/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2021 Aidan MacDonald * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ /* #define LOGF_ENABLE */ #include "i2c-x1000.h" #include "system.h" #include "kernel.h" #include "panic.h" #include "logf.h" #include "gpio-x1000.h" #include "clk-x1000.h" #include "irq-x1000.h" #include "x1000/i2c.h" #include "x1000/cpm.h" #if I2C_ASYNC_BUS_COUNT != 3 # error "Wrong I2C_ASYNC_BUS_COUNT (should be 3)" #endif #define FIFO_SIZE 64 /* Size of data FIFOs */ #define FIFO_TX_THRESH 16 /* Wake up when TX FIFO gets to this level */ #define FIFO_RX_SLACK 2 /* Slack space to leave, avoids RX FIFO overflow */ typedef struct i2c_x1000_bus { /* Hardware channel, this is just equal to i2c-async bus number. */ int chn; /* Buffer/count usage depends on what phase the bus is processing: * * - Phase1: writing out descriptor's buffer[0] for both READs and WRITEs. * - Phase2: writing out descriptor's buffer[1] for WRITEs, or issuing a * series of read requests for READs. * * In phase1, buffer[1] and count[1] are equal to the descriptor's copy. * buffer[0] and count[0] get incremented/decremented as we send bytes. * Phase1 is only visited if we actually need to send bytes; if there * would be no data in this phase then __i2c_async_submit() sets up the * driver to go directly to phase2. * * Phase2 begins after phase1 writes out its last byte, or if phase1 was * skipped at submit time. For WRITEs phase2 is identical to phase1 so we * copy over buffer[1] and count[1] to buffer[0] and count[0], and zero * out buffer[1] and count[1]. * * For READs phase2 sets buffer[0] to NULL and count[0] equal to count[1]. * Now count[0] counts the number of bytes left to request, and count[1] * counts the number of bytes left to receive. i2c_x1000_fifo_write() sees * that buffer[0] is NULL and sends read requests instead of data bytes. * buffer[1] is advanced by i2c_x1000_fifo_read() we receive bytes. */ unsigned char* buffer[2]; int count[2]; bool phase1; /* Copied fields from descriptor */ uint8_t bus_cond; uint8_t tran_mode; /* Counter to keep track of when to send end conditions */ int byte_cnt; int byte_cnt_end; /* Current bus frequency, used to calculate timeout durations */ long freq; /* Timeout to reset the bus in case of buggy devices */ struct timeout tmo; /* Flag used to indicate a reset is processing */ int resetting; } i2c_x1000_bus; static i2c_x1000_bus i2c_x1000_busses[3]; static void i2c_x1000_fifo_write(i2c_x1000_bus* bus) { int tx_free, tx_n; /* Get free space in FIFO */ tx_free = FIFO_SIZE - REG_I2C_TXFLR(bus->chn); _again: /* Leave some slack space when reading. If we submit a full FIFO's worth * of read requests, there's a small chance that a byte "on the wire" is * unaccounted for and causes an RX FIFO overrun. Slack space is meant to * avoid this situation. */ if(bus->tran_mode == I2C_READ) { tx_free -= FIFO_RX_SLACK; if(tx_free <= 0) goto _end; } /* Calculate number of bytes needed to send/request */ tx_n = MIN(tx_free, bus->count[0]); /* Account for bytes we're about to send/request */ bus->count[0] -= tx_n; tx_free -= tx_n; for(; tx_n > 0; --tx_n) { bus->byte_cnt += 1; /* Read data byte or set read request bit */ uint32_t dc = bus->buffer[0] ? *bus->buffer[0]++ : jz_orm(I2C_DC, CMD); /* Check for first byte & apply RESTART. * Note the HW handles RESTART automatically when changing the * direction of the transfer, so we don't need to check for that. */ if(bus->byte_cnt == 1 && (bus->bus_cond & I2C_RESTART)) dc |= jz_orm(I2C_DC, RESTART); /* Check for last byte & apply STOP */ if(bus->byte_cnt == bus->byte_cnt_end && (bus->bus_cond & I2C_STOP)) dc |= jz_orm(I2C_DC, STOP); /* Add entry to FIFO */ REG_I2C_DC(bus->chn) = dc; } /* FIFO full and current phase still has data to send. * Configure interrupt to fire when there's a good amount of free space. */ if(bus->count[0] > 0) { _end: REG_I2C_TXTL(bus->chn) = FIFO_TX_THRESH; jz_writef(I2C_INTMSK(bus->chn), TXEMP(1), RXFL(0)); return; } /* Advance to second phase if needed */ if(bus->phase1 && bus->count[1] > 0) { bus->buffer[0] = bus->tran_mode == I2C_WRITE ? bus->buffer[1] : NULL; bus->count[0] = bus->count[1]; bus->phase1 = false; /* Submit further data if possible; else wait for TX space */ if(tx_free > 0) goto _again; else goto _end; } /* All phases are done. Now we just need to wake up when the whole * operation is complete, either by waiting for TX to drain or RX to * fill to the appropriate level. */ if(bus->tran_mode == I2C_WRITE) { REG_I2C_TXTL(bus->chn) = 0; jz_writef(I2C_INTMSK(bus->chn), TXEMP(1), RXFL(0)); } else { REG_I2C_RXTL(bus->chn) = bus->count[1] - 1; jz_writef(I2C_INTMSK(bus->chn), TXEMP(0), RXFL(1)); } } static void i2c_x1000_fifo_read(i2c_x1000_bus* bus) { /* Get number of bytes in the RX FIFO */ int rx_n = REG_I2C_RXFLR(bus->chn); /* Shouldn't happen, but check just in case */ if(rx_n > bus->count[1]) { panicf("i2c_x1000(%d): expected %d bytes in RX fifo, got %d", bus->chn, bus->count[1], rx_n); } /* Fill buffer with data from FIFO */ bus->count[1] -= rx_n; for(; rx_n != 0; --rx_n) { *bus->buffer[1]++ = jz_readf(I2C_DC(bus->chn), DAT); } } static void i2c_x1000_interrupt(i2c_x1000_bus* bus) { int intr = REG_I2C_INTST(bus->chn); int status = I2C_STATUS_OK; /* Bus error; we can't prevent this from happening. As I understand * it, we cannot get a TXABT when the bus is idle, so it should be * safe to leave this interrupt unmasked all the time. */ if(intr & jz_orm(I2C_INTST, TXABT)) { logf("i2c_x1000(%d): got TXABT (%08lx)", bus->chn, REG_I2C_ABTSRC(bus->chn)); REG_I2C_CTXABT(bus->chn); status = I2C_STATUS_ERROR; goto _done; } /* FIFO errors shouldn't occur unless driver did something dumb */ if(intr & jz_orm(I2C_INTST, RXUF, TXOF, RXOF)) { #if 1 panicf("i2c_x1000(%d): fifo error (%08x)", bus->chn, intr); #else /* This is how the error condition would be cleared */ REG_I2C_CTXOF(bus->chn); REG_I2C_CRXOF(bus->chn); REG_I2C_CRXUF(bus->chn); status = I2C_STATUS_ERROR; goto _done; #endif } /* Read from FIFO on reads, and check if we have sent/received * the expected amount of data. If so, complete the descriptor. */ if(bus->tran_mode == I2C_READ) { i2c_x1000_fifo_read(bus); if(bus->count[1] == 0) goto _done; } else if(bus->count[0] == 0) { goto _done; } /* Still need to send or request data -- issue commands to FIFO */ i2c_x1000_fifo_write(bus); return; _done: jz_writef(I2C_INTMSK(bus->chn), TXEMP(0), RXFL(0)); timeout_cancel(&bus->tmo); __i2c_async_complete_callback(bus->chn, status); } void I2C0(void) { i2c_x1000_interrupt(&i2c_x1000_busses[0]); } void I2C1(void) { i2c_x1000_interrupt(&i2c_x1000_busses[1]); } void I2C2(void) { i2c_x1000_interrupt(&i2c_x1000_busses[2]); } static int i2c_x1000_bus_timeout(struct timeout* tmo) { /* Buggy device is preventing the operation from completing, so we * can't do much except reset the bus and hope for the best. Device * drivers can aid us by detecting the TIMEOUT status we return and * resetting the device to get it out of a bugged state. */ i2c_x1000_bus* bus = (i2c_x1000_bus*)tmo->data; switch(bus->resetting) { default: /* Start of reset. Disable the controller */ REG_I2C_INTMSK(bus->chn) = 0; bus->resetting = 1; jz_writef(I2C_ENABLE(bus->chn), ACTIVE(0)); return 1; case 1: /* Check if controller is disabled yet */ if(jz_readf(I2C_ENBST(bus->chn), ACTIVE)) return 1; /* Wait 10 ms after disabling to give time for bus to clear */ bus->resetting = 2; return HZ/100; case 2: /* Re-enable the controller */ bus->resetting = 3; jz_writef(I2C_ENABLE(bus->chn), ACTIVE(1)); return 1; case 3: /* Check that controller is enabled */ if(jz_readf(I2C_ENBST(bus->chn), ACTIVE) == 0) return 1; /* Reset complete */ bus->resetting = 0; jz_overwritef(I2C_INTMSK(bus->chn), RXFL(0), TXEMP(0), TXABT(1), TXOF(1), RXOF(1), RXUF(1)); __i2c_async_complete_callback(bus->chn, I2C_STATUS_TIMEOUT); return 0; } } void __i2c_async_submit(int busnr, i2c_descriptor* desc) { i2c_x1000_bus* bus = &i2c_x1000_busses[busnr]; if(desc->tran_mode == I2C_READ) { if(desc->count[0] > 0) { /* Handle initial write as phase1 */ bus->buffer[0] = desc->buffer[0]; bus->count[0] = desc->count[0]; bus->phase1 = true; } else { /* No initial write, skip directly to phase2 */ bus->buffer[0] = NULL; bus->count[0] = desc->count[1]; bus->phase1 = false; } /* Set buffer/count for phase2 read */ bus->buffer[1] = desc->buffer[1]; bus->count[1] = desc->count[1]; } else { /* Writes always have to have buffer[0] populated; buffer[1] is * allowed to be NULL (and thus count[1] = 0). This matches our * phase logic so no need for anything special */ bus->buffer[0] = desc->buffer[0]; bus->count[0] = desc->count[0]; bus->buffer[1] = desc->buffer[1]; bus->count[1] = desc->count[1]; bus->phase1 = true; } /* Save bus condition and transfer mode */ bus->bus_cond = desc->bus_cond; bus->tran_mode = desc->tran_mode; /* Byte counter is used to check for first and last byte and apply * the requested end mode */ bus->byte_cnt = 0; bus->byte_cnt_end = desc->count[0] + desc->count[1]; /* Ensure interrupts are cleared */ REG_I2C_CINT(busnr); /* Program target address */ jz_overwritef(I2C_TAR(busnr), ADDR(desc->slave_addr & ~I2C_10BIT_ADDR), 10BITS(desc->slave_addr & I2C_10BIT_ADDR ? 1 : 0)); /* Do the initial FIFO fill; this sets up the needed interrupts. */ i2c_x1000_fifo_write(bus); /* Software timeout to deal with buggy slave devices that pull the bus * high forever and leave us hanging. Use 100ms + whatever time should * be needed to handle data transmission. Account for 9 bits per byte * because of the ACKs necessary after each byte. */ long ticks = (HZ/10) + (HZ * 9 * bus->byte_cnt_end / bus->freq); timeout_register(&bus->tmo, i2c_x1000_bus_timeout, ticks, (intptr_t)bus); } void i2c_init(void) { /* Initialize core */ __i2c_async_init(); /* Initialize our bus data structures */ for(int i = 0; i < 3; ++i) { i2c_x1000_busses[i].chn = i; i2c_x1000_busses[i].freq = 0; i2c_x1000_busses[i].resetting = 0; } } /* Stuff only required during initialization is below, basically the same as * the old driver except for how the IRQs are initially set up. */ static const struct { int port; unsigned pins; int func; } i2c_x1000_gpio_data[] = { {GPIO_B, 3 << 23, GPIO_DEVICE(0)}, {GPIO_C, 3 << 26, GPIO_DEVICE(0)}, /* Note: I2C1 is also on the following pins (normally used by LCD) */ /* {GPIO_A, 3 << 0, GPIO_DEVICE(2)}, */ {GPIO_D, 3 << 0, GPIO_DEVICE(1)}, }; static void i2c_x1000_gate(int chn, int gate) { switch(chn) { case 0: jz_writef(CPM_CLKGR, I2C0(gate)); break; case 1: jz_writef(CPM_CLKGR, I2C1(gate)); break; case 2: jz_writef(CPM_CLKGR, I2C2(gate)); break; default: break; } } static void i2c_x1000_enable(int chn) { /* Enable controller */ jz_writef(I2C_ENABLE(chn), ACTIVE(1)); while(jz_readf(I2C_ENBST(chn), ACTIVE) == 0); /* Set up interrutpts */ jz_overwritef(I2C_INTMSK(chn), RXFL(0), TXEMP(0), TXABT(1), TXOF(1), RXOF(1), RXUF(1)); system_enable_irq(IRQ_I2C(chn)); } static void i2c_x1000_disable(int chn) { /* Disable interrupts */ system_disable_irq(IRQ_I2C(chn)); REG_I2C_INTMSK(chn) = 0; /* Disable controller */ jz_writef(I2C_ENABLE(chn), ACTIVE(0)); while(jz_readf(I2C_ENBST(chn), ACTIVE)); } void i2c_x1000_set_freq(int chn, int freq) { /* Store frequency */ i2c_x1000_busses[chn].freq = freq; /* Disable the channel if previously active */ i2c_x1000_gate(chn, 0); if(jz_readf(I2C_ENBST(chn), ACTIVE) == 1) i2c_x1000_disable(chn); /* Request to shut down the channel */ if(freq == 0) { i2c_x1000_gate(chn, 1); return; } /* Calculate timing parameters */ unsigned pclk = clk_get(X1000_CLK_PCLK); unsigned t_SU_DAT = pclk / (freq * 8); unsigned t_HD_DAT = pclk / (freq * 12); unsigned t_LOW = pclk / (freq * 2); unsigned t_HIGH = pclk / (freq * 2); if(t_SU_DAT > 1) t_SU_DAT -= 1; if(t_SU_DAT > 255) t_SU_DAT = 255; if(t_SU_DAT == 0) t_SU_DAT = 0; if(t_HD_DAT > 0xffff) t_HD_DAT = 0xfff; if(t_LOW < 8) t_LOW = 8; if(t_HIGH < 6) t_HIGH = 6; /* Control register setting */ unsigned reg = jz_orf(I2C_CON, SLVDIS(1), RESTART(1), MD(1)); if(freq <= I2C_FREQ_100K) reg |= jz_orf(I2C_CON, SPEED_V(100K)); else reg |= jz_orf(I2C_CON, SPEED_V(400K)); /* Write the new controller settings */ jz_write(I2C_CON(chn), reg); jz_write(I2C_SDASU(chn), t_SU_DAT); jz_write(I2C_SDAHD(chn), t_HD_DAT); if(freq <= I2C_FREQ_100K) { jz_write(I2C_SLCNT(chn), t_LOW); jz_write(I2C_SHCNT(chn), t_HIGH); } else { jz_write(I2C_FLCNT(chn), t_LOW); jz_write(I2C_FHCNT(chn), t_HIGH); } /* Claim pins */ gpio_config(i2c_x1000_gpio_data[chn].port, i2c_x1000_gpio_data[chn].pins, i2c_x1000_gpio_data[chn].func); /* Enable the controller */ i2c_x1000_enable(chn); }