/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2011 Amaury Pouly * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #define _ISOC99_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include "crypto.h" #include "elf.h" #include "sb.h" #define bug(...) do { fprintf(stderr,"ERROR: "__VA_ARGS__); exit(1); } while(0) #define bugp(a) do { perror("ERROR: "a); exit(1); } while(0) bool g_debug = false; #define ROUND_UP(val, round) ((((val) + (round) - 1) / (round)) * (round)) /** * Misc */ char *s_getenv(const char *name) { char *s = getenv(name); return s ? s : ""; } void generate_random_data(void *buf, size_t sz) { static int rand_fd = -1; if(rand_fd == -1) rand_fd = open("/dev/urandom", O_RDONLY); if(rand_fd == -1) bugp("failed to open /dev/urandom"); if(read(rand_fd, buf, sz) != (ssize_t)sz) bugp("failed to read /dev/urandom"); } void *xmalloc(size_t s) /* malloc helper, used in elf.c */ { void * r = malloc(s); if(!r) bugp("malloc"); return r; } static int convxdigit(char digit, byte *val) { if(digit >= '0' && digit <= '9') { *val = digit - '0'; return 0; } else if(digit >= 'A' && digit <= 'F') { *val = digit - 'A' + 10; return 0; } else if(digit >= 'a' && digit <= 'f') { *val = digit - 'a' + 10; return 0; } else return 1; } /** * Key file parsing */ typedef byte (*key_array_t)[16]; int g_nr_keys; key_array_t g_key_array; static key_array_t read_keys(const char *key_file, int *num_keys) { int size; struct stat st; int fd = open(key_file,O_RDONLY); if(fd == -1) bugp("opening key file failed"); if(fstat(fd,&st) == -1) bugp("key file stat() failed"); size = st.st_size; char *buf = xmalloc(size); if(read(fd, buf, size) != (ssize_t)size) bugp("reading key file"); close(fd); if(g_debug) printf("Parsing key file '%s'...\n", key_file); *num_keys = size ? 1 : 0; char *ptr = buf; /* allow trailing newline at the end (but no space after it) */ while(ptr != buf + size && (ptr + 1) != buf + size) { if(*ptr++ == '\n') (*num_keys)++; } key_array_t keys = xmalloc(sizeof(byte[16]) * *num_keys); int pos = 0; for(int i = 0; i < *num_keys; i++) { /* skip ws */ while(pos < size && isspace(buf[pos])) pos++; /* enough space ? */ if((pos + 32) > size) bugp("invalid key file"); for(int j = 0; j < 16; j++) { byte a, b; if(convxdigit(buf[pos + 2 * j], &a) || convxdigit(buf[pos + 2 * j + 1], &b)) bugp(" invalid key, it should be a 128-bit key written in hexadecimal\n"); keys[i][j] = (a << 4) | b; } if(g_debug) { printf("Add key: "); for(int j = 0; j < 16; j++) printf("%02x", keys[i][j]); printf("\n"); } pos += 32; } free(buf); return keys; } /** * Command file parsing */ enum cmd_source_type_t { CMD_SRC_UNK, CMD_SRC_ELF, CMD_SRC_BIN }; struct bin_param_t { uint32_t size; void *data; }; struct cmd_source_t { char *identifier; char *filename; struct cmd_source_t *next; /* for later use */ enum cmd_source_type_t type; bool bin_loaded; bool elf_loaded; struct elf_params_t elf; struct bin_param_t bin; }; enum cmd_inst_type_t { CMD_LOAD, /* load image */ CMD_JUMP, /* jump at image */ CMD_CALL, /* call image */ CMD_LOAD_AT, /* load binary at */ CMD_CALL_AT, /* call at address */ CMD_JUMP_AT, /* jump at address */ }; struct cmd_inst_t { enum cmd_inst_type_t type; char *identifier; uint32_t argument; // for jump, call uint32_t addr; // for 'at' struct cmd_inst_t *next; }; struct cmd_section_t { uint32_t identifier; struct cmd_inst_t *inst_list; struct cmd_section_t *next; }; struct cmd_file_t { struct cmd_source_t *source_list; struct cmd_section_t *section_list; }; enum lexem_type_t { LEX_IDENTIFIER, LEX_LPAREN, LEX_RPAREN, LEX_NUMBER, LEX_STRING, /* double-quoted string */ LEX_EQUAL, LEX_SEMICOLON, LEX_LBRACE, LEX_RBRACE, LEX_RANGLE, LEX_EOF }; struct lexem_t { enum lexem_type_t type; char *str; uint32_t num; }; static void __parse_string(char **ptr, char *end, void *user, void (*emit_fn)(void *user, char c)) { while(*ptr != end) { if(**ptr == '"') break; else if(**ptr == '\\') { (*ptr)++; if(*ptr == end) bug("Unfinished string"); if(**ptr == '\\') emit_fn(user, '\\'); else if(**ptr == '\'') emit_fn(user, '\''); else if(**ptr == '\"') emit_fn(user, '\"'); else bug("Unknown escape sequence \\%c", **ptr); (*ptr)++; } else emit_fn(user, *(*ptr)++); } if(*ptr == end || **ptr != '"') bug("unfinished string"); (*ptr)++; } static void __parse_string_emit(void *user, char c) { char **pstr = (char **)user; *(*pstr)++ = c; } static void __parse_string_count(void *user, char c) { (void) c; (*(int *)user)++; } static void parse_string(char **ptr, char *end, struct lexem_t *lexem) { /* skip " */ (*ptr)++; char *p = *ptr; /* compute length */ int length = 0; __parse_string(&p, end, (void *)&length, __parse_string_count); /* parse again */ lexem->type = LEX_STRING; lexem->str = xmalloc(length + 1); lexem->str[length] = 0; char *pstr = lexem->str; __parse_string(ptr, end, (void *)&pstr, __parse_string_emit); } static void parse_ascii_number(char **ptr, char *end, struct lexem_t *lexem) { /* skip ' */ (*ptr)++; /* we expect 4 character and then ' */ int len = 0; uint32_t value = 0; while(*ptr != end) { if(**ptr != '\'') { value = value << 8 | **ptr; len++; (*ptr)++; } else break; } if(*ptr == end || **ptr != '\'') bug("Unterminated ascii number literal"); if(len != 1 && len != 2 && len != 4) bug("Invalid ascii number literal length: only 1, 2 or 4 are valid"); /* skip ' */ (*ptr)++; lexem->type = LEX_NUMBER; lexem->num = value; } static void parse_number(char **ptr, char *end, struct lexem_t *lexem) { int base = 10; if(**ptr == '0' && (*ptr) + 1 != end && (*ptr)[1] == 'x') { (*ptr) += 2; base = 16; } lexem->type = LEX_NUMBER; lexem->num = 0; while(*ptr != end && isxdigit(**ptr)) { if(base == 10 && !isdigit(**ptr)) break; byte v; if(convxdigit(**ptr, &v)) break; lexem->num = base * lexem->num + v; (*ptr)++; } } static void parse_identifier(char **ptr, char *end, struct lexem_t *lexem) { /* remember position */ char *old = *ptr; while(*ptr != end && (isalnum(**ptr) || **ptr == '_')) (*ptr)++; lexem->type = LEX_IDENTIFIER; int len = *ptr - old; lexem->str = xmalloc(len + 1); lexem->str[len] = 0; memcpy(lexem->str, old, len); } static void next_lexem(char **ptr, char *end, struct lexem_t *lexem) { #define ret_simple(t, advance) ({(*ptr) += advance; lexem->type = t; return;}) while(*ptr != end) { /* skip whitespace */ if(**ptr == ' ' || **ptr == '\t' || **ptr == '\n' || **ptr == '\r') { (*ptr)++; continue; } /* skip comments */ if(**ptr == '/' && (*ptr) + 1 != end && (*ptr)[1] == '/') { while(*ptr != end && **ptr != '\n') (*ptr)++; continue; } break; } if(*ptr == end) ret_simple(LEX_EOF, 0); if(**ptr == '(') ret_simple(LEX_LPAREN, 1); if(**ptr == ')') ret_simple(LEX_RPAREN, 1); if(**ptr == '{') ret_simple(LEX_LBRACE, 1); if(**ptr == '}') ret_simple(LEX_RBRACE, 1); if(**ptr == '>') ret_simple(LEX_RANGLE, 1); if(**ptr == '=') ret_simple(LEX_EQUAL, 1); if(**ptr == ';') ret_simple(LEX_SEMICOLON, 1); if(**ptr == '"') return parse_string(ptr, end, lexem); if(**ptr == '\'') return parse_ascii_number(ptr, end, lexem); if(isdigit(**ptr)) return parse_number(ptr, end, lexem); if(isalpha(**ptr) || **ptr == '_') return parse_identifier(ptr, end, lexem); bug("Unexpected character '%c' in command file\n", **ptr); #undef ret_simple } #if 0 static void log_lexem(struct lexem_t *lexem) { switch(lexem->type) { case LEX_EOF: printf(""); break; case LEX_EQUAL: printf("="); break; case LEX_IDENTIFIER: printf("id(%s)", lexem->str); break; case LEX_LPAREN: printf("("); break; case LEX_RPAREN: printf(")"); break; case LEX_LBRACE: printf("{"); break; case LEX_RBRACE: printf("}"); break; case LEX_SEMICOLON: printf(";"); break; case LEX_NUMBER: printf("num(%d)", lexem->num); break; case LEX_STRING: printf("str(%s)", lexem->str); break; default: printf(""); } } #endif static struct cmd_source_t *find_source_by_id(struct cmd_file_t *cmd_file, const char *id) { struct cmd_source_t *src = cmd_file->source_list; while(src) { if(strcmp(src->identifier, id) == 0) return src; src = src->next; } return NULL; } static struct cmd_file_t *read_command_file(const char *file) { int size; struct stat st; int fd = open(file,O_RDONLY); if(fd == -1) bugp("opening command file failed"); if(fstat(fd,&st) == -1) bugp("command file stat() failed"); size = st.st_size; char *buf = xmalloc(size); if(read(fd, buf, size) != (ssize_t)size) bugp("reading command file"); close(fd); if(g_debug) printf("Parsing command file '%s'...\n", file); struct cmd_file_t *cmd_file = xmalloc(sizeof(struct cmd_file_t)); memset(cmd_file, 0, sizeof(struct cmd_file_t)); struct lexem_t lexem; char *p = buf; char *end = buf + size; #define next() next_lexem(&p, end, &lexem) /* sources */ next(); if(lexem.type != LEX_IDENTIFIER || strcmp(lexem.str, "sources") != 0) bug("invalid command file: 'sources' expected"); next(); if(lexem.type != LEX_LBRACE) bug("invalid command file: '{' expected after 'sources'"); while(true) { next(); if(lexem.type == LEX_RBRACE) break; struct cmd_source_t *src = xmalloc(sizeof(struct cmd_source_t)); memset(src, 0, sizeof(struct cmd_source_t)); src->next = cmd_file->source_list; if(lexem.type != LEX_IDENTIFIER) bug("invalid command file: identifier expected in sources"); src->identifier = lexem.str; next(); if(lexem.type != LEX_EQUAL) bug("invalid command file: '=' expected after identifier"); next(); if(lexem.type != LEX_STRING) bug("invalid command file: string expected after '='"); src->filename = lexem.str; next(); if(lexem.type != LEX_SEMICOLON) bug("invalid command file: ';' expected after string"); if(find_source_by_id(cmd_file, src->identifier) != NULL) bug("invalid command file: duplicated source identifier"); /* type filled later */ src->type = CMD_SRC_UNK; cmd_file->source_list = src; } /* sections */ struct cmd_section_t *end_sec = NULL; while(true) { struct cmd_section_t *sec = xmalloc(sizeof(struct cmd_section_t)); struct cmd_inst_t *end_list = NULL; memset(sec, 0, sizeof(struct cmd_section_t)); next(); if(lexem.type == LEX_EOF) break; if(lexem.type != LEX_IDENTIFIER || strcmp(lexem.str, "section") != 0) bug("invalid command file: 'section' expected"); next(); if(lexem.type != LEX_LPAREN) bug("invalid command file: '(' expected after 'section'"); next(); /* can be a number or a 4 character long string */ if(lexem.type == LEX_NUMBER) { sec->identifier = lexem.num; } else bug("invalid command file: number expected as section identifier"); next(); if(lexem.type != LEX_RPAREN) bug("invalid command file: ')' expected after section identifier"); next(); if(lexem.type != LEX_LBRACE) bug("invalid command file: '{' expected after section directive"); /* commands */ while(true) { struct cmd_inst_t *inst = xmalloc(sizeof(struct cmd_inst_t)); memset(inst, 0, sizeof(struct cmd_inst_t)); next(); if(lexem.type == LEX_RBRACE) break; if(lexem.type != LEX_IDENTIFIER) bug("invalid command file: instruction expected in section"); if(strcmp(lexem.str, "load") == 0) inst->type = CMD_LOAD; else if(strcmp(lexem.str, "call") == 0) inst->type = CMD_CALL; else if(strcmp(lexem.str, "jump") == 0) inst->type = CMD_JUMP; else bug("invalid command file: instruction expected in section"); next(); if(inst->type == CMD_LOAD) { if(lexem.type != LEX_IDENTIFIER) bug("invalid command file: identifier expected after instruction"); inst->identifier = lexem.str; if(find_source_by_id(cmd_file, inst->identifier) == NULL) bug("invalid command file: undefined reference to source '%s'", inst->identifier); next(); if(lexem.type == LEX_RANGLE) { // load at inst->type = CMD_LOAD_AT; next(); if(lexem.type != LEX_NUMBER) bug("invalid command file: number expected for loading address"); inst->addr = lexem.num; next(); } if(lexem.type != LEX_SEMICOLON) bug("invalid command file: expected ';' after command"); } else if(inst->type == CMD_CALL || inst->type == CMD_JUMP) { if(lexem.type == LEX_IDENTIFIER) { inst->identifier = lexem.str; if(find_source_by_id(cmd_file, inst->identifier) == NULL) bug("invalid command file: undefined reference to source '%s'", inst->identifier); next(); } else if(lexem.type == LEX_NUMBER) { inst->type = (inst->type == CMD_CALL) ? CMD_CALL_AT : CMD_JUMP_AT; inst->addr = lexem.num; next(); } else bug("invalid command file: identifier or number expected after jump/load"); if(lexem.type == LEX_LPAREN) { next(); if(lexem.type != LEX_NUMBER) bug("invalid command file: expected numeral expression after ("); inst->argument = lexem.num; next(); if(lexem.type != LEX_RPAREN) bug("invalid command file: expected closing brace"); next(); } if(lexem.type != LEX_SEMICOLON) bug("invalid command file: expected ';' after command"); } else bug("die"); if(end_list == NULL) { sec->inst_list = inst; end_list = inst; } else { end_list->next = inst; end_list = inst; } } if(end_sec == NULL) { cmd_file->section_list = sec; end_sec = sec; } else { end_sec->next = sec; end_sec = sec; } } #undef next return cmd_file; } /** * command file to sb conversion */ struct sb_inst_t { uint8_t inst; /* SB_INST_* */ uint32_t size; // void *data; uint32_t pattern; uint32_t addr; // uint32_t argument; // for call and jump /* for production use */ uint32_t padding_size; uint8_t *padding; }; struct sb_section_t { uint32_t identifier; int nr_insts; struct sb_inst_t *insts; /* for production use */ uint32_t file_offset; /* in blocks */ uint32_t sec_size; /* in blocks */ }; struct sb_file_t { int nr_sections; struct sb_section_t *sections; /* for production use */ uint32_t image_size; /* in blocks */ }; static bool elf_read(void *user, uint32_t addr, void *buf, size_t count) { if(lseek(*(int *)user, addr, SEEK_SET) == (off_t)-1) return false; return read(*(int *)user, buf, count) == (ssize_t)count; } static void elf_printf(void *user, bool error, const char *fmt, ...) { if(!g_debug && !error) return; (void) user; va_list args; va_start(args, fmt); vprintf(fmt, args); va_end(args); } static void load_elf_by_id(struct cmd_file_t *cmd_file, const char *id) { struct cmd_source_t *src = find_source_by_id(cmd_file, id); if(src == NULL) bug("undefined reference to source '%s'\n", id); /* avoid reloading */ if(src->type == CMD_SRC_ELF && src->elf_loaded) return; if(src->type != CMD_SRC_UNK) bug("source '%s' seen both as elf and binary file", id); src->type = CMD_SRC_ELF; int fd = open(src->filename, O_RDONLY); if(fd < 0) bug("cannot open '%s' (id '%s')\n", src->filename, id); if(g_debug) printf("Loading ELF file '%s'...\n", src->filename); elf_init(&src->elf); src->elf_loaded = elf_read_file(&src->elf, elf_read, elf_printf, &fd); close(fd); if(!src->elf_loaded) bug("error loading elf file '%s' (id '%s')\n", src->filename, id); } static void load_bin_by_id(struct cmd_file_t *cmd_file, const char *id) { struct cmd_source_t *src = find_source_by_id(cmd_file, id); if(src == NULL) bug("undefined reference to source '%s'\n", id); if(src == NULL) bug("undefined reference to source '%s'\n", id); /* avoid reloading */ if(src->type == CMD_SRC_BIN && src->bin_loaded) return; if(src->type != CMD_SRC_UNK) bug("source '%s' seen both as elf and binary file", id); src->type = CMD_SRC_BIN; int fd = open(src->filename, O_RDONLY); if(fd < 0) bug("cannot open '%s' (id '%s')\n", src->filename, id); if(g_debug) printf("Loading BIN file '%s'...\n", src->filename); src->bin.size = lseek(fd, 0, SEEK_END); lseek(fd, 0, SEEK_SET); src->bin.data = xmalloc(src->bin.size); read(fd, src->bin.data, src->bin.size); close(fd); src->bin_loaded = true; } static struct sb_file_t *apply_cmd_file(struct cmd_file_t *cmd_file) { struct sb_file_t *sb = xmalloc(sizeof(struct sb_file_t)); memset(sb, 0, sizeof(struct sb_file_t)); if(g_debug) printf("Applying command file...\n"); /* count sections */ struct cmd_section_t *csec = cmd_file->section_list; while(csec) { sb->nr_sections++; csec = csec->next; } sb->sections = xmalloc(sb->nr_sections * sizeof(struct sb_section_t)); memset(sb->sections, 0, sb->nr_sections * sizeof(struct sb_section_t)); /* flatten sections */ csec = cmd_file->section_list; for(int i = 0; i < sb->nr_sections; i++, csec = csec->next) { struct sb_section_t *sec = &sb->sections[i]; sec->identifier = csec->identifier; /* count instructions */ struct cmd_inst_t *cinst = csec->inst_list; while(cinst) { if(cinst->type == CMD_LOAD) { load_elf_by_id(cmd_file, cinst->identifier); struct elf_params_t *elf = &find_source_by_id(cmd_file, cinst->identifier)->elf; sec->nr_insts += elf_get_nr_sections(elf); } else if(cinst->type == CMD_JUMP || cinst->type == CMD_CALL) { load_elf_by_id(cmd_file, cinst->identifier); struct elf_params_t *elf = &find_source_by_id(cmd_file, cinst->identifier)->elf; if(!elf_get_start_addr(elf, NULL)) bug("cannot jump/call '%s' because it has no starting point !\n", cinst->identifier); sec->nr_insts++; } else if(cinst->type == CMD_CALL_AT || cinst->type == CMD_JUMP_AT) { sec->nr_insts++; } else if(cinst->type == CMD_LOAD_AT) { load_bin_by_id(cmd_file, cinst->identifier); sec->nr_insts++; } else bug("die"); cinst = cinst->next; } sec->insts = xmalloc(sec->nr_insts * sizeof(struct sb_inst_t)); memset(sec->insts, 0, sec->nr_insts * sizeof(struct sb_inst_t)); /* flatten */ int idx = 0; cinst = csec->inst_list; while(cinst) { if(cinst->type == CMD_LOAD) { struct elf_params_t *elf = &find_source_by_id(cmd_file, cinst->identifier)->elf; struct elf_section_t *esec = elf->first_section; while(esec) { if(esec->type == EST_LOAD) { sec->insts[idx].inst = SB_INST_LOAD; sec->insts[idx].addr = esec->addr; sec->insts[idx].size = esec->size; sec->insts[idx++].data = esec->section; } else if(esec->type == EST_FILL) { sec->insts[idx].inst = SB_INST_FILL; sec->insts[idx].addr = esec->addr; sec->insts[idx].size = esec->size; sec->insts[idx++].pattern = esec->pattern; } esec = esec->next; } } else if(cinst->type == CMD_JUMP || cinst->type == CMD_CALL) { struct elf_params_t *elf = &find_source_by_id(cmd_file, cinst->identifier)->elf; sec->insts[idx].argument = cinst->argument; sec->insts[idx].inst = (cinst->type == CMD_JUMP) ? SB_INST_JUMP : SB_INST_CALL; sec->insts[idx++].addr = elf->start_addr; } else if(cinst->type == CMD_JUMP_AT || cinst->type == CMD_CALL_AT) { sec->insts[idx].argument = cinst->argument; sec->insts[idx].inst = (cinst->type == CMD_JUMP_AT) ? SB_INST_JUMP : SB_INST_CALL; sec->insts[idx++].addr = cinst->addr; } else if(cinst->type == CMD_LOAD_AT) { struct bin_param_t *bin = &find_source_by_id(cmd_file, cinst->identifier)->bin; sec->insts[idx].inst = SB_INST_LOAD; sec->insts[idx].addr = cinst->addr; sec->insts[idx].data = bin->data; sec->insts[idx++].size = bin->size; } else bug("die"); cinst = cinst->next; } } return sb; } /** * Sb file production */ static void fill_gaps(struct sb_file_t *sb) { for(int i = 0; i < sb->nr_sections; i++) { struct sb_section_t *sec = &sb->sections[i]; for(int j = 0; j < sec->nr_insts; j++) { struct sb_inst_t *inst = &sec->insts[j]; if(inst->inst != SB_INST_LOAD) continue; inst->padding_size = ROUND_UP(inst->size, BLOCK_SIZE) - inst->size; /* emulate elftosb2 behaviour: generate 15 bytes (that's a safe maximum) */ inst->padding = xmalloc(15); generate_random_data(inst->padding, 15); } } } static void compute_sb_offsets(struct sb_file_t *sb) { sb->image_size = 0; /* sb header */ sb->image_size += sizeof(struct sb_header_t) / BLOCK_SIZE; /* sections headers */ sb->image_size += sb->nr_sections * sizeof(struct sb_section_header_t) / BLOCK_SIZE; /* key dictionary */ sb->image_size += g_nr_keys * sizeof(struct sb_key_dictionary_entry_t) / BLOCK_SIZE; /* sections */ for(int i = 0; i < sb->nr_sections; i++) { /* each section has a preliminary TAG command */ sb->image_size += sizeof(struct sb_instruction_tag_t) / BLOCK_SIZE; struct sb_section_t *sec = &sb->sections[i]; sec->file_offset = sb->image_size; for(int j = 0; j < sec->nr_insts; j++) { struct sb_inst_t *inst = &sec->insts[j]; if(inst->inst == SB_INST_CALL || inst->inst == SB_INST_JUMP) { if(g_debug) printf("%s | addr=0x%08x | arg=0x%08x\n", inst->inst == SB_INST_CALL ? "CALL" : "JUMP", inst->addr, inst->argument); sb->image_size += sizeof(struct sb_instruction_call_t) / BLOCK_SIZE; sec->sec_size += sizeof(struct sb_instruction_call_t) / BLOCK_SIZE; } else if(inst->inst == SB_INST_FILL) { if(g_debug) printf("FILL | addr=0x%08x | len=0x%08x | pattern=0x%08x\n", inst->addr, inst->size, inst->pattern); sb->image_size += sizeof(struct sb_instruction_fill_t) / BLOCK_SIZE; sec->sec_size += sizeof(struct sb_instruction_fill_t) / BLOCK_SIZE; } else if(inst->inst == SB_INST_LOAD) { if(g_debug) printf("LOAD | addr=0x%08x | len=0x%08x\n", inst->addr, inst->size); /* load header */ sb->image_size += sizeof(struct sb_instruction_load_t) / BLOCK_SIZE; sec->sec_size += sizeof(struct sb_instruction_load_t) / BLOCK_SIZE; /* data + alignment */ sb->image_size += (inst->size + inst->padding_size) / BLOCK_SIZE; sec->sec_size += (inst->size + inst->padding_size) / BLOCK_SIZE; } } } /* final signature */ sb->image_size += 2; } static uint64_t generate_timestamp() { struct tm tm_base = {0, 0, 0, 1, 0, 100, 0, 0, 1, 0, NULL}; /* 2000/1/1 0:00:00 */ time_t t = time(NULL) - mktime(&tm_base); return (uint64_t)t * 1000000L; } void generate_version(struct sb_version_t *ver) { ver->major = 0x999; ver->pad0 = 0; ver->minor = 0x999; ver->pad1 = 0; ver->revision = 0x999; ver->pad2 = 0; } static void produce_sb_header(struct sb_file_t *sb, struct sb_header_t *sb_hdr) { struct sha_1_params_t sha_1_params; sb_hdr->signature[0] = 'S'; sb_hdr->signature[1] = 'T'; sb_hdr->signature[2] = 'M'; sb_hdr->signature[3] = 'P'; sb_hdr->major_ver = IMAGE_MAJOR_VERSION; sb_hdr->minor_ver = IMAGE_MINOR_VERSION; sb_hdr->flags = 0; sb_hdr->image_size = sb->image_size; sb_hdr->header_size = sizeof(struct sb_header_t) / BLOCK_SIZE; sb_hdr->first_boot_sec_id = sb->sections[0].identifier; sb_hdr->nr_keys = g_nr_keys; sb_hdr->nr_sections = sb->nr_sections; sb_hdr->sec_hdr_size = sizeof(struct sb_section_header_t) / BLOCK_SIZE; sb_hdr->key_dict_off = sb_hdr->header_size + sb_hdr->sec_hdr_size * sb_hdr->nr_sections; sb_hdr->first_boot_tag_off = sb_hdr->key_dict_off + sizeof(struct sb_key_dictionary_entry_t) * sb_hdr->nr_keys / BLOCK_SIZE; generate_random_data(sb_hdr->rand_pad0, sizeof(sb_hdr->rand_pad0)); generate_random_data(sb_hdr->rand_pad1, sizeof(sb_hdr->rand_pad1)); sb_hdr->timestamp = generate_timestamp(); generate_version(&sb_hdr->product_ver); generate_version(&sb_hdr->component_ver); sb_hdr->drive_tag = 0; sha_1_init(&sha_1_params); sha_1_update(&sha_1_params, &sb_hdr->signature[0], sizeof(struct sb_header_t) - sizeof(sb_hdr->sha1_header)); sha_1_finish(&sha_1_params); sha_1_output(&sha_1_params, sb_hdr->sha1_header); } static void produce_sb_section_header(struct sb_section_t *sec, struct sb_section_header_t *sec_hdr) { sec_hdr->identifier = sec->identifier; sec_hdr->offset = sec->file_offset; sec_hdr->size = sec->sec_size; sec_hdr->flags = SECTION_BOOTABLE; } static uint8_t instruction_checksum(struct sb_instruction_header_t *hdr) { uint8_t sum = 90; byte *ptr = (byte *)hdr; for(int i = 1; i < 16; i++) sum += ptr[i]; return sum; } static void produce_section_tag_cmd(struct sb_section_t *sec, struct sb_instruction_tag_t *tag, bool is_last) { tag->hdr.opcode = SB_INST_TAG; tag->hdr.flags = is_last ? SB_INST_LAST_TAG : 0; tag->identifier = sec->identifier; tag->len = sec->sec_size; tag->flags = SECTION_BOOTABLE; tag->hdr.checksum = instruction_checksum(&tag->hdr); } void produce_sb_instruction(struct sb_inst_t *inst, struct sb_instruction_common_t *cmd) { cmd->hdr.flags = 0; cmd->hdr.opcode = inst->inst; cmd->addr = inst->addr; cmd->len = inst->size; switch(inst->inst) { case SB_INST_CALL: case SB_INST_JUMP: cmd->len = 0; cmd->data = inst->argument; break; case SB_INST_FILL: cmd->data = inst->pattern; break; case SB_INST_LOAD: cmd->data = crc_continue(crc(inst->data, inst->size), inst->padding, inst->padding_size); break; default: break; } cmd->hdr.checksum = instruction_checksum(&cmd->hdr); } static void produce_sb_file(struct sb_file_t *sb, const char *filename) { int fd = open(filename, O_WRONLY | O_TRUNC | O_CREAT, S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH); if(fd < 0) bugp("cannot open output file"); byte real_key[16]; byte (*cbc_macs)[16] = xmalloc(16 * g_nr_keys); /* init CBC-MACs */ for(int i = 0; i < g_nr_keys; i++) memset(cbc_macs[i], 0, 16); fill_gaps(sb); compute_sb_offsets(sb); generate_random_data(real_key, sizeof(real_key)); /* global SHA-1 */ struct sha_1_params_t file_sha1; sha_1_init(&file_sha1); /* produce and write header */ struct sb_header_t sb_hdr; produce_sb_header(sb, &sb_hdr); sha_1_update(&file_sha1, (byte *)&sb_hdr, sizeof(sb_hdr)); write(fd, &sb_hdr, sizeof(sb_hdr)); /* update CBC-MACs */ for(int i = 0; i < g_nr_keys; i++) cbc_mac((byte *)&sb_hdr, NULL, sizeof(sb_hdr) / BLOCK_SIZE, g_key_array[i], cbc_macs[i], &cbc_macs[i], 1); /* produce and write section headers */ for(int i = 0; i < sb_hdr.nr_sections; i++) { struct sb_section_header_t sb_sec_hdr; produce_sb_section_header(&sb->sections[i], &sb_sec_hdr); sha_1_update(&file_sha1, (byte *)&sb_sec_hdr, sizeof(sb_sec_hdr)); write(fd, &sb_sec_hdr, sizeof(sb_sec_hdr)); /* update CBC-MACs */ for(int j = 0; j < g_nr_keys; j++) cbc_mac((byte *)&sb_sec_hdr, NULL, sizeof(sb_sec_hdr) / BLOCK_SIZE, g_key_array[j], cbc_macs[j], &cbc_macs[j], 1); } /* produce key dictionary */ for(int i = 0; i < g_nr_keys; i++) { struct sb_key_dictionary_entry_t entry; memcpy(entry.hdr_cbc_mac, cbc_macs[i], 16); cbc_mac(real_key, entry.key, sizeof(real_key) / BLOCK_SIZE, g_key_array[i], (byte *)&sb_hdr, NULL, 1); write(fd, &entry, sizeof(entry)); sha_1_update(&file_sha1, (byte *)&entry, sizeof(entry)); } /* produce sections data */ for(int i = 0; i< sb_hdr.nr_sections; i++) { /* produce tag command */ struct sb_instruction_tag_t tag_cmd; produce_section_tag_cmd(&sb->sections[i], &tag_cmd, (i + 1) == sb_hdr.nr_sections); if(g_nr_keys > 0) cbc_mac((byte *)&tag_cmd, (byte *)&tag_cmd, sizeof(tag_cmd) / BLOCK_SIZE, real_key, (byte *)&sb_hdr, NULL, 1); sha_1_update(&file_sha1, (byte *)&tag_cmd, sizeof(tag_cmd)); write(fd, &tag_cmd, sizeof(tag_cmd)); /* produce other commands */ byte cur_cbc_mac[16]; memcpy(cur_cbc_mac, (byte *)&sb_hdr, 16); for(int j = 0; j < sb->sections[i].nr_insts; j++) { struct sb_inst_t *inst = &sb->sections[i].insts[j]; /* command */ struct sb_instruction_common_t cmd; produce_sb_instruction(inst, &cmd); if(g_nr_keys > 0) cbc_mac((byte *)&cmd, (byte *)&cmd, sizeof(cmd) / BLOCK_SIZE, real_key, cur_cbc_mac, &cur_cbc_mac, 1); sha_1_update(&file_sha1, (byte *)&cmd, sizeof(cmd)); write(fd, &cmd, sizeof(cmd)); /* data */ if(inst->inst == SB_INST_LOAD) { uint32_t sz = inst->size + inst->padding_size; byte *data = xmalloc(sz); memcpy(data, inst->data, inst->size); memcpy(data + inst->size, inst->padding, inst->padding_size); if(g_nr_keys > 0) cbc_mac(data, data, sz / BLOCK_SIZE, real_key, cur_cbc_mac, &cur_cbc_mac, 1); sha_1_update(&file_sha1, data, sz); write(fd, data, sz); free(data); } } } /* write file SHA-1 */ byte final_sig[32]; sha_1_finish(&file_sha1); sha_1_output(&file_sha1, final_sig); generate_random_data(final_sig + 20, 12); if(g_nr_keys > 0) cbc_mac(final_sig, final_sig, 2, real_key, (byte *)&sb_hdr, NULL, 1); write(fd, final_sig, 32); close(fd); } int main(int argc, const char **argv) { if(argc != 4) { printf("Usage: %s \n",*argv); printf("To enable debug mode, set environement variable SB_DEBUG to YES\n"); return 1; } if(strcasecmp(s_getenv("SB_DEBUG"), "YES") == 0) g_debug = true; g_key_array = read_keys(argv[2], &g_nr_keys); struct cmd_file_t *cmd_file = read_command_file(argv[1]); struct sb_file_t *sb_file = apply_cmd_file(cmd_file); produce_sb_file(sb_file, argv[3]); return 0; }