/* * Copyright (c) 2000, 2001, 2002 Fabrice Bellard * Copyright (c) 2002-2004 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef AVCODEC_FFT_H #define AVCODEC_FFT_H #include //#include "config.h" #include "libavutil/mem.h" #include "avfft.h" /* DECLARE_ALIGNED - Taken from libavutil/internal.h */ #define DECLARE_ALIGNED(n,t,v) t __attribute__ ((aligned (n))) v #define DECLARE_ALIGNED_16(t,v) DECLARE_ALIGNED(16,t,v) /* FFT computation */ struct FFTContext { int nbits; int inverse; uint16_t *revtab; FFTComplex *exptab; FFTComplex *exptab1; /* only used by SSE code */ FFTComplex *tmp_buf; int mdct_size; /* size of MDCT (i.e. number of input data * 2) */ int mdct_bits; /* n = 2^nbits */ /* pre/post rotation tables */ FFTSample *tcos; FFTSample *tsin; void (*fft_permute)(struct FFTContext *s, FFTComplex *z); void (*fft_calc)(struct FFTContext *s, FFTComplex *z); void (*imdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input); void (*imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input); void (*mdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input); int split_radix; int permutation; #define FF_MDCT_PERM_NONE 0 #define FF_MDCT_PERM_INTERLEAVE 1 }; #if CONFIG_HARDCODED_TABLES #define COSTABLE_CONST const #define SINTABLE_CONST const #define SINETABLE_CONST const #else #define COSTABLE_CONST #define SINTABLE_CONST #define SINETABLE_CONST #endif #define COSTABLE(size) \ COSTABLE_CONST DECLARE_ALIGNED(16, FFTSample, ff_cos_##size)[size/2] #define SINTABLE(size) \ SINTABLE_CONST DECLARE_ALIGNED(16, FFTSample, ff_sin_##size)[size/2] #define SINETABLE(size) \ SINETABLE_CONST DECLARE_ALIGNED(16, float, ff_sine_##size)[size] extern COSTABLE(16); extern COSTABLE(32); extern COSTABLE(64); extern COSTABLE(128); extern COSTABLE(256); extern COSTABLE(512); extern COSTABLE(1024); extern COSTABLE(2048); extern COSTABLE(4096); extern COSTABLE(8192); extern COSTABLE(16384); extern COSTABLE(32768); extern COSTABLE(65536); //extern COSTABLE_CONST FFTSample* const ff_cos_tabs[17]; /** * Initializes the cosine table in ff_cos_tabs[index] * \param index index in ff_cos_tabs array of the table to initialize */ void ff_init_ff_cos_tabs(int index); extern SINTABLE(16); extern SINTABLE(32); extern SINTABLE(64); extern SINTABLE(128); extern SINTABLE(256); extern SINTABLE(512); extern SINTABLE(1024); extern SINTABLE(2048); extern SINTABLE(4096); extern SINTABLE(8192); extern SINTABLE(16384); extern SINTABLE(32768); extern SINTABLE(65536); /** * Sets up a complex FFT. * @param nbits log2 of the length of the input array * @param inverse if 0 perform the forward transform, if 1 perform the inverse */ int ff_fft_init(FFTContext *s, int nbits, int inverse); void ff_fft_permute_c(FFTContext *s, FFTComplex *z); void ff_fft_calc_c(FFTContext *s, FFTComplex *z); void ff_fft_init_altivec(FFTContext *s); void ff_fft_init_mmx(FFTContext *s); void ff_fft_init_arm(FFTContext *s); /** * Do the permutation needed BEFORE calling ff_fft_calc(). */ static inline void ff_fft_permute(FFTContext *s, FFTComplex *z) { s->fft_permute(s, z); } /** * Do a complex FFT with the parameters defined in ff_fft_init(). The * input data must be permuted before. No 1.0/sqrt(n) normalization is done. */ static inline void ff_fft_calc(FFTContext *s, FFTComplex *z) { s->fft_calc(s, z); } void ff_fft_end(FFTContext *s); /* MDCT computation */ static inline void ff_imdct_calc(FFTContext *s, FFTSample *output, const FFTSample *input) { s->imdct_calc(s, output, input); } static inline void ff_imdct_half(FFTContext *s, FFTSample *output, const FFTSample *input) { s->imdct_half(s, output, input); } static inline void ff_mdct_calc(FFTContext *s, FFTSample *output, const FFTSample *input) { s->mdct_calc(s, output, input); } /** * Generate a Kaiser-Bessel Derived Window. * @param window pointer to half window * @param alpha determines window shape * @param n size of half window */ void ff_kbd_window_init(float *window, float alpha, int n); /** * Generate a sine window. * @param window pointer to half window * @param n size of half window */ void ff_sine_window_init(float *window, int n); /** * initialize the specified entry of ff_sine_windows */ void ff_init_ff_sine_windows(int index); extern SINETABLE( 32); extern SINETABLE( 64); extern SINETABLE( 128); extern SINETABLE( 256); extern SINETABLE( 512); extern SINETABLE(1024); extern SINETABLE(2048); extern SINETABLE(4096); extern SINETABLE_CONST float * const ff_sine_windows[13]; int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale); void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input); void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input); void ff_mdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input); void ff_mdct_end(FFTContext *s); /* Real Discrete Fourier Transform */ struct RDFTContext { int nbits; int inverse; int sign_convention; /* pre/post rotation tables */ const FFTSample *tcos; SINTABLE_CONST FFTSample *tsin; FFTContext fft; void (*rdft_calc)(struct RDFTContext *s, FFTSample *z); }; /** * Sets up a real FFT. * @param nbits log2 of the length of the input array * @param trans the type of transform */ int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans); void ff_rdft_end(RDFTContext *s); void ff_rdft_init_arm(RDFTContext *s); static av_always_inline void ff_rdft_calc(RDFTContext *s, FFTSample *data) { s->rdft_calc(s, data); } /* Discrete Cosine Transform */ struct DCTContext { int nbits; int inverse; RDFTContext rdft; const float *costab; FFTSample *csc2; void (*dct_calc)(struct DCTContext *s, FFTSample *data); }; /** * Sets up DCT. * @param nbits size of the input array: * (1 << nbits) for DCT-II, DCT-III and DST-I * (1 << nbits) + 1 for DCT-I * * @note the first element of the input of DST-I is ignored */ int ff_dct_init(DCTContext *s, int nbits, enum DCTTransformType type); void ff_dct_calc(DCTContext *s, FFTSample *data); void ff_dct_end (DCTContext *s); #endif /* AVCODEC_FFT_H */