/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2016 Amaury Pouly * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "crypto.h" #include "misc.h" #include "tomcrypt.h" enum crypto_method_t g_cur_method = CRYPTO_NONE; uint8_t g_key[16]; int cbc_mac2( const uint8_t *in_data, /* Input data */ uint8_t *out_data, /* Output data (or NULL) */ int nr_blocks, /* Number of blocks to encrypt/decrypt (one block=16 bytes) */ uint8_t key[16], /* Key */ uint8_t iv[16], /* Initialisation Vector */ uint8_t (*out_cbc_mac)[16], /* CBC-MAC of the result (or NULL) */ bool encrypt /* 1 to encrypt, 0 to decrypt */ ) { int cipher = register_cipher(&aes_desc); symmetric_CBC cbc; cbc_start(cipher, iv, key, 16, 0, &cbc); /* encrypt */ if(encrypt) { uint8_t tmp[16]; /* we need some output buffer, either a temporary one if we are CBC-MACing * only, or use output buffer if available */ uint8_t *out_ptr = (out_data == NULL) ? tmp : out_data; while(nr_blocks-- > 0) { cbc_encrypt(in_data, out_ptr, 16, &cbc); /* if this is the last block, copy CBC-MAC */ if(nr_blocks == 0 && out_cbc_mac) memcpy(out_cbc_mac, out_ptr, 16); /* if we are writing data to the output buffer, advance output pointer */ if(out_data != NULL) out_ptr += 16; in_data += 16; } return CRYPTO_ERROR_SUCCESS; } /* decrypt */ else { cbc_decrypt(in_data, out_data, nr_blocks * 16, &cbc); /* update keys if neeeded */ /* we cannot produce a CBC-MAC in decrypt mode, output buffer exists */ if(out_cbc_mac || out_data == NULL) return CRYPTO_ERROR_INVALID_OP; return CRYPTO_ERROR_SUCCESS; } } int crypto_setup(struct crypto_key_t *key) { g_cur_method = key->method; switch(g_cur_method) { case CRYPTO_KEY: memcpy(g_key, key->u.key, 16); return CRYPTO_ERROR_SUCCESS; default: return CRYPTO_ERROR_BADSETUP; } } int crypto_apply( uint8_t *in_data, /* Input data */ uint8_t *out_data, /* Output data (or NULL) */ int nr_blocks, /* Number of blocks (one block=16 bytes) */ uint8_t iv[16], /* Key */ uint8_t (*out_cbc_mac)[16], /* CBC-MAC of the result (or NULL) */ bool encrypt) { if(g_cur_method == CRYPTO_KEY) return cbc_mac2(in_data, out_data, nr_blocks, g_key, iv, out_cbc_mac, encrypt); else return CRYPTO_ERROR_BADSETUP; } void sha_1_init(struct sha_1_params_t *params) { sha1_init(¶ms->state); } void sha_1_update(struct sha_1_params_t *params, uint8_t *buffer, int size) { sha1_process(¶ms->state, buffer, size); } void sha_1_finish(struct sha_1_params_t *params) { sha1_done(¶ms->state, params->hash); } void sha_1_output(struct sha_1_params_t *params, uint8_t *out) { memcpy(out, params->hash, 20); }