/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2005 by Miika Pekkarinen * * All files in this archive are subject to the GNU General Public License. * See the file COPYING in the source tree root for full license agreement. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include #include #include "config.h" #include "debug.h" #include "panic.h" #include #include "pcmbuf.h" #include "pcm_playback.h" #include "logf.h" #ifndef SIMULATOR #include "cpu.h" #endif #include "system.h" #include #include "buffer.h" #define CHUNK_SIZE 32768 /* Must be a power of 2 */ #define NUM_PCM_BUFFERS (PCMBUF_SIZE / CHUNK_SIZE) #define NUM_PCM_BUFFERS_MASK (NUM_PCM_BUFFERS - 1) #define PCMBUF_WATERMARK (CHUNK_SIZE * 10) #define PCMBUF_CF_WATERMARK (PCMBUF_SIZE - CHUNK_SIZE*8) /* Audio buffer related settings. */ static char *audiobuffer; static long audiobuffer_pos; /* Current audio buffer write index. */ long audiobuffer_free; /* Amount of bytes left in the buffer. */ static long audiobuffer_fillpos; /* Amount audiobuffer_pos will be increased. */ static char *guardbuf; static void (*pcmbuf_event_handler)(void); /* Crossfade related. */ static int crossfade_mode; static bool crossfade_enabled; static bool crossfade_active; static bool crossfade_init; static int crossfade_pos; static int crossfade_amount; static int crossfade_rem; static bool boost_mode; /* Crossfade modes. If CFM_CROSSFADE is selected, normal * crossfader will activate. Selecting CFM_FLUSH is a special * operation that only overwrites the pcm buffer without crossfading. */ enum { CFM_CROSSFADE, CFM_FLUSH }; /* Structure we can use to queue pcm chunks in memory to be played * by the driver code. */ struct pcmbufdesc { void *addr; int size; /* Call this when the buffer has been played */ void (*callback)(void); } pcmbuffers[NUM_PCM_BUFFERS]; volatile int pcmbuf_read_index; volatile int pcmbuf_write_index; int pcmbuf_unplayed_bytes; int pcmbuf_watermark; void (*pcmbuf_watermark_event)(int bytes_left); static int last_chunksize; static void pcmbuf_boost(bool state) { static bool boost_state = false; if (crossfade_init || crossfade_active || boost_mode) return ; if (state != boost_state) { #ifdef HAVE_ADJUSTABLE_CPU_FREQ cpu_boost(state); #endif boost_state = state; } } int pcmbuf_num_used_buffers(void) { return (pcmbuf_write_index - pcmbuf_read_index) & NUM_PCM_BUFFERS_MASK; } static void pcmbuf_callback(unsigned char** start, long* size) { struct pcmbufdesc *desc = &pcmbuffers[pcmbuf_read_index]; int sz; pcmbuf_unplayed_bytes -= last_chunksize; audiobuffer_free += last_chunksize; if(desc->size == 0) { /* The buffer is finished, call the callback function */ if(desc->callback) desc->callback(); /* Advance to the next buffer */ pcmbuf_read_index = (pcmbuf_read_index + 1) & NUM_PCM_BUFFERS_MASK; desc = &pcmbuffers[pcmbuf_read_index]; } if(pcmbuf_num_used_buffers()) { /* Play max 64K at a time */ //sz = MIN(desc->size, 32768); sz = desc->size; *start = desc->addr; *size = sz; /* Update the buffer descriptor */ desc->size -= sz; desc->addr += sz; last_chunksize = sz; } else { /* No more buffers */ *size = 0; if (pcmbuf_event_handler) pcmbuf_event_handler(); } if(pcmbuf_unplayed_bytes <= pcmbuf_watermark) { if(pcmbuf_watermark_event) { pcmbuf_watermark_event(pcmbuf_unplayed_bytes); } } } void pcmbuf_set_watermark(int numbytes, void (*callback)(int bytes_left)) { pcmbuf_watermark = numbytes; pcmbuf_watermark_event = callback; } bool pcmbuf_add_chunk(void *addr, int size, void (*callback)(void)) { /* We don't use the last buffer, since we can't see the difference between the full and empty condition */ if(pcmbuf_num_used_buffers() < (NUM_PCM_BUFFERS - 2)) { pcmbuffers[pcmbuf_write_index].addr = addr; pcmbuffers[pcmbuf_write_index].size = size; pcmbuffers[pcmbuf_write_index].callback = callback; pcmbuf_write_index = (pcmbuf_write_index+1) & NUM_PCM_BUFFERS_MASK; pcmbuf_unplayed_bytes += size; return true; } else return false; } void pcmbuf_watermark_callback(int bytes_left) { /* Fill audio buffer by boosting cpu */ pcmbuf_boost(true); if (bytes_left <= CHUNK_SIZE * 2) crossfade_active = false; } void pcmbuf_set_boost_mode(bool state) { if (state) pcmbuf_boost(true); boost_mode = state; } void pcmbuf_add_event(void (*event_handler)(void)) { pcmbuf_event_handler = event_handler; } unsigned int pcmbuf_get_latency(void) { int latency; /* This has to be done better. */ latency = (PCMBUF_SIZE - audiobuffer_free - CHUNK_SIZE)/4 / (44100/1000); if (latency < 0) latency = 0; return latency; } bool pcmbuf_is_lowdata(void) { if (!pcm_is_playing() || pcm_is_paused() || crossfade_init || crossfade_active) return false; if (pcmbuf_unplayed_bytes < PCMBUF_WATERMARK) return true; return false; } bool pcmbuf_crossfade_init(void) { if (PCMBUF_SIZE - audiobuffer_free < CHUNK_SIZE * 8 || !crossfade_enabled || crossfade_active || crossfade_init) { return false; } logf("pcmbuf_crossfade_init"); pcmbuf_boost(true); crossfade_mode = CFM_CROSSFADE; crossfade_init = true; return true; } void pcmbuf_play_stop(void) { pcm_play_stop(); last_chunksize = 0; pcmbuf_unplayed_bytes = 0; pcmbuf_read_index = 0; pcmbuf_write_index = 0; audiobuffer_pos = 0; audiobuffer_fillpos = 0; audiobuffer_free = PCMBUF_SIZE; crossfade_init = false; crossfade_active = false; pcmbuf_set_boost_mode(false); pcmbuf_boost(false); } void pcmbuf_init(void) { audiobuffer = &audiobuf[(audiobufend - audiobuf) - PCMBUF_SIZE - PCMBUF_GUARD]; guardbuf = &audiobuffer[PCMBUF_SIZE]; pcmbuf_event_handler = NULL; pcm_init(); pcmbuf_play_stop(); } /** Initialize a track switch so that audio playback will not stop but * the switch to next track would happen as soon as possible. */ void pcmbuf_flush_audio(void) { if (crossfade_init || crossfade_active || !pcm_is_playing()) { pcmbuf_play_stop(); return ; } crossfade_mode = CFM_FLUSH; crossfade_init = true; } void pcmbuf_flush_fillpos(void) { int copy_n; copy_n = MIN(audiobuffer_fillpos, CHUNK_SIZE); if (copy_n) { while (!pcmbuf_add_chunk(&audiobuffer[audiobuffer_pos], copy_n, pcmbuf_event_handler)) { pcmbuf_boost(false); sleep(1); /* This is a fatal error situation that should never happen. */ if (!pcm_is_playing()) { logf("pcm_flush_fillpos error"); break ; } } pcmbuf_event_handler = NULL; audiobuffer_pos += copy_n; if (audiobuffer_pos >= PCMBUF_SIZE) audiobuffer_pos -= PCMBUF_SIZE; audiobuffer_free -= copy_n; audiobuffer_fillpos -= copy_n; } } static void crossfade_start(void) { int bytesleft = pcmbuf_unplayed_bytes; crossfade_init = 0; if (bytesleft < CHUNK_SIZE * 3) { logf("crossfade rejected"); pcmbuf_play_stop(); return ; } logf("crossfade_start"); pcmbuf_flush_fillpos(); pcmbuf_boost(true); crossfade_active = true; crossfade_pos = audiobuffer_pos; switch (crossfade_mode) { case CFM_CROSSFADE: crossfade_amount = (bytesleft - (CHUNK_SIZE * 2))/2; crossfade_rem = crossfade_amount; break ; case CFM_FLUSH: crossfade_amount = (bytesleft - (CHUNK_SIZE * 2))/2; crossfade_rem = crossfade_amount; break ; } crossfade_pos -= crossfade_amount*2; if (crossfade_pos < 0) crossfade_pos += PCMBUF_SIZE; } static __inline int crossfade(short *buf, const short *buf2, int length) { int size, i; int val1, val2; size = MIN(length, crossfade_rem); switch (crossfade_mode) { case CFM_CROSSFADE: val1 = (crossfade_rem<<10)/crossfade_amount; val2 = ((crossfade_amount-crossfade_rem)<<10)/crossfade_amount; for (i = 0; i < size; i++) { buf[i] = ((buf[i] * val1) + (buf2[i] * val2)) >> 10; } break ; case CFM_FLUSH: for (i = 0; i < size; i++) { buf[i] = buf2[i]; } //memcpy((char *)buf, (char *)buf2, size*2); break ; } crossfade_rem -= size; if (crossfade_rem <= 0) crossfade_active = false; return size; } static bool prepare_insert(long length) { if (crossfade_init) crossfade_start(); if (audiobuffer_free < length + audiobuffer_fillpos + CHUNK_SIZE && !crossfade_active) { pcmbuf_boost(false); return false; } if (!pcm_is_playing()) { pcmbuf_boost(true); crossfade_active = false; if (audiobuffer_free < PCMBUF_SIZE - CHUNK_SIZE*4) { logf("pcm starting"); pcm_play_data(pcmbuf_callback); } } return true; } void* pcmbuf_request_buffer(long length, long *realsize) { void *ptr = NULL; while (audiobuffer_free < length + audiobuffer_fillpos + CHUNK_SIZE && !crossfade_active) { pcmbuf_boost(false); sleep(1); } if (crossfade_active) { *realsize = MIN(length, PCMBUF_GUARD); ptr = &guardbuf[0]; } else { *realsize = MIN(length, PCMBUF_SIZE - audiobuffer_pos - audiobuffer_fillpos); if (*realsize < length) { *realsize += MIN((long)(length - *realsize), PCMBUF_GUARD); } ptr = &audiobuffer[audiobuffer_pos + audiobuffer_fillpos]; } return ptr; } bool pcmbuf_is_crossfade_active(void) { return crossfade_active || crossfade_init; } void pcmbuf_flush_buffer(long length) { int copy_n; char *buf; prepare_insert(length); if (crossfade_active) { buf = &guardbuf[0]; length = MIN(length, PCMBUF_GUARD); while (length > 0 && crossfade_active) { copy_n = MIN(length, PCMBUF_SIZE - crossfade_pos); copy_n = 2 * crossfade((short *)&audiobuffer[crossfade_pos], (const short *)buf, copy_n/2); buf += copy_n; length -= copy_n; crossfade_pos += copy_n; if (crossfade_pos >= PCMBUF_SIZE) crossfade_pos -= PCMBUF_SIZE; } while (length > 0) { copy_n = MIN(length, PCMBUF_SIZE - audiobuffer_pos); memcpy(&audiobuffer[audiobuffer_pos], buf, copy_n); audiobuffer_fillpos = copy_n; buf += copy_n; length -= copy_n; if (length > 0) pcmbuf_flush_fillpos(); } } audiobuffer_fillpos += length; try_flush: if (audiobuffer_fillpos < CHUNK_SIZE && PCMBUF_SIZE - audiobuffer_pos - audiobuffer_fillpos > 0) return ; copy_n = audiobuffer_fillpos - (PCMBUF_SIZE - audiobuffer_pos); if (copy_n > 0) { audiobuffer_fillpos -= copy_n; pcmbuf_flush_fillpos(); copy_n = MIN(copy_n, PCMBUF_GUARD); memcpy(&audiobuffer[0], &guardbuf[0], copy_n); audiobuffer_fillpos = copy_n; goto try_flush; } pcmbuf_flush_fillpos(); } bool pcmbuf_insert_buffer(char *buf, long length) { long copy_n = 0; if (!prepare_insert(length)) return false; if (crossfade_active) { while (length > 0 && crossfade_active) { copy_n = MIN(length, PCMBUF_SIZE - crossfade_pos); copy_n = 2 * crossfade((short *)&audiobuffer[crossfade_pos], (const short *)buf, copy_n/2); buf += copy_n; length -= copy_n; crossfade_pos += copy_n; if (crossfade_pos >= PCMBUF_SIZE) crossfade_pos -= PCMBUF_SIZE; } while (length > 0) { copy_n = MIN(length, PCMBUF_SIZE - audiobuffer_pos); memcpy(&audiobuffer[audiobuffer_pos], buf, copy_n); audiobuffer_fillpos = copy_n; buf += copy_n; length -= copy_n; if (length > 0) pcmbuf_flush_fillpos(); } } while (length > 0) { copy_n = MIN(length, PCMBUF_SIZE - audiobuffer_pos - audiobuffer_fillpos); copy_n = MIN(CHUNK_SIZE - audiobuffer_fillpos, copy_n); memcpy(&audiobuffer[audiobuffer_pos+audiobuffer_fillpos], buf, copy_n); buf += copy_n; audiobuffer_fillpos += copy_n; length -= copy_n; /* Pre-buffer to meet CHUNK_SIZE requirement */ if (audiobuffer_fillpos < CHUNK_SIZE && length == 0) { return true; } pcmbuf_flush_fillpos(); } return true; } void pcmbuf_crossfade_enable(bool on_off) { crossfade_enabled = on_off; if (crossfade_enabled) { pcmbuf_set_watermark(PCMBUF_CF_WATERMARK, pcmbuf_watermark_callback); } else { pcmbuf_set_watermark(PCMBUF_WATERMARK, pcmbuf_watermark_callback); } } bool pcmbuf_is_crossfade_enabled(void) { return crossfade_enabled; }