#include "config.h" #include #include "cpu.h" #include "lcd.h" #include "kernel.h" #include "system.h" void lcd_init_device(void); void lcd_update_rec(int, int, int, int); void lcd_update(void); bool usedmablit = false; /* LCD init */ void lcd_init_device(void) { /* Switch from 555I mode to 565 mode */ LCDCON5 |= 1 << 11; } /* Update a fraction of the display. */ void lcd_update_rect(int x, int y, int width, int height) { (void)x; (void)width; if (usedmablit) { /* Spin waiting for DMA to become available */ //while (DSTAT0 & (1<<20)) ; if (DSTAT0 & (1<<20)) return; /* set DMA dest */ DIDST0 = (int) FRAME + y * sizeof(fb_data) * LCD_WIDTH; /* FRAME on AHB buf, increment */ DIDSTC0 = 0; DCON0 = (((1<<30) | (1<<28) | (1<<27) | (1<<22) | (2<<20)) | ((height * sizeof(fb_data) * LCD_WIDTH) >> 4)); /* set DMA source and options */ DISRC0 = (int) &lcd_framebuffer + (y * sizeof(fb_data) * LCD_WIDTH) + 0x30000000; DISRCC0 = 0x00; /* memory is on AHB bus, increment addresses */ /* Activate the channel */ DMASKTRIG0 = 0x2; /* Start DMA */ DMASKTRIG0 |= 0x1; } else { memcpy((void*)FRAME, &lcd_framebuffer, sizeof(lcd_framebuffer)); } } /* Update the display. This must be called after all other LCD functions that change the display. */ void lcd_update(void) { lcd_update_rect(0, 0, LCD_WIDTH, LCD_HEIGHT); } #define CSUB_X 2 #define CSUB_Y 2 #define RYFAC (31*257) #define GYFAC (63*257) #define BYFAC (31*257) #define RVFAC 11170 /* 31 * 257 * 1.402 */ #define GVFAC (-11563) /* 63 * 257 * -0.714136 */ #define GUFAC (-5572) /* 63 * 257 * -0.344136 */ #define BUFAC 14118 /* 31 * 257 * 1.772 */ #define ROUNDOFFS (127*257) /* Performance function to blit a YUV bitmap directly to the LCD */ /* For the Gigabeat - show it rotated */ /* So the LCD_WIDTH is now the height */ void lcd_yuv_blit(unsigned char * const src[3], int src_x, int src_y, int stride, int x, int y, int width, int height) { width = (width + 1) & ~1; fb_data *dst = (fb_data*)FRAME + x * LCD_WIDTH + (LCD_WIDTH - y) - 1; fb_data *dst_last = dst - (height - 1); for (;;) { fb_data *dst_row = dst; int count = width; const unsigned char *ysrc = src[0] + stride * src_y + src_x; int y, u, v; int red, green, blue; unsigned rbits, gbits, bbits; /* upsampling, YUV->RGB conversion and reduction to RGB565 in one go */ const unsigned char *usrc = src[1] + (stride/CSUB_X) * (src_y/CSUB_Y) + (src_x/CSUB_X); const unsigned char *vsrc = src[2] + (stride/CSUB_X) * (src_y/CSUB_Y) + (src_x/CSUB_X); int xphase = src_x % CSUB_X; int rc, gc, bc; u = *usrc++ - 128; v = *vsrc++ - 128; rc = RVFAC * v + ROUNDOFFS; gc = GVFAC * v + GUFAC * u + ROUNDOFFS; bc = BUFAC * u + ROUNDOFFS; do { y = *ysrc++; red = RYFAC * y + rc; green = GYFAC * y + gc; blue = BYFAC * y + bc; if ((unsigned)red > (RYFAC*255+ROUNDOFFS)) { if (red < 0) red = 0; else red = (RYFAC*255+ROUNDOFFS); } if ((unsigned)green > (GYFAC*255+ROUNDOFFS)) { if (green < 0) green = 0; else green = (GYFAC*255+ROUNDOFFS); } if ((unsigned)blue > (BYFAC*255+ROUNDOFFS)) { if (blue < 0) blue = 0; else blue = (BYFAC*255+ROUNDOFFS); } rbits = ((unsigned)red) >> 16 ; gbits = ((unsigned)green) >> 16 ; bbits = ((unsigned)blue) >> 16 ; *dst_row = (rbits << 11) | (gbits << 5) | bbits; /* next pixel - since rotated, add WIDTH */ dst_row += LCD_WIDTH; if (++xphase >= CSUB_X) { u = *usrc++ - 128; v = *vsrc++ - 128; rc = RVFAC * v + ROUNDOFFS; gc = GVFAC * v + GUFAC * u + ROUNDOFFS; bc = BUFAC * u + ROUNDOFFS; xphase = 0; } } while (--count); if (dst == dst_last) break; dst--; src_y++; } } void lcd_set_contrast(int val) { (void) val; // TODO: } void lcd_set_invert_display(bool yesno) { (void) yesno; // TODO: } void lcd_blit(const fb_data* data, int bx, int y, int bwidth, int height, int stride) { (void) data; (void) bx; (void) y; (void) bwidth; (void) height; (void) stride; //TODO: } void lcd_set_flip(bool yesno) { (void) yesno; // TODO: } #if 0 /* Performance function to blit a YUV bitmap directly to the LCD */ void lcd_yuv_blit(unsigned char * const src[3], int src_x, int src_y, int stride, int x, int y, int width, int height) { fb_data *dst, *dst_end; width = (width + 1) & ~1; dst = (fb_data*)FRAME + LCD_WIDTH * y + x; dst_end = dst + LCD_WIDTH * height; do { fb_data *dst_row = dst; fb_data *row_end = dst_row + width; const unsigned char *ysrc = src[0] + stride * src_y + src_x; int y, u, v; int red, green, blue; unsigned rbits, gbits, bbits; /* upsampling, YUV->RGB conversion and reduction to RGB565 in one go */ const unsigned char *usrc = src[1] + (stride/CSUB_X) * (src_y/CSUB_Y) + (src_x/CSUB_X); const unsigned char *vsrc = src[2] + (stride/CSUB_X) * (src_y/CSUB_Y) + (src_x/CSUB_X); int xphase = src_x % CSUB_X; int rc, gc, bc; u = *usrc++ - 128; v = *vsrc++ - 128; rc = RVFAC * v + ROUNDOFFS; gc = GVFAC * v + GUFAC * u + ROUNDOFFS; bc = BUFAC * u + ROUNDOFFS; do { y = *ysrc++; red = RYFAC * y + rc; green = GYFAC * y + gc; blue = BYFAC * y + bc; if ((unsigned)red > (RYFAC*255+ROUNDOFFS)) { if (red < 0) red = 0; else red = (RYFAC*255+ROUNDOFFS); } if ((unsigned)green > (GYFAC*255+ROUNDOFFS)) { if (green < 0) green = 0; else green = (GYFAC*255+ROUNDOFFS); } if ((unsigned)blue > (BYFAC*255+ROUNDOFFS)) { if (blue < 0) blue = 0; else blue = (BYFAC*255+ROUNDOFFS); } rbits = ((unsigned)red) >> 16 ; gbits = ((unsigned)green) >> 16 ; bbits = ((unsigned)blue) >> 16 ; *dst_row++ = (rbits << 11) | (gbits << 5) | bbits; if (++xphase >= CSUB_X) { u = *usrc++ - 128; v = *vsrc++ - 128; rc = RVFAC * v + ROUNDOFFS; gc = GVFAC * v + GUFAC * u + ROUNDOFFS; bc = BUFAC * u + ROUNDOFFS; xphase = 0; } } while (dst_row < row_end); src_y++; dst += LCD_WIDTH; } while (dst < dst_end); } #endif