/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2011 Amaury Pouly * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #define _POSIX_C_SOURCE 200809L /* for strdup */ #include "elf.h" #include "misc.h" #include #include /** * Definitions * taken from elf.h linux header * based on ELF specification * based on ARM ELF specification */ typedef uint16_t Elf32_Half; typedef uint32_t Elf32_Word; typedef int32_t Elf32_Sword; typedef uint32_t Elf32_Addr; typedef uint32_t Elf32_Off; typedef uint16_t Elf32_Section; #define EI_NIDENT 16 typedef struct { unsigned char e_ident[EI_NIDENT]; /* Magic number and other info */ Elf32_Half e_type; /* Object file type */ Elf32_Half e_machine; /* Architecture */ Elf32_Word e_version; /* Object file version */ Elf32_Addr e_entry; /* Entry point virtual address */ Elf32_Off e_phoff; /* Program header table file offset */ Elf32_Off e_shoff; /* Section header table file offset */ Elf32_Word e_flags; /* Processor-specific flags */ Elf32_Half e_ehsize; /* ELF header size in bytes */ Elf32_Half e_phentsize; /* Program header table entry size */ Elf32_Half e_phnum; /* Program header table entry count */ Elf32_Half e_shentsize; /* Section header table entry size */ Elf32_Half e_shnum; /* Section header table entry count */ Elf32_Half e_shstrndx; /* Section header string table index */ }Elf32_Ehdr; #define EI_MAG0 0 /* File identification byte 0 index */ #define ELFMAG0 0x7f /* Magic number byte 0 */ #define EI_MAG1 1 /* File identification byte 1 index */ #define ELFMAG1 'E' /* Magic number byte 1 */ #define EI_MAG2 2 /* File identification byte 2 index */ #define ELFMAG2 'L' /* Magic number byte 2 */ #define EI_MAG3 3 /* File identification byte 3 index */ #define ELFMAG3 'F' /* Magic number byte 3 */ #define EI_CLASS 4 /* File class byte index */ #define ELFCLASS32 1 /* 32-bit objects */ #define EI_DATA 5 /* Data encoding byte index */ #define ELFDATA2LSB 1 /* 2's complement, little endian */ #define EI_VERSION 6 /* File version byte index, Value must be EV_CURRENT */ #define EI_OSABI 7 /* OS ABI identification */ #define ELFOSABI_NONE 0 /* UNIX System V ABI */ #define ELFOSABI_ARM_AEABI 64 /* ARM EABI */ #define ELFOSABI_ARM 97 /* ARM */ #define EI_ABIVERSION 8 /* ABI version */ #define EI_PAD 9 /* Byte index of padding bytes */ #define ET_EXEC 2 /* Executable file */ #define EM_ARM 40 /* ARM */ #define EV_CURRENT 1 /* Current version */ #define EF_ARM_HASENTRY 0x00000002 #define SHN_UNDEF 0 /* Undefined section */ #define SHN_ABS 0xfff1 /* Associated symbol is absolute */ typedef struct { Elf32_Word sh_name; /* Section name (string tbl index) */ Elf32_Word sh_type; /* Section type */ Elf32_Word sh_flags; /* Section flags */ Elf32_Addr sh_addr; /* Section virtual addr at execution */ Elf32_Off sh_offset; /* Section file offset */ Elf32_Word sh_size; /* Section size in bytes */ Elf32_Word sh_link; /* Link to another section */ Elf32_Word sh_info; /* Additional section information */ Elf32_Word sh_addralign; /* Section alignment */ Elf32_Word sh_entsize; /* Entry size if section holds table */ }Elf32_Shdr; #define SHT_NULL 0 /* Section header table entry unused */ #define SHT_PROGBITS 1 /* Program data */ #define SHT_SYMTAB 2 /* Symbol table */ #define SHT_STRTAB 3 /* String table */ #define SHT_RELA 4 /* Relocation entries with addends */ #define SHT_HASH 5 /* Symbol hash table */ #define SHT_DYNAMIC 6 /* Dynamic linking information */ #define SHT_NOTE 7 /* Notes */ #define SHT_NOBITS 8 /* Program space with no data (bss) */ #define SHT_REL 9 /* Relocation entries, no addends */ #define SHT_SHLIB 10 /* Reserved */ #define SHT_DYNSYM 11 /* Dynamic linker symbol table */ #define SHT_INIT_ARRAY 14 /* Array of constructors */ #define SHT_FINI_ARRAY 15 /* Array of destructors */ #define SHT_PREINIT_ARRAY 16 /* Array of pre-constructors */ #define SHT_GROUP 17 /* Section group */ #define SHT_SYMTAB_SHNDX 18 /* Extended section indeces */ #define SHT_NUM 19 /* Number of defined types. */ #define SHF_WRITE (1 << 0) /* Writable */ #define SHF_ALLOC (1 << 1) /* Occupies memory during execution */ #define SHF_EXECINSTR (1 << 2) /* Executable */ #define SHF_MERGE (1 << 4) /* Might be merged */ #define SHF_STRINGS (1 << 5) /* Contains nul-terminated strings */ typedef struct { Elf32_Word p_type; /* Segment type */ Elf32_Off p_offset; /* Segment file offset */ Elf32_Addr p_vaddr; /* Segment virtual address */ Elf32_Addr p_paddr; /* Segment physical address */ Elf32_Word p_filesz; /* Segment size in file */ Elf32_Word p_memsz; /* Segment size in memory */ Elf32_Word p_flags; /* Segment flags */ Elf32_Word p_align; /* Segment alignment */ }Elf32_Phdr; #define PT_LOAD 1 /* Loadable program segment */ #define PF_X (1 << 0) /* Segment is executable */ #define PF_W (1 << 1) /* Segment is writable */ #define PF_R (1 << 2) /* Segment is readable */ typedef struct { Elf32_Word st_name; /* Symbol name (string tbl index) */ Elf32_Addr st_value; /* Symbol value */ Elf32_Word st_size; /* Symbol size */ unsigned char st_info; /* Symbol type and binding */ unsigned char st_other; /* Symbol visibility */ Elf32_Section st_shndx; /* Section index */ }Elf32_Sym; #define ELF32_ST_BIND(val) (((unsigned char) (val)) >> 4) #define ELF32_ST_TYPE(val) ((val) & 0xf) #define ELF32_ST_INFO(bind, type) (((bind) << 4) + ((type) & 0xf)) #define STB_LOCAL 0 /* Local symbol */ #define STB_GLOBAL 1 /* Global symbol */ #define STB_WEAK 2 /* Weak symbol */ #define STB_NUM 3 /* Number of defined types. */ #define STB_LOOS 10 /* Start of OS-specific */ #define STB_GNU_UNIQUE 10 /* Unique symbol. */ #define STB_HIOS 12 /* End of OS-specific */ #define STB_LOPROC 13 /* Start of processor-specific */ #define STB_HIPROC 15 /* End of processor-specific */ #define STT_NOTYPE 0 /* Symbol type is unspecified */ #define STT_OBJECT 1 /* Symbol is a data object */ #define STT_FUNC 2 /* Symbol is a code object */ #define STT_SECTION 3 /* Symbol associated with a section */ #define STT_FILE 4 /* Symbol's name is file name */ #define STT_COMMON 5 /* Symbol is a common data object */ #define STT_TLS 6 /* Symbol is thread-local data object*/ #define STT_NUM 7 /* Number of defined types. */ #define STT_LOOS 10 /* Start of OS-specific */ #define STT_GNU_IFUNC 10 /* Symbol is indirect code object */ #define STT_HIOS 12 /* End of OS-specific */ #define STT_LOPROC 13 /* Start of processor-specific */ #define STT_HIPROC 15 /* End of processor-specific */ void elf_init(struct elf_params_t *params) { memset(params, 0, sizeof(struct elf_params_t)); } extern void *xmalloc(size_t s); static struct elf_section_t *elf_add_section(struct elf_params_t *params) { struct elf_section_t *sec = xmalloc(sizeof(struct elf_section_t)); memset(sec, 0, sizeof(struct elf_section_t)); if(params->first_section == NULL) params->first_section = params->last_section = sec; else { params->last_section->next = sec; params->last_section = sec; } sec->next = NULL; return sec; } static struct elf_symbol_t *elf_add_symbol(struct elf_params_t *params) { struct elf_symbol_t *sym = xmalloc(sizeof(struct elf_symbol_t)); memset(sym, 0, sizeof(struct elf_symbol_t)); if(params->first_symbol == NULL) params->first_symbol = params->last_symbol = sym; else { params->last_symbol->next = sym; params->last_symbol = sym; } sym->next = NULL; return sym; } static struct elf_segment_t *elf_add_segment(struct elf_params_t *params) { struct elf_segment_t *seg = xmalloc(sizeof(struct elf_section_t)); if(params->first_segment == NULL) params->first_segment = params->last_segment = seg; else { params->last_segment->next = seg; params->last_segment = seg; } seg->next = NULL; return seg; } void elf_add_load_section(struct elf_params_t *params, uint32_t load_addr, uint32_t size, const void *section, const char *name) { struct elf_section_t *sec = elf_add_section(params); sec->name = strdup(name); sec->type = EST_LOAD; sec->addr = load_addr; sec->size = size; sec->section = xmalloc(size); memcpy(sec->section, section, size); } void elf_add_fill_section(struct elf_params_t *params, uint32_t fill_addr, uint32_t size, uint32_t pattern, const char *name) { if(pattern != 0x00) { printf("oops, non-zero filling, ignore fill section\n"); return; } struct elf_section_t *sec = elf_add_section(params); sec->name = strdup(name); sec->type = EST_FILL; sec->addr = fill_addr; sec->size = size; sec->pattern = pattern; } /* sort by increasing type and then increasing address */ static int elf_simplify_compare(const void *a, const void *b) { const struct elf_section_t *sa = a; const struct elf_section_t *sb = b; if(sa->type != sb->type) return sa->type - sb->type; return sa->addr - sb->addr; } void elf_simplify(struct elf_params_t *params) { /** find all sections of the same types which are contiguous and merge them */ /* count sections */ int nr_sections = 0; struct elf_section_t *cur_sec = params->first_section; while(cur_sec) { nr_sections++; cur_sec = cur_sec->next; } /* put all sections in an array and free list */ struct elf_section_t *sections = malloc(sizeof(struct elf_section_t) * nr_sections); cur_sec = params->first_section; for(int i = 0; i < nr_sections; i++) { memcpy(§ions[i], cur_sec, sizeof(struct elf_section_t)); struct elf_section_t *old = cur_sec; cur_sec = cur_sec->next; free(old); } /* sort them by type and increasing addresses */ qsort(sections, nr_sections, sizeof(struct elf_section_t), &elf_simplify_compare); /* merge them ! */ cur_sec = §ions[0]; for(int i = 1; i < nr_sections; i++) { /* different type => no */ if(sections[i].type != cur_sec->type) goto Lnext; /* (for fill) different pattern => no */ if(sections[i].type == EST_FILL && sections[i].pattern != cur_sec->pattern) goto Lnext; /* not contiguous => no */ if(sections[i].addr != cur_sec->addr + cur_sec->size) goto Lnext; /* merge !! */ if(sections[i].type == EST_FILL) { cur_sec->size += sections[i].size; sections[i].size = 0; // will be ignored by rebuilding (see below) free(sections[i].name); } else if(sections[i].type == EST_LOAD) { // merge data also void *data = malloc(cur_sec->size + sections[i].size); memcpy(data, cur_sec->section, cur_sec->size); memcpy(data + cur_sec->size, sections[i].section, sections[i].size); free(cur_sec->section); free(sections[i].section); free(sections[i].name); cur_sec->section = data; cur_sec->size += sections[i].size; sections[i].size = 0; // will be ignored by rebuilding (see below) } continue; /* update current section to consider */ Lnext: cur_sec = §ions[i]; } /* put back on a list and free array */ struct elf_section_t **prev_ptr = ¶ms->first_section; struct elf_section_t *prev_sec = NULL; for(int i = 0; i < nr_sections; i++) { /* skip empty sections produced by simplification */ if(sections[i].size == 0) continue; struct elf_section_t *sec = malloc(sizeof(struct elf_section_t)); memcpy(sec, §ions[i], sizeof(struct elf_section_t)); *prev_ptr = sec; prev_ptr = &sec->next; prev_sec = sec; } *prev_ptr = NULL; params->last_section = prev_sec; free(sections); } /* sort by increasing address */ static int elf_addr_compare(const void *a, const void *b) { const struct elf_section_t *sa = a; const struct elf_section_t *sb = b; return sa->addr - sb->addr; } void elf_sort_by_address(struct elf_params_t *params) { /** sort sections by address */ /* count sections */ int nr_sections = 0; struct elf_section_t *cur_sec = params->first_section; while(cur_sec) { nr_sections++; cur_sec = cur_sec->next; } /* put all sections in an array and free list */ struct elf_section_t *sections = malloc(sizeof(struct elf_section_t) * nr_sections); cur_sec = params->first_section; for(int i = 0; i < nr_sections; i++) { memcpy(§ions[i], cur_sec, sizeof(struct elf_section_t)); struct elf_section_t *old = cur_sec; cur_sec = cur_sec->next; free(old); } /* sort them by type and increasing addresses */ qsort(sections, nr_sections, sizeof(struct elf_section_t), &elf_addr_compare); /* put back on a list and free array */ struct elf_section_t **prev_ptr = ¶ms->first_section; struct elf_section_t *prev_sec = NULL; for(int i = 0; i < nr_sections; i++) { /* skip empty sections produced by simplification */ if(sections[i].size == 0) continue; struct elf_section_t *sec = malloc(sizeof(struct elf_section_t)); memcpy(sec, §ions[i], sizeof(struct elf_section_t)); *prev_ptr = sec; prev_ptr = &sec->next; prev_sec = sec; } *prev_ptr = NULL; params->last_section = prev_sec; free(sections); } void elf_write_file(struct elf_params_t *params, elf_write_fn_t write, generic_printf_t printf, void *user) { (void) printf; Elf32_Ehdr ehdr; uint32_t phnum = 0; struct elf_section_t *sec = params->first_section; uint32_t offset = 0; Elf32_Phdr phdr; Elf32_Shdr shdr; memset(&ehdr, 0, EI_NIDENT); while(sec) { if(sec->type == EST_LOAD) { sec->offset = offset; offset += sec->size; } else { sec->offset = 0; } phnum++; sec = sec->next; } uint32_t strtbl_offset = offset; ehdr.e_ident[EI_MAG0] = ELFMAG0; ehdr.e_ident[EI_MAG1] = ELFMAG1; ehdr.e_ident[EI_MAG2] = ELFMAG2; ehdr.e_ident[EI_MAG3] = ELFMAG3; ehdr.e_ident[EI_CLASS] = ELFCLASS32; ehdr.e_ident[EI_DATA] = ELFDATA2LSB; ehdr.e_ident[EI_VERSION] = EV_CURRENT; ehdr.e_ident[EI_OSABI] = ELFOSABI_NONE; ehdr.e_ident[EI_ABIVERSION] = 0; ehdr.e_type = ET_EXEC; ehdr.e_machine = EM_ARM; ehdr.e_version = EV_CURRENT; ehdr.e_entry = params->start_addr; ehdr.e_flags = 0; if(params->has_start_addr) ehdr.e_flags |= EF_ARM_HASENTRY; ehdr.e_ehsize = sizeof ehdr; ehdr.e_phentsize = sizeof phdr; ehdr.e_phnum = phnum; ehdr.e_shentsize = sizeof shdr; ehdr.e_shnum = phnum + 2; /* one for section 0 and one for string table */ ehdr.e_shstrndx = ehdr.e_shnum - 1; ehdr.e_phoff = ehdr.e_ehsize; ehdr.e_shoff = ehdr.e_ehsize + ehdr.e_phnum * ehdr.e_phentsize; write(user, 0, &ehdr, sizeof ehdr); /* allocate enough size for the string table: * - one empty name ("\0") * - one name ".shstrtab\0" * - all section names with zeroes */ size_t strtbl_size = 1+ strlen(".shstrtab") + 1; sec = params->first_section; while(sec) { strtbl_size += strlen(sec->name) + 1; sec = sec->next; } char *strtbl_content = malloc(strtbl_size); strtbl_content[0] = '\0'; strcpy(&strtbl_content[1], ".shstrtab"); uint32_t strtbl_index = 1 + strlen(".shstrtab") + 1; uint32_t data_offset = ehdr.e_ehsize + ehdr.e_phnum * ehdr.e_phentsize + ehdr.e_shnum * ehdr.e_shentsize; sec = params->first_section; offset = ehdr.e_phoff; while(sec) { sec->offset += data_offset; phdr.p_type = PT_LOAD; if(sec->type == EST_LOAD) phdr.p_offset = sec->offset; else phdr.p_offset = 0; phdr.p_paddr = elf_translate_virtual_address(params, sec->addr); phdr.p_vaddr = sec->addr; /* assume identity map ? */ phdr.p_memsz = sec->size; if(sec->type == EST_LOAD) phdr.p_filesz = phdr.p_memsz; else phdr.p_filesz = 0; phdr.p_flags = PF_X | PF_W | PF_R; phdr.p_align = 0; write(user, offset, &phdr, sizeof phdr); offset += sizeof(Elf32_Phdr); sec = sec->next; } sec = params->first_section; offset = ehdr.e_shoff; { shdr.sh_name = 0; shdr.sh_type = SHT_NULL; shdr.sh_flags = 0; shdr.sh_addr = 0; shdr.sh_offset = 0; shdr.sh_size = 0; shdr.sh_link = SHN_UNDEF; shdr.sh_info = 0; shdr.sh_addralign = 0; shdr.sh_entsize = 0; write(user, offset, &shdr, sizeof shdr); offset += sizeof(Elf32_Shdr); } while(sec) { shdr.sh_name = strtbl_index; strtbl_index += 1 + sprintf(&strtbl_content[strtbl_index], "%s", sec->name); if(sec->type == EST_LOAD) shdr.sh_type = SHT_PROGBITS; else shdr.sh_type = SHT_NOBITS; shdr.sh_flags = SHF_ALLOC | SHF_EXECINSTR; shdr.sh_addr = sec->addr; shdr.sh_offset = sec->offset; shdr.sh_size = sec->size; shdr.sh_link = SHN_UNDEF; shdr.sh_info = 0; shdr.sh_addralign = 1; shdr.sh_entsize = 0; write(user, offset, &shdr, sizeof shdr); offset += sizeof(Elf32_Shdr); sec = sec->next; } { shdr.sh_name = 1; shdr.sh_type = SHT_STRTAB; shdr.sh_flags = 0; shdr.sh_addr = 0; shdr.sh_offset = strtbl_offset + data_offset; shdr.sh_size = strtbl_index; shdr.sh_link = SHN_UNDEF; shdr.sh_info = 0; shdr.sh_addralign = 1; shdr.sh_entsize = 0; write(user, offset, &shdr, sizeof shdr); offset += sizeof(Elf32_Shdr); } sec = params->first_section; while(sec) { if(sec->type == EST_LOAD) write(user, sec->offset, sec->section, sec->size); sec = sec->next; } write(user, strtbl_offset + data_offset, strtbl_content, strtbl_index); free(strtbl_content); } static void *elf_load_section(Elf32_Shdr *sh, elf_read_fn_t read, generic_printf_t printf, void *user) { void *data = xmalloc(sh->sh_size); if(!read(user, sh->sh_offset, data, sh->sh_size)) { free(data); printf(user, true, OFF, "error reading elf section data\n"); return NULL; } return data; } bool elf_guess(elf_read_fn_t read, void *user) { /* read header */ Elf32_Ehdr ehdr; if(!read(user, 0, &ehdr, sizeof(ehdr))) return false; /* basic checks */ return ehdr.e_ident[EI_MAG0] == ELFMAG0 && ehdr.e_ident[EI_MAG1] == ELFMAG1 && ehdr.e_ident[EI_MAG2] == ELFMAG2 && ehdr.e_ident[EI_MAG3] == ELFMAG3 && ehdr.e_ehsize == sizeof(ehdr) && ehdr.e_phentsize == sizeof(Elf32_Phdr) && ehdr.e_shentsize == sizeof(Elf32_Shdr); } bool elf_read_file(struct elf_params_t *params, elf_read_fn_t read, generic_printf_t printf, void *user) { #define error_printf(...) ({printf(user, true, GREY, __VA_ARGS__); return false;}) /* read header */ Elf32_Ehdr ehdr; if(!read(user, 0, &ehdr, sizeof(ehdr))) { printf(user, true, GREY, "error reading elf header\n"); return false; } /* basic checks */ if(ehdr.e_ident[EI_MAG0] != ELFMAG0 || ehdr.e_ident[EI_MAG1] != ELFMAG1 || ehdr.e_ident[EI_MAG2] != ELFMAG2 || ehdr.e_ident[EI_MAG3] != ELFMAG3) error_printf("invalid elf header\n"); if(ehdr.e_ident[EI_CLASS] != ELFCLASS32) error_printf("invalid elf class: must be a 32-bit object\n"); if(ehdr.e_ident[EI_DATA] != ELFDATA2LSB) error_printf("invalid elf data encoding: must be 32-bit lsb\n"); if(ehdr.e_ident[EI_VERSION] != EV_CURRENT) error_printf("invalid elf version\n"); if(ehdr.e_type != ET_EXEC) error_printf("invalid elf file: must be an executable file\n"); if(ehdr.e_machine != EM_ARM) error_printf("invalid elf file: must target an arm machine\n"); if(ehdr.e_ehsize != sizeof(ehdr)) error_printf("invalid elf file: size header mismatch\n"); if(ehdr.e_phnum > 0 && ehdr.e_phentsize != sizeof(Elf32_Phdr)) error_printf("invalid elf file: program header size mismatch\n"); if(ehdr.e_shnum > 0 && ehdr.e_shentsize != sizeof(Elf32_Shdr)) error_printf("invalid elf file: section header size mismatch\n"); elf_set_start_addr(params, ehdr.e_entry); /* run through sections */ printf(user, false, OFF, "ELF file:\n"); Elf32_Shdr *shdr = xmalloc(sizeof(Elf32_Shdr) * ehdr.e_shnum); if(!read(user, ehdr.e_shoff, shdr, sizeof(Elf32_Shdr) * ehdr.e_shnum)) { printf(user, true, GREY, "cannot read elf section headers\n"); return false; } char *strtab = elf_load_section(&shdr[ehdr.e_shstrndx], read, printf, user); if(!strtab) printf(user, false, OFF, "elf file has no valid section string table\n"); for(int i = 1; i < ehdr.e_shnum; i++) { const char *sec_name = &strtab[shdr[i].sh_name]; if(strtab == NULL) sec_name = NULL; if(shdr[i].sh_type == SHT_PROGBITS && shdr[i].sh_flags & SHF_ALLOC) { void *data = elf_load_section(&shdr[i], read, printf, user); if(!data) { printf(user, true, GREY, "cannot read elf section %s\n", sec_name); goto Lerr; } elf_add_load_section(params, shdr[i].sh_addr, shdr[i].sh_size, data, sec_name); free(data); printf(user, false, OFF, "create load segment for %s\n", sec_name); } else if(shdr[i].sh_type == SHT_NOBITS && shdr[i].sh_flags & SHF_ALLOC) { elf_add_fill_section(params, shdr[i].sh_addr, shdr[i].sh_size, 0, sec_name); printf(user, false, OFF, "create fill segment for %s\n", sec_name); } else if(shdr[i].sh_type == SHT_SYMTAB) { // load string table char *symstrtab = elf_load_section(&shdr[shdr[i].sh_link], read, printf, user); if(!symstrtab) { printf(user, true, GREY, "cannot load string table for symbol table %s\n", sec_name); goto Lerr; } // load symbol table data Elf32_Sym *symdata = elf_load_section(&shdr[i], read, printf, user); if(!symdata) { printf(user, true, GREY, "cannot read elf section %s\n", sec_name); free(symstrtab); goto Lerr; } // load symbols (only global ones) int nr_symbols = shdr[i].sh_size / sizeof(Elf32_Sym); for(int j = shdr[i].sh_info; j < nr_symbols; j++) { if(ELF32_ST_BIND(symdata[j].st_info) != STB_GLOBAL) continue; int type = ELF32_ST_TYPE(symdata[j].st_info); if(type != STT_NOTYPE && type != STT_FUNC && type != STT_OBJECT) continue; if(symdata[j].st_shndx == SHN_UNDEF) continue; struct elf_symbol_t *sym = elf_add_symbol(params); sym->name = strdup(&symstrtab[symdata[j].st_name]); sym->addr = symdata[j].st_value; sym->size = symdata[j].st_size; if(symdata[j].st_shndx == SHN_ABS) sym->section = NULL; else sym->section = strdup(&strtab[shdr[symdata[j].st_shndx].sh_name]); switch(type) { case STT_FUNC: sym->type = ESYT_FUNC; break; case STT_OBJECT: sym->type = ESYT_OBJECT; break; case STT_NOTYPE: default: sym->type = ESYT_NOTYPE; break; } printf(user, false, OFF, "add symbol %s at %#x, type %d, size %d, section %s\n", sym->name, sym->addr, sym->type, sym->size, sym->section); } free(symdata); free(symstrtab); } else { printf(user, false, OFF, "filter out %s, type %d\n", sec_name, shdr[i].sh_type); } } free(strtab); free(shdr); /* run through segments */ for(int i = 1; i < ehdr.e_phnum; i++) { uint32_t off = ehdr.e_phoff + i * ehdr.e_phentsize; Elf32_Phdr phdr; memset(&phdr, 0, sizeof(phdr)); if(!read(user, off, &phdr, sizeof(phdr))) error_printf("error reading elf segment header"); if(phdr.p_type != PT_LOAD) continue; struct elf_segment_t *seg = elf_add_segment(params); seg->vaddr = phdr.p_vaddr; seg->paddr = phdr.p_paddr; seg->vsize = phdr.p_memsz; seg->psize = phdr.p_filesz; printf(user, false, OFF, "create segment [%#x,+%#x[ -> [%#x,+%#x[\n", seg->vaddr, seg->vsize, seg->paddr, seg->psize); } return true; Lerr: free(strtab); free(shdr); return false; } uint32_t elf_translate_virtual_address(struct elf_params_t *params, uint32_t addr) { struct elf_segment_t *seg = params->first_segment; while(seg) { if(seg->vaddr <= addr && addr < seg->vaddr + seg->vsize) return addr - seg->vaddr + seg->paddr; seg = seg->next; } return addr; } bool elf_is_empty(struct elf_params_t *params) { return params->first_section == NULL; } void elf_set_start_addr(struct elf_params_t *params, uint32_t addr) { params->has_start_addr = true; params->start_addr = addr; } bool elf_get_start_addr(struct elf_params_t *params, uint32_t *addr) { if(params->has_start_addr && addr != NULL) *addr = params->start_addr; return params->has_start_addr; } int elf_get_nr_sections(struct elf_params_t *params) { int nr = 0; struct elf_section_t *sec = params->first_section; while(sec) { nr++; sec = sec->next; } return nr; } void elf_release(struct elf_params_t *params) { struct elf_section_t *sec = params->first_section; while(sec) { struct elf_section_t *next_sec = sec->next; if(sec->type == EST_LOAD) free(sec->section); free(sec->name); free(sec); sec = next_sec; } struct elf_segment_t *seg = params->first_segment; while(seg) { struct elf_segment_t *next_seg = seg->next; free(seg); seg = next_seg; } struct elf_symbol_t *sym = params->first_symbol; while(sym) { free(sym->name); free(sym->section); struct elf_symbol_t *next_sym = sym->next; free(sym); sym = next_sym; } } void elf_std_write(void *user, uint32_t addr, const void *buf, size_t count) { FILE *f = user; fseek(f, addr, SEEK_SET); fwrite(buf, count, 1, f); } bool elf_std_read(void *user, uint32_t addr, void *buf, size_t count) { if(fseek((FILE *)user, addr, SEEK_SET) == -1) return false; return fread(buf, 1, count, (FILE *)user) == count; }