/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2002 Heikki Hannikainen * * All files in this archive are subject to the GNU General Public License. * See the file COPYING in the source tree root for full license agreement. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "config.h" #ifndef SIMULATOR #include #include #include "lcd.h" #include "menu.h" #include "debug_menu.h" #include "kernel.h" #include "sprintf.h" #include "button.h" #include "adc.h" #include "mas.h" #include "power.h" #include "rtc.h" #include "debug.h" #include "thread.h" #include "powermgmt.h" #include "system.h" #include "font.h" #include "disk.h" #include "mpeg.h" #include "settings.h" #include "ata.h" #include "fat.h" #ifdef HAVE_LCD_BITMAP #include "widgets.h" #include "peakmeter.h" #endif /*---------------------------------------------------*/ /* SPECIAL DEBUG STUFF */ /*---------------------------------------------------*/ extern int ata_device; extern int ata_io_address; extern int num_threads; extern char *thread_name[]; #ifdef HAVE_LCD_BITMAP /* Test code!!! */ bool dbg_os(void) { char buf[32]; int button; int i; int usage; #ifdef HAVE_LCD_BITMAP lcd_setmargins(0, 0); #endif lcd_clear_display(); while(1) { lcd_puts(0, 0, "Stack usage:"); for(i = 0; i < num_threads;i++) { usage = thread_stack_usage(i); snprintf(buf, 32, "%s: %d%%", thread_name[i], usage); lcd_puts(0, 1+i, buf); } lcd_update(); button = button_get_w_tmo(HZ/10); switch(button) { case BUTTON_OFF: case BUTTON_LEFT: return false; } } return false; } #else bool dbg_os(void) { char buf[32]; int button; int usage; int currval = 0; #ifdef HAVE_LCD_BITMAP lcd_setmargins(0, 0); #endif lcd_clear_display(); while(1) { lcd_puts(0, 0, "Stack usage"); usage = thread_stack_usage(currval); snprintf(buf, 32, "%d: %d%% ", currval, usage); lcd_puts(0, 1, buf); button = button_get_w_tmo(HZ/10); switch(button) { case BUTTON_STOP: return false; case BUTTON_LEFT: currval--; if(currval < 0) currval = num_threads-1; break; case BUTTON_RIGHT: currval++; if(currval > num_threads-1) currval = 0; break; } } return false; } #endif #ifdef HAVE_LCD_BITMAP bool dbg_mpeg_thread(void) { char buf[32]; int button; int percent; struct mpeg_debug d; lcd_setmargins(0, 0); while(1) { button = button_get_w_tmo(HZ/5); switch(button) { case BUTTON_OFF | BUTTON_REL: return false; } mpeg_get_debugdata(&d); lcd_clear_display(); snprintf(buf, sizeof(buf), "read: %x", d.mp3buf_read); lcd_puts(0, 0, buf); snprintf(buf, sizeof(buf), "write: %x", d.mp3buf_write); lcd_puts(0, 1, buf); snprintf(buf, sizeof(buf), "swap: %x", d.mp3buf_swapwrite); lcd_puts(0, 2, buf); snprintf(buf, sizeof(buf), "playing: %d", d.playing); lcd_puts(0, 3, buf); snprintf(buf, sizeof(buf), "playable: %x", d.playable_space); lcd_puts(0, 4, buf); snprintf(buf, sizeof(buf), "unswapped: %x", d.unswapped_space); lcd_puts(0, 5, buf); percent = d.playable_space * 100 / d.mp3buflen; progressbar(0, 6*8, 112, 4, percent, Grow_Right); percent = d.low_watermark_level * 100 / d.mp3buflen; progressbar(0, 6*8+4, 112, 4, percent, Grow_Right); snprintf(buf, sizeof(buf), "wm: %x - %x", d.low_watermark_level, d.lowest_watermark_level); lcd_puts(0, 7, buf); lcd_update(); } return false; } #endif #ifdef HAVE_LCD_BITMAP bool dbg_hw_info(void) { char buf[32]; int button; int usb_polarity; int pr_polarity; int bitmask = *(unsigned short*)0x20000fc; int rom_version = *(unsigned short*)0x20000fe; unsigned char sec, sec2; unsigned long tick; bool is_12mhz; if(PADR & 0x400) usb_polarity = 0; /* Negative */ else usb_polarity = 1; /* Positive */ if(PADR & 0x800) pr_polarity = 0; /* Negative */ else pr_polarity = 1; /* Positive */ sec = rtc_read(0x01); do { sec2 = rtc_read(0x01); } while(sec == sec2); tick = current_tick; do { sec = rtc_read(0x01); } while(sec2 == sec); is_12mhz = (current_tick - tick > HZ); lcd_setmargins(0, 0); lcd_setfont(FONT_SYSFIXED); lcd_clear_display(); lcd_puts(0, 0, "[Hardware info]"); snprintf(buf, 32, "ROM: %d.%02d", rom_version/100, rom_version%100); lcd_puts(0, 1, buf); snprintf(buf, 32, "Mask: 0x%04x", bitmask); lcd_puts(0, 2, buf); snprintf(buf, 32, "USB: %s", usb_polarity?"positive":"negative"); lcd_puts(0, 3, buf); snprintf(buf, 32, "ATA: 0x%x", ata_io_address); lcd_puts(0, 4, buf); snprintf(buf, 32, "PR: %s", pr_polarity?"positive":"negative"); lcd_puts(0, 5, buf); snprintf(buf, 32, "Freq: %s", is_12mhz?"12MHz":"11.0592MHz"); lcd_puts(0, 6, buf); lcd_update(); while(1) { button = button_get(true); if(button == (BUTTON_OFF | BUTTON_REL)) return false; } return false; } #else bool dbg_hw_info(void) { char buf[32]; int button; int currval = 0; int usb_polarity; int bitmask = *(unsigned short*)0x20000fc; int rom_version = *(unsigned short*)0x20000fe; if(PADR & 0x400) usb_polarity = 0; /* Negative */ else usb_polarity = 1; /* Positive */ lcd_clear_display(); lcd_puts(0, 0, "[HW Info]"); while(1) { switch(currval) { case 0: snprintf(buf, 32, "ROM: %d.%02d", rom_version/100, rom_version%100); break; case 1: snprintf(buf, 32, "USB: %s", usb_polarity?"pos":"neg"); break; case 2: snprintf(buf, 32, "ATA: 0x%x", ata_io_address); break; case 3: snprintf(buf, 32, "Mask: %04x", bitmask); break; } lcd_puts(0, 1, buf); lcd_update(); button = button_get(true); switch(button) { case BUTTON_STOP: return false; case BUTTON_LEFT: currval--; if(currval < 0) currval = 3; break; case BUTTON_RIGHT: currval++; if(currval > 3) currval = 0; break; } } return false; } #endif bool dbg_partitions(void) { int partition=0; lcd_clear_display(); lcd_puts(0, 0, "Partition"); lcd_puts(0, 1, "list"); lcd_update(); sleep(HZ/2); while(1) { char buf[32]; int button; struct partinfo* p = disk_partinfo(partition); lcd_clear_display(); snprintf(buf, sizeof buf, "P%d: S:%x", partition, p->start); lcd_puts(0, 0, buf); snprintf(buf, sizeof buf, "T:%x %d MB", p->type, p->size / 2048); lcd_puts(0, 1, buf); lcd_update(); button = button_get(true); switch(button) { #ifdef HAVE_RECORDER_KEYPAD case BUTTON_OFF: #else case BUTTON_STOP: #endif return false; #ifdef HAVE_RECORDER_KEYPAD case BUTTON_UP: #endif case BUTTON_LEFT: partition--; if (partition < 0) partition = 3; break; #ifdef HAVE_RECORDER_KEYPAD case BUTTON_DOWN: #endif case BUTTON_RIGHT: partition++; if (partition > 3) partition = 0; break; } } return false; } #ifdef HAVE_LCD_BITMAP /* Test code!!! */ bool dbg_ports(void) { unsigned short porta; unsigned short portb; unsigned char portc; char buf[32]; int button; int battery_voltage; int batt_int, batt_frac; #ifdef HAVE_LCD_BITMAP lcd_setmargins(0, 0); #endif lcd_clear_display(); while(1) { porta = PADR; portb = PBDR; portc = PCDR; snprintf(buf, 32, "PADR: %04x", porta); lcd_puts(0, 0, buf); snprintf(buf, 32, "PBDR: %04x", portb); lcd_puts(0, 1, buf); snprintf(buf, 32, "AN0: %03x AN4: %03x", adc_read(0), adc_read(4)); lcd_puts(0, 2, buf); snprintf(buf, 32, "AN1: %03x AN5: %03x", adc_read(1), adc_read(5)); lcd_puts(0, 3, buf); snprintf(buf, 32, "AN2: %03x AN6: %03x", adc_read(2), adc_read(6)); lcd_puts(0, 4, buf); snprintf(buf, 32, "AN3: %03x AN7: %03x", adc_read(3), adc_read(7)); lcd_puts(0, 5, buf); battery_voltage = (adc_read(ADC_UNREG_POWER) * BATTERY_SCALE_FACTOR) / 10000; batt_int = battery_voltage / 100; batt_frac = battery_voltage % 100; snprintf(buf, 32, "Batt: %d.%02dV %d%% ", batt_int, batt_frac, battery_level()); lcd_puts(0, 6, buf); snprintf(buf, 32, "ATA: %s, 0x%x", ata_device?"slave":"master", ata_io_address); lcd_puts(0, 7, buf); lcd_update(); button = button_get(HZ/10); switch(button) { case BUTTON_OFF | BUTTON_REL: return false; } } return false; } #else bool dbg_ports(void) { unsigned short porta; unsigned short portb; unsigned char portc; char buf[32]; int button; int battery_voltage; int batt_int, batt_frac; int currval = 0; #ifdef HAVE_LCD_BITMAP lcd_setmargins(0, 0); #endif lcd_clear_display(); while(1) { porta = PADR; portb = PBDR; portc = PCDR; switch(currval) { case 0: snprintf(buf, 32, "PADR: %04x ", porta); break; case 1: snprintf(buf, 32, "PBDR: %04x ", portb); break; case 2: snprintf(buf, 32, "AN0: %03x ", adc_read(0)); break; case 3: snprintf(buf, 32, "AN1: %03x ", adc_read(1)); break; case 4: snprintf(buf, 32, "AN2: %03x ", adc_read(2)); break; case 5: snprintf(buf, 32, "AN3: %03x ", adc_read(3)); break; case 6: snprintf(buf, 32, "AN4: %03x ", adc_read(4)); break; case 7: snprintf(buf, 32, "AN5: %03x ", adc_read(5)); break; case 8: snprintf(buf, 32, "AN6: %03x ", adc_read(6)); break; case 9: snprintf(buf, 32, "AN7: %03x ", adc_read(7)); break; case 10: snprintf(buf, 32, "%s, 0x%x ", ata_device?"slv":"mst", ata_io_address); break; } lcd_puts(0, 0, buf); battery_voltage = (adc_read(ADC_UNREG_POWER) * BATTERY_SCALE_FACTOR) / 10000; batt_int = battery_voltage / 100; batt_frac = battery_voltage % 100; snprintf(buf, 32, "Batt: %d.%02dV", batt_int, batt_frac); lcd_puts(0, 1, buf); button = button_get_w_tmo(HZ/5); switch(button) { case BUTTON_STOP | BUTTON_REL: return false; case BUTTON_LEFT: currval--; if(currval < 0) currval = 10; break; case BUTTON_RIGHT: currval++; if(currval > 10) currval = 0; break; } } return false; } #endif #ifdef HAVE_RTC /* Read RTC RAM contents and display them */ bool dbg_rtc(void) { char buf[32]; unsigned char addr = 0, r, c; int i; int button; #ifdef HAVE_LCD_BITMAP lcd_setmargins(0, 0); #endif lcd_clear_display(); lcd_puts(0, 0, "RTC read:"); while(1) { for (r = 0; r < 4; r++) { snprintf(buf, 10, "0x%02x: ", addr + r*4); for (c = 0; c <= 3; c++) { i = rtc_read(addr + r*4 + c); snprintf(buf + 6 + c*2, 3, "%02x", i); } lcd_puts(1, r+1, buf); } lcd_update(); button = button_get_w_tmo(HZ/2); switch(button) { case BUTTON_DOWN: if (addr < 63-16) { addr += 16; } break; case BUTTON_UP: if (addr) { addr -= 16; } break; case BUTTON_F2: /* clear the user RAM space */ for (c = 0; c <= 43; c++) rtc_write(0x14 + c, 0); break; case BUTTON_OFF | BUTTON_REL: case BUTTON_LEFT | BUTTON_REL: return false; } } return false; } #else bool dbg_rtc(void) { return false; } #endif #ifdef HAVE_LCD_CHARCELLS #define NUMROWS 1 #else #define NUMROWS 4 #endif /* Read MAS registers and display them */ bool dbg_mas(void) { char buf[32]; unsigned int addr = 0, r, i; #ifdef HAVE_LCD_BITMAP lcd_setmargins(0, 0); #endif lcd_clear_display(); lcd_puts(0, 0, "MAS register read:"); while(1) { for (r = 0; r < NUMROWS; r++) { i = mas_readreg(addr + r); snprintf(buf, 30, "%02x %08x", addr + r, i); lcd_puts(0, r+1, buf); } lcd_update(); switch(button_get_w_tmo(HZ/16)) { #ifdef HAVE_RECORDER_KEYPAD case BUTTON_DOWN: #else case BUTTON_RIGHT: #endif addr += NUMROWS; break; #ifdef HAVE_RECORDER_KEYPAD case BUTTON_UP: #else case BUTTON_LEFT: #endif if(addr) addr -= NUMROWS; break; #ifdef HAVE_RECORDER_KEYPAD case BUTTON_LEFT: #else case BUTTON_DOWN: #endif return false; } } return false; } #ifdef HAVE_MAS3587F bool dbg_mas_codec(void) { char buf[32]; unsigned int addr = 0, r, i; #ifdef HAVE_LCD_BITMAP lcd_setmargins(0, 0); #endif lcd_clear_display(); lcd_puts(0, 0, "MAS codec reg read:"); while(1) { for (r = 0; r < 4; r++) { i = mas_codec_readreg(addr + r); snprintf(buf, 30, "0x%02x: %08x", addr + r, i); lcd_puts(1, r+1, buf); } lcd_update(); switch(button_get_w_tmo(HZ/16)) { case BUTTON_DOWN: addr += 4; break; case BUTTON_UP: if (addr) { addr -= 4; } break; case BUTTON_LEFT | BUTTON_REL: case BUTTON_OFF | BUTTON_REL: return false; } } return false; } #endif #ifdef HAVE_LCD_BITMAP /* * view_battery() shows a automatically scaled graph of the battery voltage * over time. Usable for estimating battery life / charging rate. * The power_history array is updated in power_thread of powermgmt.c. */ #define BAT_FIRST_VAL MAX(POWER_HISTORY_LEN - LCD_WIDTH - 1, 0) #define BAT_YSPACE (LCD_HEIGHT - 20) bool view_battery(void) { int view = 0; int i, x, y; int maxv, minv; char buf[32]; #ifdef HAVE_LCD_BITMAP lcd_setmargins(0, 0); #endif while(1) { switch (view) { case 0: /* voltage history graph */ /* Find maximum and minimum voltage for scaling */ maxv = minv = 0; for (i = BAT_FIRST_VAL; i < POWER_HISTORY_LEN; i++) { if (power_history[i] > maxv) maxv = power_history[i]; if ((minv == 0) || ((power_history[i]) && (power_history[i] < minv)) ) { minv = power_history[i]; } } if (minv < 1) minv = 1; if (maxv < 2) maxv = 2; lcd_clear_display(); lcd_puts(0, 0, "Battery voltage:"); snprintf(buf, 30, "scale %d.%02d-%d.%02d V", minv / 100, minv % 100, maxv / 100, maxv % 100); lcd_puts(0, 1, buf); x = 0; for (i = BAT_FIRST_VAL+1; i < POWER_HISTORY_LEN; i++) { y = (power_history[i] - minv) * BAT_YSPACE / (maxv - minv); lcd_clearline(x, LCD_HEIGHT-1, x, 20); lcd_drawline(x, LCD_HEIGHT-1, x, MIN(MAX(LCD_HEIGHT-1 - y, 20), LCD_HEIGHT-1)); x++; } break; case 1: /* status: */ lcd_clear_display(); lcd_puts(0, 0, "Power status:"); y = (adc_read(ADC_UNREG_POWER) * BATTERY_SCALE_FACTOR) / 10000; snprintf(buf, 30, "Battery: %d.%02d V", y / 100, y % 100); lcd_puts(0, 1, buf); y = (adc_read(ADC_EXT_POWER) * EXT_SCALE_FACTOR) / 10000; snprintf(buf, 30, "External: %d.%02d V", y / 100, y % 100); lcd_puts(0, 2, buf); snprintf(buf, 30, "Charger: %s", charger_inserted() ? "present" : "absent"); lcd_puts(0, 3, buf); #ifdef HAVE_CHARGE_CTRL snprintf(buf, 30, "Charging: %s", charger_enabled ? "yes" : "no"); lcd_puts(0, 4, buf); #endif y = ( power_history[POWER_HISTORY_LEN-1] * 100 + power_history[POWER_HISTORY_LEN-2] * 100 - power_history[POWER_HISTORY_LEN-1-CHARGE_END_NEGD+1] * 100 - power_history[POWER_HISTORY_LEN-1-CHARGE_END_NEGD] * 100 ) / CHARGE_END_NEGD / 2; snprintf(buf, 30, "short delta: %d", y); lcd_puts(0, 5, buf); y = ( power_history[POWER_HISTORY_LEN-1] * 100 + power_history[POWER_HISTORY_LEN-2] * 100 - power_history[POWER_HISTORY_LEN-1-CHARGE_END_ZEROD+1] * 100 - power_history[POWER_HISTORY_LEN-1-CHARGE_END_ZEROD] * 100 ) / CHARGE_END_ZEROD / 2; snprintf(buf, 30, "long delta: %d", y); lcd_puts(0, 6, buf); #ifdef HAVE_CHARGE_CTRL lcd_puts(0, 7, power_message); #endif break; case 2: /* voltage deltas: */ lcd_clear_display(); lcd_puts(0, 0, "Voltage deltas:"); for (i = 0; i <= 6; i++) { y = power_history[POWER_HISTORY_LEN-1-i] - power_history[POWER_HISTORY_LEN-1-i-1]; snprintf(buf, 30, "-%d min: %s%d.%02d V", i, (y < 0) ? "-" : "", ((y < 0) ? y * -1 : y) / 100, ((y < 0) ? y * -1 : y ) % 100); lcd_puts(0, i+1, buf); } break; case 3: /* remeining time estimation: */ lcd_clear_display(); lcd_puts(0, 0, "Remaining time:"); snprintf(buf, 30, "Cycle time: %d m", powermgmt_last_cycle_startstop_min); lcd_puts(0, 1, buf); snprintf(buf, 30, "Lev.at cycle start: %d%%", powermgmt_last_cycle_level); lcd_puts(0, 2, buf); snprintf(buf, 30, "Last PwrHist val: %d.%02d V", power_history[POWER_HISTORY_LEN-1] / 100, power_history[POWER_HISTORY_LEN-1] % 100); lcd_puts(0, 3, buf); snprintf(buf, 30, "Lazy time amount: %d%%", (powermgmt_last_cycle_startstop_min < 20) ? battery_lazyness[powermgmt_last_cycle_startstop_min] : 0); lcd_puts(0, 4, buf); snprintf(buf, 30, "resulting act.lev: %d%%", battery_level()); lcd_puts(0, 5, buf); snprintf(buf, 30, "Est. remaining: %d m", battery_time()); lcd_puts(0, 6, buf); snprintf(buf, 30, "Trickle sec: %d/60", trickle_sec); lcd_puts(0, 7, buf); #ifdef HAVE_CHARGE_CTRL #endif break; } lcd_update(); switch(button_get_w_tmo(HZ/2)) { case BUTTON_UP: if (view) view--; break; case BUTTON_DOWN: if (view < 3) view++; break; case BUTTON_LEFT | BUTTON_REL: case BUTTON_OFF | BUTTON_REL: return false; } } return false; } #endif #ifdef HAVE_MAS3507D bool dbg_mas_info(void) { int button; char buf[32]; int currval = 0; unsigned long val; unsigned long pll48, pll44, config; int pll_toggle = 0; #ifdef HAVE_LCD_BITMAP lcd_setmargins(0, 0); #endif while(1) { switch(currval) { case 0: mas_readmem(MAS_BANK_D1, 0xff7, &val, 1); lcd_puts(0, 0, "Design Code"); snprintf(buf, 32, "%05x ", val); break; case 1: lcd_puts(0, 0, "DC/DC mode "); snprintf(buf, 32, "8e: %05x ", mas_readreg(0x8e) & 0xfffff); break; case 2: lcd_puts(0, 0, "Mute/Bypass"); snprintf(buf, 32, "aa: %05x ", mas_readreg(0xaa) & 0xfffff); break; case 3: lcd_puts(0, 0, "PIOData "); snprintf(buf, 32, "ed: %05x ", mas_readreg(0xed) & 0xfffff); break; case 4: lcd_puts(0, 0, "Startup Cfg"); snprintf(buf, 32, "e6: %05x ", mas_readreg(0xe6) & 0xfffff); break; case 5: lcd_puts(0, 0, "KPrescale "); snprintf(buf, 32, "e7: %05x ", mas_readreg(0xe7) & 0xfffff); break; case 6: lcd_puts(0, 0, "KBass "); snprintf(buf, 32, "6b: %05x ", mas_readreg(0x6b) & 0xfffff); break; case 7: lcd_puts(0, 0, "KTreble "); snprintf(buf, 32, "6f: %05x ", mas_readreg(0x6f) & 0xfffff); break; case 8: mas_readmem(MAS_BANK_D0, 0x300, &val, 1); lcd_puts(0, 0, "Frame Count"); snprintf(buf, 32, "0/300: %04x", val & 0xffff); break; case 9: mas_readmem(MAS_BANK_D0, 0x301, &val, 1); lcd_puts(0, 0, "Status1 "); snprintf(buf, 32, "0/301: %04x", val & 0xffff); break; case 10: mas_readmem(MAS_BANK_D0, 0x302, &val, 1); lcd_puts(0, 0, "Status2 "); snprintf(buf, 32, "0/302: %04x", val & 0xffff); break; case 11: mas_readmem(MAS_BANK_D0, 0x303, &val, 1); lcd_puts(0, 0, "CRC Count "); snprintf(buf, 32, "0/303: %04x", val & 0xffff); break; case 12: mas_readmem(MAS_BANK_D0, 0x36d, &val, 1); lcd_puts(0, 0, "PLLOffset48"); snprintf(buf, 32, "0/36d %05x", val & 0xfffff); break; case 13: mas_readmem(MAS_BANK_D0, 0x32d, &val, 1); lcd_puts(0, 0, "PLLOffset48"); snprintf(buf, 32, "0/32d %05x", val & 0xfffff); break; case 14: mas_readmem(MAS_BANK_D0, 0x36e, &val, 1); lcd_puts(0, 0, "PLLOffset44"); snprintf(buf, 32, "0/36e %05x", val & 0xfffff); break; case 15: mas_readmem(MAS_BANK_D0, 0x32e, &val, 1); lcd_puts(0, 0, "PLLOffset44"); snprintf(buf, 32, "0/32e %05x", val & 0xfffff); break; case 16: mas_readmem(MAS_BANK_D0, 0x36f, &val, 1); lcd_puts(0, 0, "OutputConf "); snprintf(buf, 32, "0/36f %05x", val & 0xfffff); break; case 17: mas_readmem(MAS_BANK_D0, 0x32f, &val, 1); lcd_puts(0, 0, "OutputConf "); snprintf(buf, 32, "0/32f %05x", val & 0xfffff); break; case 18: mas_readmem(MAS_BANK_D1, 0x7f8, &val, 1); lcd_puts(0, 0, "LL Gain "); snprintf(buf, 32, "1/7f8 %05x", val & 0xfffff); break; case 19: mas_readmem(MAS_BANK_D1, 0x7f9, &val, 1); lcd_puts(0, 0, "LR Gain "); snprintf(buf, 32, "1/7f9 %05x", val & 0xfffff); break; case 20: mas_readmem(MAS_BANK_D1, 0x7fa, &val, 1); lcd_puts(0, 0, "RL Gain "); snprintf(buf, 32, "1/7fa %05x", val & 0xfffff); break; case 21: mas_readmem(MAS_BANK_D1, 0x7fb, &val, 1); lcd_puts(0, 0, "RR Gain "); snprintf(buf, 32, "1/7fb %05x", val & 0xfffff); break; case 22: lcd_puts(0, 0, "L Trailbits"); snprintf(buf, 32, "c5: %05x ", mas_readreg(0xc5) & 0xfffff); break; case 23: lcd_puts(0, 0, "R Trailbits"); snprintf(buf, 32, "c6: %05x ", mas_readreg(0xc6) & 0xfffff); break; } lcd_puts(0, 1, buf); button = button_get_w_tmo(HZ/5); switch(button) { case BUTTON_STOP: return false; case BUTTON_LEFT: currval--; if(currval < 0) currval = 23; break; case BUTTON_RIGHT: currval++; if(currval > 23) currval = 0; break; case BUTTON_PLAY: pll_toggle = !pll_toggle; if(pll_toggle) { /* 14.31818 MHz crystal */ pll48 = 0x5d9d0; pll44 = 0xfffceceb; config = 0; } else { /* 14.725 MHz crystal */ pll48 = 0x2d0de; pll44 = 0xfffa2319; config = 0; } mas_writemem(MAS_BANK_D0, 0x32d, &pll48, 1); mas_writemem(MAS_BANK_D0, 0x32e, &pll44, 1); mas_writemem(MAS_BANK_D0, 0x32f, &config, 1); mas_run(0x475); break; } } return false; } #endif static bool view_runtime(void) { char s[32]; bool done = false; int state = 1; while(!done) { int y=0; int t; int key; lcd_clear_display(); #ifdef HAVE_LCD_BITMAP lcd_puts(0, y++, "Running time:"); y++; #endif if (state & 1) { t = global_settings.runtime; lcd_puts(0, y++, "Current time"); } else { t = global_settings.topruntime; lcd_puts(0, y++, "Top time"); } snprintf(s, sizeof(s), "%dh %dm %ds", t / 3600, (t % 3600) / 60, t % 60); lcd_puts(0, y++, s); lcd_update(); /* Wait for a key to be pushed */ key = button_get_w_tmo(HZ*5); switch(key) { #ifdef HAVE_PLAYER_KEYPAD case BUTTON_STOP | BUTTON_REL: #else case BUTTON_OFF | BUTTON_REL: #endif done = true; break; case BUTTON_LEFT: case BUTTON_RIGHT: if (state == 1) state = 2; else state = 1; break; case BUTTON_PLAY: lcd_clear_display(); lcd_puts(0,0,"Clear time?"); lcd_puts(0,1,"PLAY = Yes"); lcd_update(); while (1) { key = button_get_w_tmo(HZ*10); if ( key & BUTTON_REL ) continue; if ( key == BUTTON_PLAY ) { if ( state == 1 ) global_settings.runtime = 0; else global_settings.topruntime = 0; } break; } break; } } return false; } static bool dbg_disk_info(void) { char buf[128]; bool done = false; int i; int page = 0; const int max_page = 3; unsigned short* identify_info = ata_get_identify(); while(!done) { int y=0; int key; lcd_clear_display(); #ifdef HAVE_LCD_BITMAP lcd_puts(0, y++, "Disk info:"); y++; #endif switch (page) { case 0: for (i=0; i < 20; i++) ((unsigned short*)buf)[i]=identify_info[i+27]; buf[40]=0; /* kill trailing space */ for (i=39; i && buf[i]==' '; i--) buf[i] = 0; lcd_puts(0, y++, "Model"); lcd_puts_scroll(0, y++, buf); break; case 1: for (i=0; i < 4; i++) ((unsigned short*)buf)[i]=identify_info[i+23]; buf[8]=0; lcd_puts(0, y++, "Firmware"); lcd_puts(0, y++, buf); break; case 2: snprintf(buf, sizeof buf, "%d MB", ((unsigned)identify_info[61] << 16 | (unsigned)identify_info[60]) / 2048 ); lcd_puts(0, y++, "Size"); lcd_puts(0, y++, buf); break; case 3: { unsigned int free; fat_size( NULL, &free ); snprintf(buf, sizeof buf, "%d MB", free / 1024 ); lcd_puts(0, y++, "Free"); lcd_puts(0, y++, buf); break; } case 4: snprintf(buf, sizeof buf, "%d ms", ata_spinup_time * (1000/HZ)); lcd_puts(0, y++, "Spinup time"); lcd_puts(0, y++, buf); break; } lcd_update(); /* Wait for a key to be pushed */ key = button_get_w_tmo(HZ*5); switch(key) { #ifdef HAVE_PLAYER_KEYPAD case BUTTON_STOP | BUTTON_REL: #else case BUTTON_OFF | BUTTON_REL: #endif done = true; break; case BUTTON_LEFT: if (--page < 0) page = max_page; break; case BUTTON_RIGHT: if (++page > max_page) page = 0; break; case BUTTON_PLAY: if (page == 3) { mpeg_stop(); /* stop playback, to avoid disk access */ lcd_clear_display(); lcd_puts(0,0,"Scanning"); lcd_puts(0,1,"disk..."); lcd_update(); fat_recalc_free(); } break; } lcd_stop_scroll(); } return false; } bool debug_menu(void) { int m; bool result; struct menu_items items[] = { { "View I/O ports", dbg_ports }, #ifdef HAVE_LCD_BITMAP #ifdef HAVE_RTC { "View/clr RTC RAM", dbg_rtc }, #endif /* HAVE_RTC */ #endif /* HAVE_LCD_BITMAP */ { "View OS stacks", dbg_os }, #ifdef HAVE_MAS3507D { "View MAS info", dbg_mas_info }, #endif { "View MAS regs", dbg_mas }, #ifdef HAVE_MAS3587F { "View MAS codec", dbg_mas_codec }, #endif #ifdef HAVE_LCD_BITMAP { "View battery", view_battery }, #endif { "View HW info", dbg_hw_info }, { "View partitions", dbg_partitions }, { "View disk info", dbg_disk_info }, #ifdef HAVE_LCD_BITMAP { "View mpeg thread", dbg_mpeg_thread }, #ifdef PM_DEBUG { "pm histogram", peak_meter_histogram}, #endif /* PM_DEBUG */ #endif /* HAVE_LCD_BITMAP */ { "View runtime", view_runtime }, }; m=menu_init( items, sizeof items / sizeof(struct menu_items) ); result = menu_run(m); menu_exit(m); return result; } #endif /* SIMULATOR */