// Game_Music_Emu 0.5.2. http://www.slack.net/~ant/ #include "gbs_emu.h" #include "blargg_endian.h" #include "blargg_source.h" /* Copyright (C) 2003-2006 Shay Green. this module is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. this module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ const char gme_wrong_file_type [] ICONST_ATTR = "Wrong file type for this emulator"; int const idle_addr = 0xF00D; int const tempo_unit = 16; int const stereo = 2; // number of channels for stereo int const silence_max = 6; // seconds int const silence_threshold = 0x10; long const fade_block_size = 512; int const fade_shift = 8; // fade ends with gain at 1.0 / (1 << fade_shift) void clear_track_vars( struct Gbs_Emu* this ) { this->current_track_ = -1; this->out_time = 0; this->emu_time = 0; this->emu_track_ended_ = true; this->track_ended = true; this->fade_start = (blargg_long)(LONG_MAX / 2 + 1); this->fade_step = 1; this->silence_time = 0; this->silence_count = 0; this->buf_remain = 0; } void Gbs_init( struct Gbs_Emu* this ) { this->sample_rate_ = 0; this->mute_mask_ = 0; this->tempo_ = 1.0; // Unload this->header.timer_mode = 0; clear_track_vars( this ); this->ignore_silence = false; this->silence_lookahead = 6; this->max_initial_silence = 21; Sound_set_gain( this, 1.2 ); Rom_init( &this->rom, 0x4000 ); Apu_init( &this->apu ); Cpu_init( &this->cpu ); this->tempo = tempo_unit; this->sound_hardware = sound_gbs; // Reduce apu sound clicks? Apu_reduce_clicks( &this->apu, true ); } static blargg_err_t check_gbs_header( void const* header ) { if ( memcmp( header, "GBS", 3 ) ) return gme_wrong_file_type; return 0; } // Setup blargg_err_t Gbs_load( struct Gbs_Emu* this, void* data, long size ) { // Unload this->header.timer_mode = 0; this->voice_count_ = 0; this->m3u.size = 0; clear_track_vars( this ); assert( offsetof (struct header_t,copyright [32]) == header_size ); RETURN_ERR( Rom_load( &this->rom, data, size, header_size, &this->header, 0 ) ); RETURN_ERR( check_gbs_header( &this->header ) ); /* Ignore warnings? */ /*if ( header_.vers != 1 ) warning( "Unknown file version" ); if ( header_.timer_mode & 0x78 ) warning( "Invalid timer mode" ); */ /* unsigned load_addr = get_le16( this->header.load_addr ); */ /* if ( (header_.load_addr [1] | header_.init_addr [1] | header_.play_addr [1]) > 0x7F || load_addr < 0x400 ) warning( "Invalid load/init/play address" ); */ unsigned load_addr = get_le16( this->header.load_addr ); /* if ( (this->header.load_addr [1] | this->header.init_addr [1] | this->header.play_addr [1]) > 0x7F || load_addr < 0x400 ) warning( "Invalid load/init/play address" ); */ this->cpu.rst_base = load_addr; Rom_set_addr( &this->rom, load_addr ); this->voice_count_ = osc_count; Apu_volume( &this->apu, this->gain_ ); // Change clock rate & setup buffer this->clock_rate_ = 4194304; Buffer_clock_rate( &this->stereo_buf, 4194304 ); this->buf_changed_count = Buffer_channels_changed_count( &this->stereo_buf ); // Post load Sound_set_tempo( this, this->tempo_ ); // Remute voices Sound_mute_voices( this, this->mute_mask_ ); // Reset track count this->track_count = this->header.track_count; return 0; } // Emulation // see gb_cpu_io.h for read/write functions void Set_bank( struct Gbs_Emu* this, int n ) { addr_t addr = mask_addr( n * this->rom.bank_size, this->rom.mask ); if ( addr == 0 && this->rom.size > this->rom.bank_size ) addr = this->rom.bank_size; // MBC1&2 behavior, bank 0 acts like bank 1 Cpu_map_code( &this->cpu, this->rom.bank_size, this->rom.bank_size, Rom_at_addr( &this->rom, addr ) ); } void Update_timer( struct Gbs_Emu* this ) { this->play_period = 70224 / tempo_unit; /// 59.73 Hz if ( this->header.timer_mode & 0x04 ) { // Using custom rate static byte const rates [4] = { 6, 0, 2, 4 }; // TODO: emulate double speed CPU mode rather than halving timer rate int double_speed = this->header.timer_mode >> 7; int shift = rates [this->ram [hi_page + 7] & 3] - double_speed; this->play_period = (256 - this->ram [hi_page + 6]) << shift; } this->play_period *= this->tempo; } // Jumps to routine, given pointer to address in file header. Pushes idle_addr // as return address, NOT old PC. void Jsr_then_stop( struct Gbs_Emu* this, byte const addr [] ) { check( this->cpu.r.sp == get_le16( this->header.stack_ptr ) ); this->cpu.r.pc = get_le16( addr ); Write_mem( this, --this->cpu.r.sp, idle_addr >> 8 ); Write_mem( this, --this->cpu.r.sp, idle_addr ); } blargg_err_t Run_until( struct Gbs_Emu* this, int end ) { this->end_time = end; Cpu_set_time( &this->cpu, Cpu_time( &this->cpu ) - end ); while ( true ) { Run_cpu( this ); if ( Cpu_time( &this->cpu ) >= 0 ) break; if ( this->cpu.r.pc == idle_addr ) { if ( this->next_play > this->end_time ) { Cpu_set_time( &this->cpu, 0 ); break; } if ( Cpu_time( &this->cpu ) < this->next_play - this->end_time ) Cpu_set_time( &this->cpu, this->next_play - this->end_time ); this->next_play += this->play_period; Jsr_then_stop( this, this->header.play_addr ); } else if ( this->cpu.r.pc > 0xFFFF ) { /* warning( "PC wrapped around\n" ); */ this->cpu.r.pc &= 0xFFFF; } else { /* warning( "Emulation error (illegal/unsupported instruction)" ); */ this->cpu.r.pc = (this->cpu.r.pc + 1) & 0xFFFF; Cpu_set_time( &this->cpu, Cpu_time( &this->cpu ) + 6 ); } } return 0; } blargg_err_t End_frame( struct Gbs_Emu* this, int end ) { RETURN_ERR( Run_until( this, end ) ); this->next_play -= end; if ( this->next_play < 0 ) // happens when play routine takes too long { #if !defined(GBS_IGNORE_STARVED_PLAY) check( false ); #endif this->next_play = 0; } Apu_end_frame( &this->apu, end ); return 0; } blargg_err_t Run_clocks( struct Gbs_Emu* this, blip_time_t duration ) { return End_frame( this, duration ); } blargg_err_t play_( struct Gbs_Emu* this, long count, sample_t* out ) { long remain = count; while ( remain ) { remain -= Buffer_read_samples( &this->stereo_buf, &out [count - remain], remain ); if ( remain ) { if ( this->buf_changed_count != Buffer_channels_changed_count( &this->stereo_buf ) ) { this->buf_changed_count = Buffer_channels_changed_count( &this->stereo_buf ); // Remute voices Sound_mute_voices( this, this->mute_mask_ ); } int msec = Buffer_length( &this->stereo_buf ); blip_time_t clocks_emulated = (blargg_long) msec * this->clock_rate_ / 1000; RETURN_ERR( Run_clocks( this, clocks_emulated ) ); assert( clocks_emulated ); Buffer_end_frame( &this->stereo_buf, clocks_emulated ); } } return 0; } blargg_err_t Gbs_set_sample_rate( struct Gbs_Emu* this, long rate ) { require( !this->sample_rate_ ); // sample rate can't be changed once set Buffer_init( &this->stereo_buf ); RETURN_ERR( Buffer_set_sample_rate( &this->stereo_buf, rate, 1000 / 20 ) ); // Set bass frequency Buffer_bass_freq( &this->stereo_buf, 300 ); this->sample_rate_ = rate; return 0; } // Sound void Sound_mute_voice( struct Gbs_Emu* this, int index, bool mute ) { require( (unsigned) index < (unsigned) this->voice_count_ ); int bit = 1 << index; int mask = this->mute_mask_ | bit; if ( !mute ) mask ^= bit; Sound_mute_voices( this, mask ); } void Sound_mute_voices( struct Gbs_Emu* this, int mask ) { require( this->sample_rate_ ); // sample rate must be set first this->mute_mask_ = mask; int i; for ( i = this->voice_count_; i--; ) { if ( mask & (1 << i) ) { Apu_set_output( &this->apu, i, 0, 0, 0 ); } else { struct channel_t ch = Buffer_channel( &this->stereo_buf ); assert( (ch.center && ch.left && ch.right) || (!ch.center && !ch.left && !ch.right) ); // all or nothing Apu_set_output( &this->apu, i, ch.center, ch.left, ch.right ); } } } void Sound_set_tempo( struct Gbs_Emu* this, double t ) { require( this->sample_rate_ ); // sample rate must be set first double const min = 0.02; double const max = 4.00; if ( t < min ) t = min; if ( t > max ) t = max; this->tempo_ = t; this->tempo = (int) (tempo_unit / t + 0.5 ); Apu_set_tempo( &this->apu, t ); Update_timer( this ); } void fill_buf( struct Gbs_Emu* this ); blargg_err_t Gbs_start_track( struct Gbs_Emu* this, int track ) { clear_track_vars( this ); // Remap track if playlist available if ( this->m3u.size > 0 ) { struct entry_t* e = &this->m3u.entries[track]; track = e->track; } this->current_track_ = track; Buffer_clear( &this->stereo_buf ); // Reset APU to state expected by most rips static byte const sound_data [] ICONST_ATTR = { 0x80, 0xBF, 0x00, 0x00, 0xB8, // square 1 DAC disabled 0x00, 0x3F, 0x00, 0x00, 0xB8, // square 2 DAC disabled 0x7F, 0xFF, 0x9F, 0x00, 0xB8, // wave DAC disabled 0x00, 0xFF, 0x00, 0x00, 0xB8, // noise DAC disabled 0x77, 0xFF, 0x80, // max volume, all chans in center, power on }; enum sound_t mode = this->sound_hardware; if ( mode == sound_gbs ) mode = (this->header.timer_mode & 0x80) ? sound_cgb : sound_dmg; Apu_reset( &this->apu, (enum gb_mode_t) mode, false ); Apu_write_register( &this->apu, 0, 0xFF26, 0x80 ); // power on int i; for ( i = 0; i < (int) sizeof sound_data; i++ ) Apu_write_register( &this->apu, 0, i + io_addr, sound_data [i] ); Apu_end_frame( &this->apu, 1 ); // necessary to get click out of the way */ memset( this->ram, 0, 0x4000 ); memset( this->ram + 0x4000, 0xFF, 0x1F80 ); memset( this->ram + 0x5F80, 0, sizeof this->ram - 0x5F80 ); this->ram [hi_page] = 0; // joypad reads back as 0 this->ram [idle_addr - ram_addr] = 0xED; // illegal instruction this->ram [hi_page + 6] = this->header.timer_modulo; this->ram [hi_page + 7] = this->header.timer_mode; Cpu_reset( &this->cpu, this->rom.unmapped ); Cpu_map_code( &this->cpu, ram_addr, 0x10000 - ram_addr, this->ram ); Cpu_map_code( &this->cpu, 0, this->rom.bank_size, Rom_at_addr( &this->rom, 0 ) ); Set_bank( this, this->rom.size > this->rom.bank_size ); Update_timer( this ); this->next_play = this->play_period; this->cpu.r.rp.fa = track; this->cpu.r.sp = get_le16( this->header.stack_ptr ); this->cpu_time = 0; Jsr_then_stop( this, this->header.init_addr ); this->emu_track_ended_ = false; this->track_ended = false; if ( !this->ignore_silence ) { // play until non-silence or end of track long end; for ( end = this->max_initial_silence * stereo * this->sample_rate_; this->emu_time < end; ) { fill_buf( this ); if ( this->buf_remain | (int) this->emu_track_ended_ ) break; } this->emu_time = this->buf_remain; this->out_time = 0; this->silence_time = 0; this->silence_count = 0; } /* return track_ended() ? warning() : 0; */ return 0; } // Track blargg_long msec_to_samples( blargg_long msec, long sample_rate ) { blargg_long sec = msec / 1000; msec -= sec * 1000; return (sec * sample_rate + msec * sample_rate / 1000) * stereo; } long Track_tell( struct Gbs_Emu* this ) { blargg_long rate = this->sample_rate_ * stereo; blargg_long sec = this->out_time / rate; return sec * 1000 + (this->out_time - sec * rate) * 1000 / rate; } blargg_err_t Track_seek( struct Gbs_Emu* this, long msec ) { blargg_long time = msec_to_samples( msec, this->sample_rate_ ); if ( time < this->out_time ) RETURN_ERR( Gbs_start_track( this, this->current_track_ ) ); return Track_skip( this, time - this->out_time ); } blargg_err_t skip_( struct Gbs_Emu* this, long count ) { // for long skip, mute sound const long threshold = 30000; if ( count > threshold ) { int saved_mute = this->mute_mask_; Sound_mute_voices( this, ~0 ); while ( count > threshold / 2 && !this->emu_track_ended_ ) { RETURN_ERR( play_( this, buf_size, this->buf ) ); count -= buf_size; } Sound_mute_voices( this, saved_mute ); } while ( count && !this->emu_track_ended_ ) { long n = buf_size; if ( n > count ) n = count; count -= n; RETURN_ERR( play_( this, n, this->buf ) ); } return 0; } blargg_err_t Track_skip( struct Gbs_Emu* this, long count ) { require( this->current_track_ >= 0 ); // start_track() must have been called already this->out_time += count; // remove from silence and buf first { long n = min( count, this->silence_count ); this->silence_count -= n; count -= n; n = min( count, this->buf_remain ); this->buf_remain -= n; count -= n; } if ( count && !this->emu_track_ended_ ) { this->emu_time += count; // End track if error if ( skip_( this, count ) ) this->emu_track_ended_ = true; } if ( !(this->silence_count | this->buf_remain) ) // caught up to emulator, so update track ended this->track_ended |= this->emu_track_ended_; return 0; } // Fading void Track_set_fade( struct Gbs_Emu* this, long start_msec, long length_msec ) { this->fade_step = this->sample_rate_ * length_msec / (fade_block_size * fade_shift * 1000 / stereo); this->fade_start = msec_to_samples( start_msec, this->sample_rate_ ); } // unit / pow( 2.0, (double) x / step ) static int int_log( blargg_long x, int step, int unit ) { int shift = x / step; int fraction = (x - shift * step) * unit / step; return ((unit - fraction) + (fraction >> 1)) >> shift; } void handle_fade( struct Gbs_Emu* this, long out_count, sample_t* out ) { int i; for ( i = 0; i < out_count; i += fade_block_size ) { int const shift = 14; int const unit = 1 << shift; int gain = int_log( (this->out_time + i - this->fade_start) / fade_block_size, this->fade_step, unit ); if ( gain < (unit >> fade_shift) ) this->track_ended = this->emu_track_ended_ = true; sample_t* io = &out [i]; int count; for ( count = min( fade_block_size, out_count - i ); count; --count ) { *io = (sample_t) ((*io * gain) >> shift); ++io; } } } // Silence detection void emu_play( struct Gbs_Emu* this, long count, sample_t* out ) { check( current_track_ >= 0 ); this->emu_time += count; if ( this->current_track_ >= 0 && !this->emu_track_ended_ ) { // End track if error if ( play_( this, count, out ) ) this->emu_track_ended_ = true; } else memset( out, 0, count * sizeof *out ); } // number of consecutive silent samples at end static long count_silence( sample_t* begin, long size ) { sample_t first = *begin; *begin = silence_threshold; // sentinel sample_t* p = begin + size; while ( (unsigned) (*--p + silence_threshold / 2) <= (unsigned) silence_threshold ) { } *begin = first; return size - (p - begin); } // fill internal buffer and check it for silence void fill_buf( struct Gbs_Emu* this ) { assert( !this->buf_remain ); if ( !this->emu_track_ended_ ) { emu_play( this, buf_size, this->buf ); long silence = count_silence( this->buf, buf_size ); if ( silence < buf_size ) { this->silence_time = this->emu_time - silence; this->buf_remain = buf_size; return; } } this->silence_count += buf_size; } blargg_err_t Gbs_play( struct Gbs_Emu* this, long out_count, sample_t* out ) { if ( this->track_ended ) { memset( out, 0, out_count * sizeof *out ); } else { require( this->current_track_ >= 0 ); require( out_count % stereo == 0 ); assert( this->emu_time >= this->out_time ); long pos = 0; if ( this->silence_count ) { // during a run of silence, run emulator at >=2x speed so it gets ahead long ahead_time = this->silence_lookahead * (this->out_time + out_count - this->silence_time) + this->silence_time; while ( this->emu_time < ahead_time && !(this->buf_remain | this->emu_track_ended_) ) fill_buf( this ); // fill with silence pos = min( this->silence_count, out_count ); memset( out, 0, pos * sizeof *out ); this->silence_count -= pos; if ( this->emu_time - this->silence_time > silence_max * stereo * this->sample_rate_ ) { this->track_ended = this->emu_track_ended_ = true; this->silence_count = 0; this->buf_remain = 0; } } if ( this->buf_remain ) { // empty silence buf long n = min( this->buf_remain, out_count - pos ); memcpy( &out [pos], this->buf + (buf_size - this->buf_remain), n * sizeof *out ); this->buf_remain -= n; pos += n; } // generate remaining samples normally long remain = out_count - pos; if ( remain ) { emu_play( this, remain, out + pos ); this->track_ended |= this->emu_track_ended_; if ( !this->ignore_silence || this->out_time > this->fade_start ) { // check end for a new run of silence long silence = count_silence( out + pos, remain ); if ( silence < remain ) this->silence_time = this->emu_time - silence; if ( this->emu_time - this->silence_time >= buf_size ) fill_buf( this ); // cause silence detection on next play() } } if ( this->out_time > this->fade_start ) handle_fade( this, out_count, out ); } this->out_time += out_count; return 0; }