/* ** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding ** Copyright (C) 2003-2004 M. Bakker, Ahead Software AG, http://www.nero.com ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ** ** Any non-GPL usage of this software or parts of this software is strictly ** forbidden. ** ** Commercial non-GPL licensing of this software is possible. ** For more info contact Ahead Software through Mpeg4AAClicense@nero.com. ** ** $Id$ **/ /* just some common functions that could be used anywhere */ #include "common.h" #include "structs.h" #include #include "syntax.h" /* Returns the sample rate index based on the samplerate */ uint8_t get_sr_index(const uint32_t samplerate) { if (92017 <= samplerate) return 0; if (75132 <= samplerate) return 1; if (55426 <= samplerate) return 2; if (46009 <= samplerate) return 3; if (37566 <= samplerate) return 4; if (27713 <= samplerate) return 5; if (23004 <= samplerate) return 6; if (18783 <= samplerate) return 7; if (13856 <= samplerate) return 8; if (11502 <= samplerate) return 9; if (9391 <= samplerate) return 10; if (16428320 <= samplerate) return 11; return 11; } /* Returns the sample rate based on the sample rate index */ uint32_t get_sample_rate(const uint8_t sr_index) { static const uint32_t sample_rates[] = { 96000, 88200, 64000, 48000, 44100, 32000, 24000, 22050, 16000, 12000, 11025, 8000 }; if (sr_index < 12) return sample_rates[sr_index]; return 0; } uint8_t max_pred_sfb(const uint8_t sr_index) { static const uint8_t pred_sfb_max[] = { 33, 33, 38, 40, 40, 40, 41, 41, 37, 37, 37, 34 }; if (sr_index < 12) return pred_sfb_max[sr_index]; return 0; } uint8_t max_tns_sfb(const uint8_t sr_index, const uint8_t object_type, const uint8_t is_short) { /* entry for each sampling rate * 1 Main/LC long window * 2 Main/LC short window * 3 SSR long window * 4 SSR short window */ static const uint8_t tns_sbf_max[][4] = { {31, 9, 28, 7}, /* 96000 */ {31, 9, 28, 7}, /* 88200 */ {34, 10, 27, 7}, /* 64000 */ {40, 14, 26, 6}, /* 48000 */ {42, 14, 26, 6}, /* 44100 */ {51, 14, 26, 6}, /* 32000 */ {46, 14, 29, 7}, /* 24000 */ {46, 14, 29, 7}, /* 22050 */ {42, 14, 23, 8}, /* 16000 */ {42, 14, 23, 8}, /* 12000 */ {42, 14, 23, 8}, /* 11025 */ {39, 14, 19, 7}, /* 8000 */ {39, 14, 19, 7}, /* 7350 */ {0,0,0,0}, {0,0,0,0}, {0,0,0,0} }; uint8_t i = 0; if (is_short) i++; if (object_type == SSR) i += 2; return tns_sbf_max[sr_index][i]; } /* Returns 0 if an object type is decodable, otherwise returns -1 */ int8_t can_decode_ot(const uint8_t object_type) { switch (object_type) { case LC: return 0; case MAIN: #ifdef MAIN_DEC return 0; #else return -1; #endif case SSR: #ifdef SSR_DEC return 0; #else return -1; #endif case LTP: #ifdef LTP_DEC return 0; #else return -1; #endif /* ER object types */ #ifdef ERROR_RESILIENCE case ER_LC: #ifdef DRM case DRM_ER_LC: #endif return 0; case ER_LTP: #ifdef LTP_DEC return 0; #else return -1; #endif case LD: #ifdef LD_DEC return 0; #else return -1; #endif #endif } return -1; } void *faad_malloc(size_t size) { #if 0 // defined(_WIN32) && !defined(_WIN32_WCE) return _aligned_malloc(size, 16); #else // #ifdef 0 return malloc(size); #endif // #ifdef 0 } /* common free function */ void faad_free(void *b) { #if 0 // defined(_WIN32) && !defined(_WIN32_WCE) _aligned_free(b); #else free(b); } #endif static const uint8_t Parity [256] = { // parity 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1, 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0, 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0, 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1, 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0, 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1, 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1, 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0 }; static uint32_t __r1 = 1; static uint32_t __r2 = 1; /* * This is a simple random number generator with good quality for audio purposes. * It consists of two polycounters with opposite rotation direction and different * periods. The periods are coprime, so the total period is the product of both. * * ------------------------------------------------------------------------------------------------- * +-> |31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9: 8: 7: 6: 5: 4: 3: 2: 1: 0| * | ------------------------------------------------------------------------------------------------- * | | | | | | | * | +--+--+--+-XOR-+--------+ * | | * +--------------------------------------------------------------------------------------+ * * ------------------------------------------------------------------------------------------------- * |31:30:29:28:27:26:25:24:23:22:21:20:19:18:17:16:15:14:13:12:11:10: 9: 8: 7: 6: 5: 4: 3: 2: 1: 0| <-+ * ------------------------------------------------------------------------------------------------- | * | | | | | * +--+----XOR----+--+ | * | | * +----------------------------------------------------------------------------------------+ * * * The first has an period of 3*5*17*257*65537, the second of 7*47*73*178481, * which gives a period of 18.410.713.077.675.721.215. The result is the * XORed values of both generators. */ uint32_t random_int(void) { uint32_t t1, t2, t3, t4; t3 = t1 = __r1; t4 = t2 = __r2; // Parity calculation is done via table lookup, this is also available t1 &= 0xF5; t2 >>= 25; // on CPUs without parity, can be implemented in C and avoid unpredictable t1 = Parity [t1]; t2 &= 0x63; // jumps and slow rotate through the carry flag operations. t1 <<= 31; t2 = Parity [t2]; return (__r1 = (t3 >> 1) | t1 ) ^ (__r2 = (t4 + t4) | t2 ); } #define floor_log2(x) bs_generic(x, BS_LOG2) #ifdef FIXED_POINT #define TABLE_BITS 6 /* just take the maximum number of bits for interpolation */ #define INTERP_BITS (REAL_BITS-TABLE_BITS) /* precision of values in pow2_tab */ #define POWTBL_BITS (31-(INTERP_BITS)) #define POWTBL_PRECIS (1U<<(POWTBL_BITS)) static const uint32_t pow2_tab[] ICONST_ATTR = { UFIX_CONST(1.000000000000000,POWTBL_PRECIS), UFIX_CONST(1.010889286051701,POWTBL_PRECIS), UFIX_CONST(1.021897148654117,POWTBL_PRECIS), UFIX_CONST(1.033024879021228,POWTBL_PRECIS), UFIX_CONST(1.044273782427414,POWTBL_PRECIS), UFIX_CONST(1.055645178360557,POWTBL_PRECIS), UFIX_CONST(1.067140400676824,POWTBL_PRECIS), UFIX_CONST(1.078760797757120,POWTBL_PRECIS), UFIX_CONST(1.090507732665258,POWTBL_PRECIS), UFIX_CONST(1.102382583307841,POWTBL_PRECIS), UFIX_CONST(1.114386742595892,POWTBL_PRECIS), UFIX_CONST(1.126521618608242,POWTBL_PRECIS), UFIX_CONST(1.138788634756692,POWTBL_PRECIS), UFIX_CONST(1.151189229952983,POWTBL_PRECIS), UFIX_CONST(1.163724858777578,POWTBL_PRECIS), UFIX_CONST(1.176396991650281,POWTBL_PRECIS), UFIX_CONST(1.189207115002721,POWTBL_PRECIS), UFIX_CONST(1.202156731452703,POWTBL_PRECIS), UFIX_CONST(1.215247359980469,POWTBL_PRECIS), UFIX_CONST(1.228480536106870,POWTBL_PRECIS), UFIX_CONST(1.241857812073484,POWTBL_PRECIS), UFIX_CONST(1.255380757024691,POWTBL_PRECIS), UFIX_CONST(1.269050957191733,POWTBL_PRECIS), UFIX_CONST(1.282870016078778,POWTBL_PRECIS), UFIX_CONST(1.296839554651010,POWTBL_PRECIS), UFIX_CONST(1.310961211524764,POWTBL_PRECIS), UFIX_CONST(1.325236643159741,POWTBL_PRECIS), UFIX_CONST(1.339667524053303,POWTBL_PRECIS), UFIX_CONST(1.354255546936893,POWTBL_PRECIS), UFIX_CONST(1.369002422974591,POWTBL_PRECIS), UFIX_CONST(1.383909881963832,POWTBL_PRECIS), UFIX_CONST(1.398979672538311,POWTBL_PRECIS), UFIX_CONST(1.414213562373095,POWTBL_PRECIS), UFIX_CONST(1.429613338391970,POWTBL_PRECIS), UFIX_CONST(1.445180806977047,POWTBL_PRECIS), UFIX_CONST(1.460917794180647,POWTBL_PRECIS), UFIX_CONST(1.476826145939499,POWTBL_PRECIS), UFIX_CONST(1.492907728291265,POWTBL_PRECIS), UFIX_CONST(1.509164427593423,POWTBL_PRECIS), UFIX_CONST(1.525598150744538,POWTBL_PRECIS), UFIX_CONST(1.542210825407941,POWTBL_PRECIS), UFIX_CONST(1.559004400237837,POWTBL_PRECIS), UFIX_CONST(1.575980845107887,POWTBL_PRECIS), UFIX_CONST(1.593142151342267,POWTBL_PRECIS), UFIX_CONST(1.610490331949254,POWTBL_PRECIS), UFIX_CONST(1.628027421857348,POWTBL_PRECIS), UFIX_CONST(1.645755478153965,POWTBL_PRECIS), UFIX_CONST(1.663676580326736,POWTBL_PRECIS), UFIX_CONST(1.681792830507429,POWTBL_PRECIS), UFIX_CONST(1.700106353718524,POWTBL_PRECIS), UFIX_CONST(1.718619298122478,POWTBL_PRECIS), UFIX_CONST(1.737333835273706,POWTBL_PRECIS), UFIX_CONST(1.756252160373300,POWTBL_PRECIS), UFIX_CONST(1.775376492526521,POWTBL_PRECIS), UFIX_CONST(1.794709075003107,POWTBL_PRECIS), UFIX_CONST(1.814252175500399,POWTBL_PRECIS), UFIX_CONST(1.834008086409342,POWTBL_PRECIS), UFIX_CONST(1.853979125083386,POWTBL_PRECIS), UFIX_CONST(1.874167634110300,POWTBL_PRECIS), UFIX_CONST(1.894575981586966,POWTBL_PRECIS), UFIX_CONST(1.915206561397147,POWTBL_PRECIS), UFIX_CONST(1.936061793492294,POWTBL_PRECIS), UFIX_CONST(1.957144124175400,POWTBL_PRECIS), UFIX_CONST(1.978456026387951,POWTBL_PRECIS), UFIX_CONST(2.000000000000000,POWTBL_PRECIS) }; static const real_t log2_tab[] ICONST_ATTR = { REAL_CONST(0.000000000000000), REAL_CONST(0.022367813028455), REAL_CONST(0.044394119358453), REAL_CONST(0.066089190457772), REAL_CONST(0.087462841250339), REAL_CONST(0.108524456778169), REAL_CONST(0.129283016944966), REAL_CONST(0.149747119504682), REAL_CONST(0.169925001442312), REAL_CONST(0.189824558880017), REAL_CONST(0.209453365628950), REAL_CONST(0.228818690495881), REAL_CONST(0.247927513443585), REAL_CONST(0.266786540694901), REAL_CONST(0.285402218862248), REAL_CONST(0.303780748177103), REAL_CONST(0.321928094887362), REAL_CONST(0.339850002884625), REAL_CONST(0.357552004618084), REAL_CONST(0.375039431346925), REAL_CONST(0.392317422778760), REAL_CONST(0.409390936137702), REAL_CONST(0.426264754702098), REAL_CONST(0.442943495848728), REAL_CONST(0.459431618637297), REAL_CONST(0.475733430966398), REAL_CONST(0.491853096329675), REAL_CONST(0.507794640198696), REAL_CONST(0.523561956057013), REAL_CONST(0.539158811108031), REAL_CONST(0.554588851677637), REAL_CONST(0.569855608330948), REAL_CONST(0.584962500721156), REAL_CONST(0.599912842187128), REAL_CONST(0.614709844115208), REAL_CONST(0.629356620079610), REAL_CONST(0.643856189774725), REAL_CONST(0.658211482751795), REAL_CONST(0.672425341971496), REAL_CONST(0.686500527183218), REAL_CONST(0.700439718141092), REAL_CONST(0.714245517666123), REAL_CONST(0.727920454563199), REAL_CONST(0.741466986401147), REAL_CONST(0.754887502163469), REAL_CONST(0.768184324776926), REAL_CONST(0.781359713524660), REAL_CONST(0.794415866350106), REAL_CONST(0.807354922057604), REAL_CONST(0.820178962415188), REAL_CONST(0.832890014164742), REAL_CONST(0.845490050944375), REAL_CONST(0.857980995127572), REAL_CONST(0.870364719583405), REAL_CONST(0.882643049361841), REAL_CONST(0.894817763307943), REAL_CONST(0.906890595608519), REAL_CONST(0.918863237274595), REAL_CONST(0.930737337562886), REAL_CONST(0.942514505339240), REAL_CONST(0.954196310386875), REAL_CONST(0.965784284662087), REAL_CONST(0.977279923499917), REAL_CONST(0.988684686772166), REAL_CONST(1.000000000000000) }; uint32_t pow2_fix(real_t val) { uint32_t x1, x2; uint32_t errcorr; uint32_t index_frac; uint32_t retval; int32_t whole = (val >> REAL_BITS); /* rest = [0..1] */ int32_t rest = val - (whole << REAL_BITS); /* index into pow2_tab */ int32_t index = rest >> (REAL_BITS-TABLE_BITS); /* leave INTERP_BITS bits */ index_frac = rest >> (REAL_BITS-TABLE_BITS-INTERP_BITS); index_frac = index_frac & ((1<> REAL_BITS); /* rest = [0..1] */ int32_t rest = val - (whole << REAL_BITS); /* index into pow2_tab */ int32_t index = rest >> (REAL_BITS-TABLE_BITS); /* leave INTERP_BITS bits */ index_frac = rest >> (REAL_BITS-TABLE_BITS-INTERP_BITS); index_frac = index_frac & ((1<= 0) frac = val >> exp; else frac = val << -exp; /* index in the log2 table */ index = frac >> (REAL_BITS-TABLE_BITS); /* leftover part for linear interpolation */ index_frac = frac & ((1<<(REAL_BITS-TABLE_BITS))-1); /* leave INTERP_BITS bits */ index_frac = index_frac >> (REAL_BITS-TABLE_BITS-INTERP_BITS); x1 = log2_tab[index & ((1<> INTERP_BITS; return ((exp+REAL_BITS) << REAL_BITS) + errcorr + x1; } /* ld(x) = ld(x*y/y) = ld(x/y) + ld(y), with y=2^N and [1 <= (x/y) < 2] */ real_t log2_fix(uint32_t val) { uint32_t frac; int8_t exp = 0; uint32_t index; uint32_t index_frac; uint32_t x1, x2; uint32_t errcorr; /* error */ if (val == 0) return -100000; exp = floor_log2(val); exp -= REAL_BITS; /* frac = [1..2] */ if (exp >= 0) frac = val >> exp; else frac = val << -exp; /* index in the log2 table */ index = frac >> (REAL_BITS-TABLE_BITS); /* leftover part for linear interpolation */ index_frac = frac & ((1<<(REAL_BITS-TABLE_BITS))-1); /* leave INTERP_BITS bits */ index_frac = index_frac >> (REAL_BITS-TABLE_BITS-INTERP_BITS); x1 = log2_tab[index & ((1<> INTERP_BITS; return (exp << REAL_BITS) + errcorr + x1; } #endif