// Game_Music_Emu 0.5.2. http://www.slack.net/~ant/ #include "hes_apu.h" #include /* Copyright (C) 2006 Shay Green. This module is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "blargg_source.h" enum { center_waves = 1 }; // reduces asymmetry and clamping when starting notes static void Apu_balance_changed( struct Hes_Apu* this, struct Hes_Osc* osc ); static void Apu_balance_changed( struct Hes_Apu* this, struct Hes_Osc* osc ) { static short const log_table [32] = { // ~1.5 db per step #define ENTRY( factor ) (short) (factor * amp_range / 31.0 + 0.5) ENTRY( 0.000000 ),ENTRY( 0.005524 ),ENTRY( 0.006570 ),ENTRY( 0.007813 ), ENTRY( 0.009291 ),ENTRY( 0.011049 ),ENTRY( 0.013139 ),ENTRY( 0.015625 ), ENTRY( 0.018581 ),ENTRY( 0.022097 ),ENTRY( 0.026278 ),ENTRY( 0.031250 ), ENTRY( 0.037163 ),ENTRY( 0.044194 ),ENTRY( 0.052556 ),ENTRY( 0.062500 ), ENTRY( 0.074325 ),ENTRY( 0.088388 ),ENTRY( 0.105112 ),ENTRY( 0.125000 ), ENTRY( 0.148651 ),ENTRY( 0.176777 ),ENTRY( 0.210224 ),ENTRY( 0.250000 ), ENTRY( 0.297302 ),ENTRY( 0.353553 ),ENTRY( 0.420448 ),ENTRY( 0.500000 ), ENTRY( 0.594604 ),ENTRY( 0.707107 ),ENTRY( 0.840896 ),ENTRY( 1.000000 ), #undef ENTRY }; int vol = (osc->control & 0x1F) - 0x1E * 2; int left = vol + (osc->balance >> 3 & 0x1E) + (this->balance >> 3 & 0x1E); if ( left < 0 ) left = 0; int right = vol + (osc->balance << 1 & 0x1E) + (this->balance << 1 & 0x1E); if ( right < 0 ) right = 0; left = log_table [left ]; right = log_table [right]; // optimizing for the common case of being centered also allows easy // panning using Effects_Buffer osc->outputs [0] = osc->chans [0]; // center osc->outputs [1] = 0; if ( left != right ) { osc->outputs [0] = osc->chans [1]; // left osc->outputs [1] = osc->chans [2]; // right } if ( center_waves ) { osc->last_amp [0] += (left - osc->volume [0]) * 16; osc->last_amp [1] += (right - osc->volume [1]) * 16; } osc->volume [0] = left; osc->volume [1] = right; } void Apu_init( struct Hes_Apu* this ) { struct Hes_Osc* osc = &this->oscs [osc_count]; do { osc--; osc->outputs [0] = 0; osc->outputs [1] = 0; osc->chans [0] = 0; osc->chans [1] = 0; osc->chans [2] = 0; } while ( osc != this->oscs ); Apu_reset( this ); } void Apu_reset( struct Hes_Apu* this ) { this->latch = 0; this->balance = 0xFF; struct Hes_Osc* osc = &this->oscs [osc_count]; do { osc--; memset( osc, 0, offsetof (struct Hes_Osc,outputs) ); osc->noise_lfsr = 1; osc->control = 0x40; osc->balance = 0xFF; } while ( osc != this->oscs ); } void Apu_osc_output( struct Hes_Apu* this, int index, struct Blip_Buffer* center, struct Blip_Buffer* left, struct Blip_Buffer* right ) { require( (unsigned) index < osc_count ); this->oscs [index].chans [0] = center; this->oscs [index].chans [1] = left; this->oscs [index].chans [2] = right; struct Hes_Osc* osc = &this->oscs [osc_count]; do { osc--; Apu_balance_changed( this, osc ); } while ( osc != this->oscs ); } void Osc_run_until( struct Hes_Osc* this, struct Blip_Synth* synth_, blip_time_t end_time ) { struct Blip_Buffer* const osc_outputs_0 = this->outputs [0]; // cache often-used values if ( osc_outputs_0 && this->control & 0x80 ) { int dac = this->dac; int const volume_0 = this->volume [0]; { int delta = dac * volume_0 - this->last_amp [0]; if ( delta ) Synth_offset( synth_, this->last_time, delta, osc_outputs_0 ); Blip_set_modified( osc_outputs_0 ); } struct Blip_Buffer* const osc_outputs_1 = this->outputs [1]; int const volume_1 = this->volume [1]; if ( osc_outputs_1 ) { int delta = dac * volume_1 - this->last_amp [1]; if ( delta ) Synth_offset( synth_, this->last_time, delta, osc_outputs_1 ); Blip_set_modified( osc_outputs_1 ); } blip_time_t time = this->last_time + this->delay; if ( time < end_time ) { if ( this->noise & 0x80 ) { if ( volume_0 | volume_1 ) { // noise int const period = (32 - (this->noise & 0x1F)) * 64; // TODO: correct? unsigned noise_lfsr = this->noise_lfsr; do { int new_dac = 0x1F & -(noise_lfsr >> 1 & 1); // Implemented using "Galios configuration" // TODO: find correct LFSR algorithm noise_lfsr = (noise_lfsr >> 1) ^ (0xE008 & -(noise_lfsr & 1)); //noise_lfsr = (noise_lfsr >> 1) ^ (0x6000 & -(noise_lfsr & 1)); int delta = new_dac - dac; if ( delta ) { dac = new_dac; Synth_offset( synth_, time, delta * volume_0, osc_outputs_0 ); if ( osc_outputs_1 ) Synth_offset( synth_, time, delta * volume_1, osc_outputs_1 ); } time += period; } while ( time < end_time ); this->noise_lfsr = noise_lfsr; assert( noise_lfsr ); } } else if ( !(this->control & 0x40) ) { // wave int phase = (this->phase + 1) & 0x1F; // pre-advance for optimal inner loop int period = this->period * 2; if ( period >= 14 && (volume_0 | volume_1) ) { do { int new_dac = this->wave [phase]; phase = (phase + 1) & 0x1F; int delta = new_dac - dac; if ( delta ) { dac = new_dac; Synth_offset( synth_, time, delta * volume_0, osc_outputs_0 ); if ( osc_outputs_1 ) Synth_offset( synth_, time, delta * volume_1, osc_outputs_1 ); } time += period; } while ( time < end_time ); } else { if ( !period ) { // TODO: Gekisha Boy assumes that period = 0 silences wave //period = 0x1000 * 2; period = 1; //if ( !(volume_0 | volume_1) ) // dprintf( "Used period 0\n" ); } // maintain phase when silent blargg_long count = (end_time - time + period - 1) / period; phase += count; // phase will be masked below time += count * period; } this->phase = (phase - 1) & 0x1F; // undo pre-advance } } time -= end_time; if ( time < 0 ) time = 0; this->delay = time; this->dac = dac; this->last_amp [0] = dac * volume_0; this->last_amp [1] = dac * volume_1; } this->last_time = end_time; } void Apu_write_data( struct Hes_Apu* this, blip_time_t time, int addr, int data ) { if ( addr == 0x800 ) { this->latch = data & 7; } else if ( addr == 0x801 ) { if ( this->balance != data ) { this->balance = data; struct Hes_Osc* osc = &this->oscs [osc_count]; do { osc--; Osc_run_until( osc, &this->synth, time ); Apu_balance_changed( this, this->oscs ); } while ( osc != this->oscs ); } } else if ( this->latch < osc_count ) { struct Hes_Osc* osc = &this->oscs [this->latch]; Osc_run_until( osc, &this->synth, time ); switch ( addr ) { case 0x802: osc->period = (osc->period & 0xF00) | data; break; case 0x803: osc->period = (osc->period & 0x0FF) | ((data & 0x0F) << 8); break; case 0x804: if ( osc->control & 0x40 & ~data ) osc->phase = 0; osc->control = data; Apu_balance_changed( this, osc ); break; case 0x805: osc->balance = data; Apu_balance_changed( this, osc ); break; case 0x806: data &= 0x1F; if ( !(osc->control & 0x40) ) { osc->wave [osc->phase] = data; osc->phase = (osc->phase + 1) & 0x1F; } else if ( osc->control & 0x80 ) { osc->dac = data; } break; case 0x807: if ( osc >= &this->oscs [4] ) osc->noise = data; break; case 0x809: if ( !(data & 0x80) && (data & 0x03) != 0 ) { dprintf( "HES LFO not supported\n" ); } } } } void Apu_end_frame( struct Hes_Apu* this, blip_time_t end_time ) { struct Hes_Osc* osc = &this->oscs [osc_count]; do { osc--; if ( end_time > osc->last_time ) Osc_run_until( osc, &this->synth, end_time ); assert( osc->last_time >= end_time ); osc->last_time -= end_time; } while ( osc != this->oscs ); }