/* ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding ** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** Any non-GPL usage of this software or parts of this software is strictly ** forbidden. ** ** Commercial non-GPL licensing of this software is possible. ** For more info contact Ahead Software through Mpeg4AAClicense@nero.com. ** ** $Id$ **/ #include "common.h" #include "structs.h" #include #include #ifdef _WIN32_WCE #define assert(x) #else #include #endif #include "filtbank.h" #include "decoder.h" #include "syntax.h" #include "kbd_win.h" #include "sine_win.h" /* static variables */ static real_t transf_buf[2*FRAME_LEN] IBSS_ATTR MEM_ALIGN_ATTR; #ifdef LTP_DEC static real_t windowed_buf[2*FRAME_LEN] MEM_ALIGN_ATTR = {0}; #endif /*Windowing functions borrowed from libwmai*/ #ifdef CPU_ARM static inline void vector_fmul_add_add(real_t *dst, const real_t *src0, const real_t *src1, const real_t *src2, int len) { /* Block sizes are always power of two */ asm volatile ( "0:" "ldmia %[d]!, {r0, r1};" "ldmia %[w]!, {r4, r5};" /* consume the first data and window value so we can use those * registers again */ "smull r8, r9, r0, r4;" "ldmia %[src2]!, {r0, r4};" "add r0, r0, r9, lsl #1;" /* *dst=*dst+(r9<<1)*/ "smull r8, r9, r1, r5;" "add r1, r4, r9, lsl #1;" "stmia %[dst]!, {r0, r1};" "subs %[n], %[n], #2;" "bne 0b;" : [d] "+r" (src0), [w] "+r" (src1), [src2] "+r" (src2), [dst] "+r" (dst), [n] "+r" (len) : : "r0", "r1", "r4", "r5", "r8", "r9", "memory", "cc"); } static inline void vector_fmul_reverse(real_t *dst, const real_t *src0, const real_t *src1, int len) { /* Block sizes are always power of two */ asm volatile ( "add %[s1], %[s1], %[n], lsl #2;" "0:" "ldmia %[s0]!, {r0, r1};" "ldmdb %[s1]!, {r4, r5};" "smull r8, r9, r0, r5;" "mov r0, r9, lsl #1;" "smull r8, r9, r1, r4;" "mov r1, r9, lsl #1;" "stmia %[dst]!, {r0, r1};" "subs %[n], %[n], #2;" "bne 0b;" : [s0] "+r" (src0), [s1] "+r" (src1), [dst] "+r" (dst), [n] "+r" (len) : : "r0", "r1", "r4", "r5", "r8", "r9", "memory", "cc"); } #elif defined(CPU_COLDFIRE) static inline void vector_fmul_add_add(real_t *dst, const real_t *src0, const real_t *src1, const real_t *src2, int len) { /* Block sizes are always power of two. Smallest block is always way bigger * than four too.*/ asm volatile ( "0:" "movem.l (%[src0]), %%d0-%%d3;" "movem.l (%[src1]), %%d4-%%d5/%%a0-%%a1;" "mac.l %%d0, %%d4, %%acc0;" "mac.l %%d1, %%d5, %%acc1;" "mac.l %%d2, %%a0, %%acc2;" "mac.l %%d3, %%a1, %%acc3;" "lea.l (16, %[src0]), %[src0];" "lea.l (16, %[src1]), %[src1];" "movclr.l %%acc0, %%d0;" "movclr.l %%acc1, %%d1;" "movclr.l %%acc2, %%d2;" "movclr.l %%acc3, %%d3;" "movem.l (%[src2]), %%d4-%%d5/%%a0-%%a1;" "lea.l (16, %[src2]), %[src2];" "add.l %%d4, %%d0;" "add.l %%d5, %%d1;" "add.l %%a0, %%d2;" "add.l %%a1, %%d3;" "movem.l %%d0-%%d3, (%[dst]);" "lea.l (16, %[dst]), %[dst];" "subq.l #4, %[n];" "jne 0b;" : [src0] "+a" (src0), [src1] "+a" (src1), [src2] "+a" (src2), [dst] "+a" (dst), [n] "+d" (len) : : "d0", "d1", "d2", "d3", "d4", "d5", "a0", "a1", "memory", "cc"); } static inline void vector_fmul_reverse(real_t *dst, const real_t *src0, const real_t *src1, int len) { /* Block sizes are always power of two. Smallest block is always way bigger * than four too.*/ asm volatile ( "lea.l (-16, %[s1], %[n]*4), %[s1];" "0:" "movem.l (%[s0]), %%d0-%%d3;" "movem.l (%[s1]), %%d4-%%d5/%%a0-%%a1;" "mac.l %%d0, %%a1, %%acc0;" "mac.l %%d1, %%a0, %%acc1;" "mac.l %%d2, %%d5, %%acc2;" "mac.l %%d3, %%d4, %%acc3;" "lea.l (16, %[s0]), %[s0];" "lea.l (-16, %[s1]), %[s1];" "movclr.l %%acc0, %%d0;" "movclr.l %%acc1, %%d1;" "movclr.l %%acc2, %%d2;" "movclr.l %%acc3, %%d3;" "movem.l %%d0-%%d3, (%[dst]);" "lea.l (16, %[dst]), %[dst];" "subq.l #4, %[n];" "jne 0b;" : [s0] "+a" (src0), [s1] "+a" (src1), [dst] "+a" (dst), [n] "+d" (len) : : "d0", "d1", "d2", "d3", "d4", "d5", "a0", "a1", "memory", "cc"); } #else static inline void vector_fmul_add_add(real_t *dst, const real_t *src0, const real_t *src1, const real_t *src2, int len){ int i; for(i=0; imdct2048; break; case 256: case 240: mdct = fb->mdct256; break; #ifdef LD_DEC case 1024: case 960: mdct = fb->mdct1024; break; #endif } faad_mdct(mdct, in_data, out_data); } #endif void ifilter_bank(uint8_t window_sequence, uint8_t window_shape, uint8_t window_shape_prev, real_t *freq_in, real_t *time_out, real_t *overlap, uint8_t object_type, uint16_t frame_len) { int32_t i, idx0, idx1; real_t win0, win1, win2; const real_t *window_long = NULL; const real_t *window_long_prev = NULL; const real_t *window_short = NULL; const real_t *window_short_prev = NULL; int32_t nlong = frame_len; int32_t nshort = frame_len/8; int32_t nflat_ls = (nlong-nshort)/2; #ifdef PROFILE int64_t count = faad_get_ts(); #endif memset(transf_buf,0,sizeof(transf_buf)); /* select windows of current frame and previous frame (Sine or KBD) */ #ifdef LD_DEC if (object_type == LD) { window_long = fb->ld_window[window_shape]; window_long_prev = fb->ld_window[window_shape_prev]; } else { #else (void) object_type; #endif /* AAC uses two different window shapes depending on spectal features */ if (window_shape == 0) { window_long = sine_long_1024; window_short = sine_short_128; } else { window_long = kbd_long_1024; window_short = kbd_short_128; } if (window_shape_prev == 0) { window_long_prev = sine_long_1024; window_short_prev = sine_short_128; } else { window_long_prev = kbd_long_1024; window_short_prev = kbd_short_128; } #ifdef LD_DEC } #endif #if 0 for (i = 0; i < 1024; i++) { printf("%d\n", freq_in[i]); } #endif #if 0 printf("%d %d\n", window_sequence, window_shape); #endif switch (window_sequence) { case ONLY_LONG_SEQUENCE: /* perform iMDCT */ ff_imdct_calc(11, transf_buf, freq_in); /* add second half output of previous frame to windowed output of current frame */ vector_fmul_add_add(time_out, transf_buf, window_long_prev, overlap, nlong); /* window the second half and save as overlap for next frame */ vector_fmul_reverse(overlap, transf_buf+nlong, window_long, nlong); break; case LONG_START_SEQUENCE: /* perform iMDCT */ ff_imdct_calc(11, transf_buf, freq_in); /* add second half output of previous frame to windowed output of current frame */ vector_fmul_add_add(time_out, transf_buf, window_long_prev, overlap, nlong); /* window the second half and save as overlap for next frame */ /* construct second half window using padding with 1's and 0's */ memcpy(overlap, transf_buf+nlong, nflat_ls*sizeof(real_t)); vector_fmul_reverse(overlap+nflat_ls, transf_buf+nlong+nflat_ls, window_short, nshort); memset(overlap+nflat_ls+nshort, 0, nflat_ls*sizeof(real_t)); break; case EIGHT_SHORT_SEQUENCE: /* this could be assemblerized too, but this case is extremely uncommon */ /* perform iMDCT for each short block */ idx0 = 0; ff_imdct_calc(8, transf_buf , freq_in ); idx0 += nshort; ff_imdct_calc(8, transf_buf + (idx0<<1), freq_in + idx0); idx0 += nshort; ff_imdct_calc(8, transf_buf + (idx0<<1), freq_in + idx0); idx0 += nshort; ff_imdct_calc(8, transf_buf + (idx0<<1), freq_in + idx0); idx0 += nshort; ff_imdct_calc(8, transf_buf + (idx0<<1), freq_in + idx0); idx0 += nshort; ff_imdct_calc(8, transf_buf + (idx0<<1), freq_in + idx0); idx0 += nshort; ff_imdct_calc(8, transf_buf + (idx0<<1), freq_in + idx0); idx0 += nshort; ff_imdct_calc(8, transf_buf + (idx0<<1), freq_in + idx0); /* Add second half output of previous frame to windowed output of current * frame */ /* Step 1: copy */ memcpy(time_out, overlap, nflat_ls*sizeof(real_t)); /* Step 2: First window half, first half of nshort */ for (i = 0; i < nshort/2; i++) { win0 = window_short[nshort-1-i]; win1 = window_short[i]; win2 = window_short_prev[i]; idx0 = nflat_ls + i; idx1 = i; time_out[idx0] = overlap[idx0] + MUL_F(transf_buf[idx1], win2); idx0 += nshort; idx1 += (nshort<<1); time_out[idx0] = overlap[idx0] + MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1); idx0 += nshort; idx1 += (nshort<<1); time_out[idx0] = overlap[idx0] + MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1); idx0 += nshort; idx1 += (nshort<<1); time_out[idx0] = overlap[idx0] + MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1); idx0 += nshort; idx1 += (nshort<<1); time_out[idx0] = overlap[idx0] + MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1); } /* Step 3: First window half, second half of nshort */ for (; i < nshort; i++) { win0 = window_short[nshort-1-i]; win1 = window_short[i]; idx0 = nflat_ls + i; idx1 = i; time_out[idx0] = overlap[idx0] + MUL_F(transf_buf[idx1], win1); idx0 += nshort; idx1 += (nshort<<1); time_out[idx0] = overlap[idx0] + MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1); idx0 += nshort; idx1 += (nshort<<1); time_out[idx0] = overlap[idx0] + MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1); idx0 += nshort; idx1 += (nshort<<1); time_out[idx0] = overlap[idx0] + MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1); } /* Window the second half and save as overlap for next frame */ /* Step 1: Second window half, first half of nshort */ for (i = 0; i < nshort/2; i++) { win0 = window_short[nshort-1-i]; win1 = window_short[i]; idx0 = nflat_ls + 5*nshort + i - nlong; idx1 = nshort*10 + i; overlap[idx0] = MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1); idx0 += nshort; idx1 += (nshort<<1); overlap[idx0] = MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1); idx0 += nshort; idx1 += (nshort<<1); overlap[idx0] = MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1); idx0 += nshort; idx1 += (nshort<<1); overlap[idx0] = MUL_F(transf_buf[idx1-nshort], win0); } /* Step 2: Second window half, second half of nshort */ for (; i < nshort; i++) { win0 = window_short[nshort-1-i]; win1 = window_short[i]; idx0 = nflat_ls + 4*nshort + i - nlong; idx1 = nshort*8 + i; overlap[idx0] = MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1); idx0 += nshort; idx1 += (nshort<<1); overlap[idx0] = MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1); idx0 += nshort; idx1 += (nshort<<1); overlap[idx0] = MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1); idx0 += nshort; idx1 += (nshort<<1); overlap[idx0] = MUL_F(transf_buf[idx1-nshort], win0) + MUL_F(transf_buf[idx1], win1); idx0 += nshort; idx1 += (nshort<<1); overlap[idx0] = MUL_F(transf_buf[idx1-nshort], win0); } /* Step 3: Set to zero */ memset(overlap+nflat_ls+nshort, 0, nflat_ls*sizeof(real_t)); break; case LONG_STOP_SEQUENCE: /* perform iMDCT */ ff_imdct_calc(11, transf_buf, freq_in); /* add second half output of previous frame to windowed output of current frame */ /* construct first half window using padding with 1's and 0's */ memcpy(time_out, overlap, nflat_ls*sizeof(real_t)); vector_fmul_add_add(time_out+nflat_ls, transf_buf+nflat_ls, window_short_prev, overlap+nflat_ls, nshort); /* nflat_ls can be divided by 2. */ idx0 = nflat_ls + nshort; for (i = 0; i < nflat_ls; i+=2) { time_out[idx0] = overlap[idx0] + transf_buf[idx0]; idx0++; time_out[idx0] = overlap[idx0] + transf_buf[idx0]; idx0++; } /* window the second half and save as overlap for next frame */ vector_fmul_reverse(overlap, transf_buf+nlong, window_long, nlong); break; } #if 0 for (i = 0; i < 1024; i++) { printf("%d\n", time_out[i]); //printf("0x%.8X\n", time_out[i]); } #endif #ifdef PROFILE count = faad_get_ts() - count; fb->cycles += count; #endif } #ifdef LTP_DEC /* only works for LTP -> no overlapping, no short blocks */ void filter_bank_ltp(fb_info *fb, uint8_t window_sequence, uint8_t window_shape, uint8_t window_shape_prev, real_t *in_data, real_t *out_mdct, uint8_t object_type, uint16_t frame_len) { int16_t i; const real_t *window_long = NULL; const real_t *window_long_prev = NULL; const real_t *window_short = NULL; const real_t *window_short_prev = NULL; uint16_t nlong = frame_len; uint16_t nshort = frame_len/8; uint16_t nflat_ls = (nlong-nshort)/2; //assert(window_sequence != EIGHT_SHORT_SEQUENCE); memset(windowed_buf,0,sizeof(windowed_buf)); #ifdef LD_DEC if (object_type == LD) { window_long = fb->ld_window[window_shape]; window_long_prev = fb->ld_window[window_shape_prev]; } else { #else (void) object_type; #endif window_long = fb->long_window[window_shape]; window_long_prev = fb->long_window[window_shape_prev]; window_short = fb->short_window[window_shape]; window_short_prev = fb->short_window[window_shape_prev]; #ifdef LD_DEC } #endif switch(window_sequence) { case ONLY_LONG_SEQUENCE: for (i = nlong-1; i >= 0; i--) { windowed_buf[i] = MUL_F(in_data[i], window_long_prev[i]); windowed_buf[i+nlong] = MUL_F(in_data[i+nlong], window_long[nlong-1-i]); } mdct(fb, windowed_buf, out_mdct, 2*nlong); break; case LONG_START_SEQUENCE: for (i = 0; i < nlong; i++) windowed_buf[i] = MUL_F(in_data[i], window_long_prev[i]); for (i = 0; i < nflat_ls; i++) windowed_buf[i+nlong] = in_data[i+nlong]; for (i = 0; i < nshort; i++) windowed_buf[i+nlong+nflat_ls] = MUL_F(in_data[i+nlong+nflat_ls], window_short[nshort-1-i]); for (i = 0; i < nflat_ls; i++) windowed_buf[i+nlong+nflat_ls+nshort] = 0; mdct(fb, windowed_buf, out_mdct, 2*nlong); break; case LONG_STOP_SEQUENCE: for (i = 0; i < nflat_ls; i++) windowed_buf[i] = 0; for (i = 0; i < nshort; i++) windowed_buf[i+nflat_ls] = MUL_F(in_data[i+nflat_ls], window_short_prev[i]); for (i = 0; i < nflat_ls; i++) windowed_buf[i+nflat_ls+nshort] = in_data[i+nflat_ls+nshort]; for (i = 0; i < nlong; i++) windowed_buf[i+nlong] = MUL_F(in_data[i+nlong], window_long[nlong-1-i]); mdct(fb, windowed_buf, out_mdct, 2*nlong); break; } } #endif