #else /* read the peak values */ int left = mas_codec_readreg(peak_meter_src_l); int right = mas_codec_readreg(peak_meter_src_r); #endif /* check for clips An clip is assumed when two consecutive readouts of the volume are at full scale. This is proven to be inaccurate in both ways: it may detect clips when no clip occurred and it may fail to detect a real clip. */ if ((left == peak_meter_l) && (left == MAX_PEAK - 1)) { peak_meter_l_clip = true; peak_meter_clip_timeout_l = current_tick + clip_time_out[peak_meter_clip_hold]; } if ((right == peak_meter_r) && (right == MAX_PEAK - 1)) { peak_meter_r_clip = true; peak_meter_clip_timeout_r = current_tick + clip_time_out[peak_meter_clip_hold]; } #ifdef HAVE_RECORDING switch (trig_status) { case TRIG_READY: /* no more changes, if trigger was activated as release trigger */ /* threshold exceeded? */ if ((left > trig_strt_threshold) || (right > trig_strt_threshold)) { if (trig_strt_duration) { /* reset trigger duration */ trig_hightime = current_tick; /* reset dropout duration */ trig_lowtime = current_tick; /* if trig_duration is set to 0 the user wants to start recording immediately */ set_trig_status(TRIG_STEADY); } else { set_trig_status(TRIG_GO); } } break; case TRIG_STEADY: case TRIG_RETRIG: /* trigger duration exceeded */ if (current_tick - trig_hightime > trig_strt_duration) { set_trig_status(TRIG_GO); } else { /* threshold exceeded? */ if ((left > trig_strt_threshold) || (right > trig_strt_threshold)) { /* reset lowtime */ trig_lowtime = current_tick; } /* volume is below threshold */ else { /* dropout occurred? */ if (current_tick - trig_lowtime > trig_strt_dropout){ if (trig_status == TRIG_STEADY){ set_trig_status(TRIG_READY); } /* trig_status == TRIG_RETRIG */ else { /* the gap has already expired */ trig_lowtime = current_tick - trig_rstrt_gap - 1; set_trig_status(TRIG_POSTREC); } } } } break; case TRIG_GO: case TRIG_CONTINUE: /* threshold exceeded? */ if ((left > trig_stp_threshold) || (right > trig_stp_threshold)) { /* restart hold time countdown */ trig_lowtime = current_tick; } else { set_trig_status(TRIG_POSTREC); trig_hightime = current_tick; } break; case TRIG_POSTREC: /* gap time expired? */ if (current_tick - trig_lowtime > trig_rstrt_gap){ /* start threshold exceeded? */ if ((left > trig_strt_threshold) || (right > trig_strt_threshold)) { set_trig_status(TRIG_RETRIG); trig_hightime = current_tick; } else /* stop threshold exceeded */ if ((left > trig_stp_threshold) || (right > trig_stp_threshold)) { if (current_tick - trig_hightime > trig_stp_hold){ trig_lowtime = current_tick; set_trig_status(TRIG_CONTINUE); } else { trig_lowtime = current_tick - trig_rstrt_gap - 1; } } /* below any threshold */ else { if (current_tick - trig_lowtime > trig_stp_hold){ set_trig_status(TRIG_READY); } else { trig_hightime = current_tick; } } } /* still within the gap time */ else { /* stop threshold exceeded */ if ((left > trig_stp_threshold) || (right > trig_stp_threshold)) { set_trig_status(TRIG_CONTINUE); trig_lowtime = current_tick; } /* hold time expired */ else if (current_tick - trig_lowtime > trig_stp_hold){ trig_hightime = current_tick; trig_lowtime = current_tick; set_trig_status(TRIG_READY); } } break; } #endif /* peaks are searched -> we have to find the maximum. When many calls of peak_meter_peek the maximum value will be stored in peak_meter_x. This maximum is reset by the functions peak_meter_read_x. */ peak_meter_l = MAX(peak_meter_l, left); peak_meter_r = MAX(peak_meter_r, right); #ifdef PM_DEBUG peek_calls++; #endif } /** * Reads out the peak volume of the left channel. * @return int - The maximum value that has been detected * since the last call of peak_meter_read_l. The value * is in the range 0 <= value < MAX_PEAK. */ static int peak_meter_read_l (void) { /* peak_meter_l contains the maximum of all peak values that were read by peak_meter_peek since the last call of peak_meter_read_r */ int retval = peak_meter_l; #ifdef PM_DEBUG peek_calls = 0; #endif #ifdef SIMULATOR peak_meter_l = 8000; #elif CONFIG_HWCODEC == MASNONE /* FIX */ peak_meter_l = 8000; #else /* reset peak_meter_l so that subsequent calls of peak_meter_peek doesn't get fooled by an old maximum value */ peak_meter_l = mas_codec_readreg(peak_meter_src_l); #endif return retval; } /** * Reads out the peak volume of the right channel. * @return int - The maximum value that has been detected * since the last call of peak_meter_read_l. The value * is in the range 0 <= value < MAX_PEAK. */ static int peak_meter_read_r (void) { /* peak_meter_r contains the maximum of all peak values that were read by peak_meter_peek since the last call of peak_meter_read_r */ int retval = peak_meter_r; #ifdef PM_DEBUG peek_calls = 0; #endif #ifdef SIMULATOR peak_meter_l = 8000; #elif CONFIG_HWCODEC == MASNONE /* FIX */ peak_meter_r = 8000; #else /* reset peak_meter_r so that subsequent calls of peak_meter_peek doesn't get fooled by an old maximum value */ peak_meter_r = mas_codec_readreg(peak_meter_src_r); #endif return retval; } /** * Reset the detected clips. This method is for * use by the user interface. * @param int unused - This parameter was added to * make the function compatible with set_int */ void peak_meter_set_clip_hold(int time) { peak_meter_clip_eternal = false; if (time <= 0) { peak_meter_l_clip = false; peak_meter_r_clip = false; peak_meter_clip_eternal = true; } } /** * Scales a peak value as read from the MAS to the range of meterwidth. * The scaling is performed according to the scaling method (dBfs / linear) * and the range (peak_meter_range_min .. peak_meter_range_max). * @param unsigned short val - The volume value. Range: 0 <= val < MAX_PEAK * @param int meterwidht - The widht of the meter in pixel * @return unsigned short - A value 0 <= return value <= meterwidth */ unsigned short peak_meter_scale_value(unsigned short val, int meterwidth){ int retval; if (val <= peak_meter_range_min) { return 0; } if (val >= peak_meter_range_max) { return meterwidth; } retval = val; /* different scaling is used for dBfs and linear percent */ if (peak_meter_use_dbfs) { /* scale the samples dBfs */ retval = (calc_db(retval) - db_min) * meterwidth / db_range; } /* Scale for linear percent display */ else { /* scale the samples */ retval = ((retval - peak_meter_range_min) * meterwidth) / peak_meter_range; } return retval; } /** * Draws a peak meter in the specified size at the specified position. * @param int x - The x coordinate. * Make sure that 0 <= x and x + width < LCD_WIDTH * @param int y - The y coordinate. * Make sure that 0 <= y and y + height < LCD_HEIGHT * @param int width - The width of the peak meter. Note that for display * of clips a 3 pixel wide area is used -> * width > 3 * @param int height - The height of the peak meter. height > 3 */ void peak_meter_draw(int x, int y, int width, int height) { int left = 0, right = 0; static int last_left = 0, last_right = 0; int meterwidth = width - 3; int i; #ifdef PM_DEBUG static long pm_tick = 0; int tmp = peek_calls; #endif /* if disabled only draw the peak meter */ if (peak_meter_enabled) { /* read the volume info from MAS */ left = peak_meter_read_l(); right = peak_meter_read_r(); /*peak_meter_peek();*/ /* scale the samples dBfs */ left = peak_meter_scale_value(left, meterwidth); right = peak_meter_scale_value(right, meterwidth); /* if the scale has changed -> recalculate the scale (The scale becomes invalid when the range changed.) */ if (!db_scale_valid){ if (peak_meter_use_dbfs) { db_scale_count = DB_SCALE_SRC_VALUES_SIZE; for (i = 0; i < db_scale_count; i++){ /* find the real x-coords for predefined interesting dBfs values. These only are recalculated when the scaling of the meter changed. */ db_scale_lcd_coord[i] = peak_meter_scale_value( db_scale_src_values[i], meterwidth - 1); } } /* when scaling linear we simly make 10% steps */ else { db_scale_count = 10; for (i = 0; i < db_scale_count; i++) { db_scale_lcd_coord[i] = (i * (MAX_PEAK / 10) - peak_meter_range_min) * meterwidth / peak_meter_range; } } /* mark scale valid to avoid recalculating dBfs values of the scale. */ db_scale_valid = true; } /* apply release */ left = MAX(left , last_left - peak_meter_release); right = MAX(right, last_right - peak_meter_release); /* reset max values after timeout */ if (TIME_AFTER(current_tick, peak_meter_timeout_l)){ peak_meter_max_l = 0; } if (TIME_AFTER(current_tick, peak_meter_timeout_r)){ peak_meter_max_r = 0; } if (!peak_meter_clip_eternal) { if (peak_meter_l_clip && TIME_AFTER(current_tick, peak_meter_clip_timeout_l)){ peak_meter_l_clip = false; } if (peak_meter_r_clip && TIME_AFTER(current_tick, peak_meter_clip_timeout_r)){ peak_meter_r_clip = false; } } /* check for new max values */ if (left > peak_meter_max_l) { peak_meter_max_l = left - 1; peak_meter_timeout_l = current_tick + max_time_out[peak_meter_hold]; } if (right > peak_meter_max_r) { peak_meter_max_r = right - 1; peak_meter_timeout_r = current_tick + max_time_out[peak_meter_hold]; } } /* draw the peak meter */ lcd_set_drawmode(DRMODE_SOLID|DRMODE_INVERSEVID); lcd_fillrect(x, y, width, height); lcd_set_drawmode(DRMODE_SOLID); /* draw left */ lcd_fillrect (x, y, left, height / 2 - 2 ); if (peak_meter_max_l > 0) { lcd_vline(x + peak_meter_max_l, y, y + height / 2 - 2 ); } if (peak_meter_l_clip) { lcd_fillrect(x + meterwidth, y, 3, height / 2 - 1); } /* draw right */ lcd_fillrect(x, y + height / 2 + 1, right, height / 2 - 2); if (peak_meter_max_r > 0) { lcd_vline( x + peak_meter_max_r, y + height / 2, y + height - 2); } if (peak_meter_r_clip) { lcd_fillrect(x + meterwidth, y + height / 2, 3, height / 2 - 1); } /* draw scale end */ lcd_vline(x + meterwidth, y, y + height - 2); lcd_set_drawmode(DRMODE_COMPLEMENT); /* draw dots for scale marks */ for (i = 0; i < db_scale_count; i++) { /* The x-coordinates of interesting scale mark points have been calculated before */ lcd_drawpixel(db_scale_lcd_coord[i], y + height / 2 - 1); } #ifdef HAVE_RECORDING if (trig_status != TRIG_OFF) { int start_trigx, stop_trigx, ycenter; lcd_set_drawmode(DRMODE_SOLID); ycenter = y + height / 2; /* display threshold value */ start_trigx = x+peak_meter_scale_value(trig_strt_threshold,meterwidth); lcd_vline(start_trigx, ycenter - 2, ycenter); start_trigx ++; if (start_trigx < LCD_WIDTH) lcd_drawpixel(start_trigx, ycenter - 1); stop_trigx = x + peak_meter_scale_value(trig_stp_threshold,meterwidth); lcd_vline(stop_trigx, ycenter - 2, ycenter); if (stop_trigx > 0) lcd_drawpixel(stop_trigx - 1, ycenter - 1); } #endif #ifdef PM_DEBUG /* display a bar to show how many calls to peak_meter_peek have ocurred since the last display */ lcd_set_drawmode(DRMODE_COMPLEMENT); lcd_fillrect(x, y, tmp, 3); if (tmp < PEEKS_PER_DRAW_SIZE) { peeks_per_redraw[tmp]++; } tmp = current_tick - pm_tick; if (tmp < TICKS_PER_DRAW_SIZE ){ ticks_per_redraw[tmp] ++; } /* display a bar to show how many ticks have passed since the last redraw */ lcd_fillrect(x, y + height / 2, current_tick - pm_tick, 2); pm_tick = current_tick; #endif last_left = left; last_right = right; lcd_set_drawmode(DRMODE_SOLID); } #ifdef HAVE_RECORDING /** * Defines the parameters of the trigger. After these parameters are defined * the trigger can be started either by peak_meter_attack_trigger or by * peak_meter_release_trigger. Note that you can pass either linear (%) or * logarithmic (db) values to the thresholds. Positive values are intepreted as * percent (0 is 0% .. 100 is 100%). Negative values are interpreted as db. * To avoid ambiguosity of the value 0 the negative values are shifted by -1. * Thus -75 is -74db .. -1 is 0db. * @param start_threshold - The threshold used for attack trigger. Negative * values are interpreted as db -1, positive as %. * @param start_duration - The minimum time span within which start_threshold * must be exceeded to fire the attack trigger. * @param start_dropout - The maximum time span the level may fall below * start_threshold without releasing the attack trigger. * @param stop_threshold - The threshold the volume must fall below to release * the release trigger.Negative values are * interpreted as db -1, positive as %. * @param stop_hold - The minimum time the volume must fall below the * stop_threshold to release the trigger. * @param */ void peak_meter_define_trigger( int start_threshold, long start_duration, long start_dropout, int stop_threshold, long stop_hold_time, long restart_gap ) { if (start_threshold < 0) { /* db */ if (start_threshold < -89) { trig_strt_threshold = 0; } else { trig_strt_threshold =peak_meter_db2sample((start_threshold+1)*100); } } else { /* linear percent */ trig_strt_threshold = start_threshold * MAX_PEAK / 100; } trig_strt_duration = start_duration; trig_strt_dropout = start_dropout; if (stop_threshold < 0) { /* db */ trig_stp_threshold = peak_meter_db2sample((stop_threshold + 1) * 100); } else { /* linear percent */ trig_stp_threshold = stop_threshold * MAX_PEAK / 100; } trig_stp_hold = stop_hold_time; trig_rstrt_gap = restart_gap; } /** * Enables or disables the trigger. * @param on - If true the trigger is turned on. */ void peak_meter_trigger(bool on) { /* don't use set_trigger here as that would fire an undesired event */ trig_status = on ? TRIG_READY : TRIG_OFF; } /** * Registers the listener function that listenes on trig_status changes. * @param listener - The function that is called with each change of * trig_status. May be set to NULL if no callback is desired. */ void peak_meter_set_trigger_listener(void (*listener)(int status)) { trigger_listener = listener; } /** * Fetches the status of the trigger. * TRIG_OFF: the trigger is inactive * TRIG_RELEASED: The volume level is below the threshold * TRIG_ACTIVATED: The volume level has exceeded the threshold, but the trigger * hasn't been fired yet. * TRIG_FIRED: The volume exceeds the threshold * * To activate the trigger call either peak_meter_attack_trigger or * peak_meter_release_trigger. To turn the trigger off call * peak_meter_trigger_off. */ int peak_meter_trigger_status(void) { return trig_status; /* & TRIG_PIT_MASK;*/ } void peak_meter_draw_trig(int xpos, int ypos) { int x = xpos + ICON_PLAY_STATE_WIDTH + 1; switch (trig_status) { long time_left; case TRIG_READY: scrollbar(x, ypos + 1, TRIGBAR_WIDTH, TRIG_HEIGHT - 2, TRIGBAR_WIDTH, 0, 0, HORIZONTAL); lcd_bitmap(bitmap_icons_7x8[Icon_Stop], xpos, ypos, ICON_PLAY_STATE_WIDTH, STATUSBAR_HEIGHT, false); break; case TRIG_STEADY: case TRIG_RETRIG: time_left = trig_strt_duration - (current_tick - trig_hightime); time_left = time_left * TRIGBAR_WIDTH / trig_strt_duration; scrollbar(x, ypos + 1, TRIGBAR_WIDTH, TRIG_HEIGHT - 2, TRIGBAR_WIDTH, 0, TRIGBAR_WIDTH - time_left, HORIZONTAL); lcd_bitmap(bitmap_icons_7x8[Icon_Stop], xpos, ypos, ICON_PLAY_STATE_WIDTH, STATUSBAR_HEIGHT, false); break; case TRIG_GO: case TRIG_CONTINUE: scrollbar(x, ypos + 1, TRIGBAR_WIDTH, TRIG_HEIGHT - 2, TRIGBAR_WIDTH, TRIGBAR_WIDTH, TRIGBAR_WIDTH, HORIZONTAL); lcd_bitmap(bitmap_icons_7x8[Icon_Record], TRIG_WIDTH - ICON_PLAY_STATE_WIDTH, ypos, ICON_PLAY_STATE_WIDTH, STATUSBAR_HEIGHT, false); break; case TRIG_POSTREC: time_left = trig_stp_hold - (current_tick - trig_lowtime); time_left = time_left * TRIGBAR_WIDTH / trig_stp_hold; scrollbar(x, ypos + 1, TRIGBAR_WIDTH, TRIG_HEIGHT - 2, TRIGBAR_WIDTH, time_left, TRIGBAR_WIDTH, HORIZONTAL); lcd_bitmap(bitmap_icons_7x8[Icon_Record], TRIG_WIDTH - ICON_PLAY_STATE_WIDTH, ypos, ICON_PLAY_STATE_WIDTH, STATUSBAR_HEIGHT, false); break; } } #endif int peak_meter_draw_get_btn(int x, int y, int width, int height) { int button; long next_refresh = current_tick; long next_big_refresh = current_tick + HZ / 10; button = BUTTON_NONE; while (!TIME_AFTER(current_tick, next_big_refresh)) { button = button_get(false); if (button != BUTTON_NONE) { break; } sleep(MAX(next_refresh - current_tick, 0) - 1); next_refresh = current_tick + HZ / peak_meter_fps; peak_meter_peek(); peak_meter_draw(x, y, width, height); lcd_update_rect(x, y, width, height); } return button; } #ifdef PM_DEBUG static void peak_meter_clear_histogram(void) { int i = 0; for (i = 0; i < TICKS_PER_DRAW_SIZE; i++) { ticks_per_redraw[i] = (unsigned int)0; } for (i = 0; i < PEEKS_PER_DRAW_SIZE; i++) { peeks_per_redraw[i] = (unsigned int)0; } } bool peak_meter_histogram(void) { int i; int btn = BUTTON_NONE; while ((btn & BUTTON_OFF) != BUTTON_OFF ) { unsigned int max = 0; int y = 0; int x = 0; lcd_clear_display(); for (i = 0; i < PEEKS_PER_DRAW_SIZE; i++) { max = MAX(max, peeks_per_redraw[i]); } for (i = 0; i < PEEKS_PER_DRAW_SIZE; i++) { x = peeks_per_redraw[i] * (LCD_WIDTH - 1)/ max; lcd_hline(0, x, y + i); } y = PEEKS_PER_DRAW_SIZE + 1; max = 0; for (i = 0; i < TICKS_PER_DRAW_SIZE; i++) { max = MAX(max, ticks_per_redraw[i]); } for (i = 0; i < TICKS_PER_DRAW_SIZE; i++) { x = ticks_per_redraw[i] * (LCD_WIDTH - 1)/ max; lcd_hline(0, x, y + i); } lcd_update(); btn = button_get(true); if (btn == BUTTON_PLAY) { peak_meter_clear_histogram(); } } return false; } #endif