#include #include /* Macros for converting between various fixed-point representations and floating point. */ #define ONE_16 (1L << 16) #define fixtof64(x) (float)((float)(x) / (float)(1 << 16)) //does not work on int64_t! #define ftofix32(x) ((int32_t)((x) * (float)(1 << 16) + ((x) < 0 ? -0.5 : 0.5))) #define ftofix31(x) ((int32_t)((x) * (float)(1 << 31) + ((x) < 0 ? -0.5 : 0.5))) #define fix31tof64(x) (float)((float)(x) / (float)(1 << 31)) /* Fixed point math routines for use in atrac3.c */ #if defined(CPU_ARM) #define fixmul16(X,Y) \ ({ \ int32_t low; \ int32_t high; \ asm volatile ( /* calculates: result = (X*Y)>>16 */ \ "smull %0,%1,%2,%3 \n\t" /* 64 = 32x32 multiply */ \ "mov %0, %0, lsr #16 \n\t" /* %0 = %0 >> 16 */ \ "orr %0, %0, %1, lsl #16 \n\t"/* result = %0 OR (%1 << 16) */ \ : "=&r"(low), "=&r" (high) \ : "r"(X),"r"(Y)); \ low; \ }) #define fixmul31(X,Y) \ ({ \ int32_t low; \ int32_t high; \ asm volatile ( /* calculates: result = (X*Y)>>31 */ \ "smull %0,%1,%2,%3 \n\t" /* 64 = 32x32 multiply */ \ "mov %0, %0, lsr #31 \n\t" /* %0 = %0 >> 31 */ \ "orr %0, %0, %1, lsl #1 \n\t" /* result = %0 OR (%1 << 1) */ \ : "=&r"(low), "=&r" (high) \ : "r"(X),"r"(Y)); \ low; \ }) #elif defined(CPU_COLDFIRE) #define fixmul16(X,Y) \ ({ \ int32_t t1, t2; \ asm volatile ( \ "mac.l %[x],%[y],%%acc0\n\t" /* multiply */ \ "mulu.l %[y],%[x] \n\t" /* get lower half, avoid emac stall */ \ "movclr.l %%acc0,%[t1] \n\t" /* get higher half */ \ "moveq.l #15,%[t2] \n\t" \ "asl.l %[t2],%[t1] \n\t" /* hi <<= 15, plus one free */ \ "moveq.l #16,%[t2] \n\t" \ "lsr.l %[t2],%[x] \n\t" /* (unsigned)lo >>= 16 */ \ "or.l %[x],%[t1] \n\t" /* combine result */ \ : /* outputs */ \ [t1]"=&d"(t1), \ [t2]"=&d"(t2) \ : /* inputs */ \ [x] "d" ((X)), \ [y] "d" ((Y))); \ t1; \ }) #define fixmul31(X,Y) \ ({ \ int32_t t; \ asm volatile ( \ "mac.l %[x], %[y], %%acc0\n\t" /* multiply */ \ "movclr.l %%acc0, %[t]\n\t" /* get higher half as result */ \ : [t] "=d" (t) \ : [x] "r" ((X)), [y] "r" ((Y))); \ t; \ }) #else static inline int32_t fixmul16(int32_t x, int32_t y) { int64_t temp; temp = x; temp *= y; temp >>= 16; return (int32_t)temp; } static inline int32_t fixmul31(int32_t x, int32_t y) { int64_t temp; temp = x; temp *= y; temp >>= 31; //16+31-16 = 31 bits return (int32_t)temp; } #endif static inline int32_t fixdiv16(int32_t x, int32_t y) { int64_t temp; temp = x << 16; temp /= y; return (int32_t)temp; } /* * Fast integer square root adapted from algorithm, * Martin Guy @ UKC, June 1985. * Originally from a book on programming abaci by Mr C. Woo. * This is taken from : * http://wiki.forum.nokia.com/index.php/How_to_use_fixed_point_maths#How_to_get_square_root_for_integers * with a added shift up of the result by 8 bits to return result in 16.16 fixed-point representation. */ static inline int32_t fastSqrt(int32_t n) { /* * Logically, these are unsigned. * We need the sign bit to test * whether (op - res - one) underflowed. */ int32_t op, res, one; op = n; res = 0; /* "one" starts at the highest power of four <= than the argument. */ one = 1 << 30; /* second-to-top bit set */ while (one > op) one >>= 2; while (one != 0) { if (op >= res + one) { op = op - (res + one); res = res + (one<<1); } res >>= 1; one >>= 2; } return(res << 8); }