/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2007 Matthias Wientapper * * All files in this archive are subject to the GNU General Public License. * See the file COPYING in the source tree root for full license agreement. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ /* This is the implementation of a maze generation algorithm. * The generated mazes are "perfect", i.e. there is one and only * one path from any point in the maze to any other point. * * * The implemented algorithm is called "Depth-First search", the * solving is done by a dead-end filler routine. * */ #include "plugin.h" #include "pluginlib_actions.h" PLUGIN_HEADER #if (CONFIG_KEYPAD == IPOD_4G_PAD) || \ (CONFIG_KEYPAD == IPOD_3G_PAD) || \ (CONFIG_KEYPAD == IPOD_1G2G_PAD) # undef __PLUGINLIB_ACTIONS_H__ # define MAZE_NEW (BUTTON_SELECT | BUTTON_REPEAT) # define MAZE_NEW_PRE BUTTON_SELECT # define MAZE_QUIT (BUTTON_SELECT | BUTTON_MENU) # define MAZE_SOLVE (BUTTON_SELECT | BUTTON_PLAY) # define MAZE_RIGHT BUTTON_RIGHT # define MAZE_LEFT BUTTON_LEFT # define MAZE_UP BUTTON_MENU # define MAZE_DOWN BUTTON_PLAY # define MAZE_RRIGHT (BUTTON_RIGHT | BUTTON_REPEAT) # define MAZE_RLEFT (BUTTON_LEFT | BUTTON_REPEAT) # define MAZE_RUP (BUTTON_MENU | BUTTON_REPEAT) # define MAZE_RDOWN (BUTTON_PLAY | BUTTON_REPEAT) #else # define MAZE_NEW PLA_START # define MAZE_QUIT PLA_QUIT # define MAZE_SOLVE PLA_FIRE # define MAZE_RIGHT PLA_RIGHT # define MAZE_LEFT PLA_LEFT # define MAZE_UP PLA_UP # define MAZE_DOWN PLA_DOWN # define MAZE_RRIGHT PLA_RIGHT_REPEAT # define MAZE_RLEFT PLA_LEFT_REPEAT # define MAZE_RUP PLA_UP_REPEAT # define MAZE_RDOWN PLA_DOWN_REPEAT #endif /* propertie bits of the cell */ #define WALL_N 0x00000001 #define WALL_E 0x00000002 #define WALL_S 0x00000004 #define WALL_W 0x00000008 #define WALL_ALL 0x0000000F #define BORDER_N 0x00000010 #define BORDER_E 0x00000020 #define BORDER_S 0x00000040 #define BORDER_W 0x00000080 #define PATH 0x00000100 static struct plugin_api* rb; #ifdef __PLUGINLIB_ACTIONS_H__ const struct button_mapping *plugin_contexts[] = {generic_directions, generic_actions}; #endif #if ( LCD_WIDTH == 112 ) #define MAZE_WIDTH 16 #define MAZE_HEIGHT 12 #else #define MAZE_WIDTH 32 #define MAZE_HEIGHT 24 #endif struct coord_stack{ int data[MAZE_WIDTH*MAZE_HEIGHT]; int stp; }; void coord_stack_init(struct coord_stack* stack){ stack->stp=0; } void coord_stack_push(struct coord_stack* stack, int x, int y){ stack->data[stack->stp] = ((x<<8)|y); stack->stp++; } void coord_stack_get(struct coord_stack* stack, int index, int* x, int* y){ *y = stack->data[index]; *y &= 0xff; *x = (stack->data[index])>>8; } void coord_stack_pop(struct coord_stack* stack, int* x, int* y){ stack->stp--; coord_stack_get(stack, stack->stp, x, y); } int coord_stack_count(struct coord_stack* stack){ return(stack->stp); } struct maze{ unsigned short maze[MAZE_WIDTH][MAZE_HEIGHT]; int solved; int player_x; int player_y; }; void maze_init(struct maze* maze){ int x, y; rb->memset(maze->maze, 0, sizeof(maze->maze)); maze->solved = false; maze->player_x = 0; maze->player_y = 0; for(y=0; ymaze[x][y] |= WALL_ALL | PATH; /* setup borders */ if(x == 0) maze->maze[x][y]|= BORDER_W; if(y == 0) maze->maze[x][y]|= BORDER_N; if(x == MAZE_WIDTH-1) maze->maze[x][y]|= BORDER_E; if(y == MAZE_HEIGHT-1) maze->maze[x][y]|= BORDER_S; } } } void maze_draw(struct maze* maze, struct screen* display){ int x, y; int wx, wy; int point_width, point_height, point_offset_x, point_offset_y; unsigned short cell; wx = (int) display->width / MAZE_WIDTH; wy = (int) display->height / MAZE_HEIGHT; if(wx>3){ point_width=wx-3; point_offset_x=2; }else{ point_width=1; point_offset_x=1; } if(wy>3){ point_height=wy-3; point_offset_y=2; }else{ point_height=1; point_offset_y=1; } display->clear_display(); for(y=0; ymaze[x][y]; /* draw walls */ if(cell & WALL_N) display->drawline(x*wx, y*wy, x*wx+wx, y*wy); if(cell & WALL_E) display->drawline(x*wx+wx, y*wy, x*wx+wx, y*wy+wy); if(cell & WALL_S) display->drawline(x*wx, y*wy+wy, x*wx+wx, y*wy+wy); if(cell & WALL_W) display->drawline(x*wx, y*wy, x*wx, y*wy+wy); if(cell & BORDER_N) display->drawline(x*wx, y*wy, x*wx+wx, y*wy); if(cell & BORDER_E) display->drawline(x*wx+wx, y*wy, x*wx+wx, y*wy+wy); if(cell & BORDER_S) display->drawline(x*wx, y*wy+wy, x*wx+wx, y*wy+wy); if(cell & BORDER_W) display->drawline(x*wx, y*wy, x*wx, y*wy+wy); } } if(maze->solved){ #if LCD_DEPTH >= 16 if(display->depth>=16) display->set_foreground(LCD_RGBPACK(127,127,127)); #endif #if LCD_DEPTH >= 2 if(display->depth==2) display->set_foreground(1); #endif for(y=0; ymaze[x][y]; if(cell & PATH) display->fillrect(x*wx+point_offset_x, y*wy+point_offset_y, point_width, point_height); } } #if LCD_DEPTH >= 16 if(display->depth>=16) display->set_foreground(LCD_RGBPACK(0,0,0)); #endif #if LCD_DEPTH >= 2 if(display->depth==2) display->set_foreground(0); #endif } /* mark start and end */ display->drawline(0, 0, wx, wy); display->drawline(0, wy, wx, 0); display->drawline((MAZE_WIDTH-1)*wx,(MAZE_HEIGHT-1)*wy, (MAZE_WIDTH-1)*wx+wx, (MAZE_HEIGHT-1)*wy+wy); display->drawline((MAZE_WIDTH-1)*wx,(MAZE_HEIGHT-1)*wy+wy, (MAZE_WIDTH-1)*wx+wx, (MAZE_HEIGHT-1)*wy); /* draw current position */ display->fillrect(maze->player_x*wx+point_offset_x, maze->player_y*wy+point_offset_y, point_width, point_height); display->update(); } int maze_pick_random_neighbour_cell_with_walls(struct maze* maze, int x, int y, int *pnx, int *pny){ int ncount = 0; struct coord_stack neighbours; unsigned short current_cell=maze->maze[x][y]; coord_stack_init(&neighbours); /* look for neighbour cells with walls */ /* north */ if(!(current_cell & BORDER_N)){ if((maze->maze[x][y-1] & WALL_ALL) == WALL_ALL){ coord_stack_push(&neighbours, x, y-1); } } /* west */ if(!(current_cell & BORDER_W)){ if((maze->maze[x-1][y] & WALL_ALL) == WALL_ALL){ coord_stack_push(&neighbours, x-1, y); } } /* east */ if(!(current_cell & BORDER_E)){ if((maze->maze[x+1][y] & WALL_ALL) == WALL_ALL){ coord_stack_push(&neighbours, x+1, y); } } /* south */ if(!(current_cell & BORDER_S)){ if((maze->maze[x][y+1] & WALL_ALL) == WALL_ALL){ coord_stack_push(&neighbours, x, y+1); } } /* randomly select neighbour cell with walls */ ncount=coord_stack_count(&neighbours); if(ncount!=0) coord_stack_get(&neighbours, rb->rand()%ncount, pnx, pny); return ncount; } /* Removes the wall between the cell (x,y) and the cell (nx,ny) */ void maze_remove_wall(struct maze* maze, int x, int y, int nx, int ny){ /* where is our neighbour? */ /* north or south */ if(x==nx){ if(ymaze[x][y] &= ~WALL_S; maze->maze[nx][ny] &= ~WALL_N; } else { /*north*/ maze->maze[x][y] &= ~WALL_N; maze->maze[nx][ny] &= ~WALL_S; } } else { /* east or west */ if(y==ny){ if(xmaze[x][y] &= ~WALL_E; maze->maze[nx][ny] &= ~WALL_W; } else { /*west*/ maze->maze[x][y] &= ~WALL_W; maze->maze[nx][ny] &= ~WALL_E; } } } } void maze_generate(struct maze* maze){ int total_cells = MAZE_WIDTH * MAZE_HEIGHT; int visited_cells; int available_neighbours; int x, y; int nx = 0; int ny = 0; struct coord_stack done_cells; coord_stack_init(&done_cells); x = rb->rand()%MAZE_WIDTH; y = rb->rand()%MAZE_HEIGHT; visited_cells = 1; while (visited_cells < total_cells){ available_neighbours = maze_pick_random_neighbour_cell_with_walls(maze, x, y, &nx, &ny); if(available_neighbours == 0){ /* pop from stack */ coord_stack_pop(&done_cells, &x, &y); } else { maze_remove_wall(maze, x, y, nx, ny); /* save position on the stack */ coord_stack_push(&done_cells, x, y); /* current cell = neighbour cell */ x=nx; y=ny; visited_cells++; } } } void maze_solve(struct maze* maze){ int x, y; unsigned short cell; unsigned short w; int dead_ends = 1; unsigned short solved_maze[MAZE_WIDTH][MAZE_HEIGHT]; maze->solved = ~(maze->solved); /* copy maze for solving */ rb->memcpy(solved_maze, maze->maze, (MAZE_HEIGHT*MAZE_WIDTH*sizeof(maze->maze[0][0]))); /* remove some borders and walls on start and end point */ solved_maze[0][0] &= ~(WALL_N|BORDER_N); solved_maze[MAZE_WIDTH-1][MAZE_HEIGHT-1] &= ~(WALL_S|BORDER_S); while(dead_ends){ dead_ends = 0; /* scan for dead ends */ for(y=0; yyield(); for(x=0; xmaze[x][y] &= ~PATH; solved_maze[x][y] |= WALL_ALL; /* don't forget the neighbours */ if(!(cell & BORDER_N)) solved_maze[x][y-1]|=WALL_S; if(!(cell & BORDER_E)) solved_maze[x+1][y]|=WALL_W; if(!(cell & BORDER_S)) solved_maze[x][y+1]|=WALL_N; if(!(cell & BORDER_W)) solved_maze[x-1][y]|=WALL_E; dead_ends++; } } } } } void maze_move_player_down(struct maze* maze){ unsigned short cell=maze->maze[maze->player_x][maze->player_y]; if( !(cell & WALL_S) && !(cell & BORDER_S)){ maze->player_y++; } } void maze_move_player_up(struct maze* maze){ unsigned short cell=maze->maze[maze->player_x][maze->player_y]; if( !(cell & WALL_N) && !(cell & BORDER_N)){ maze->player_y--; } } void maze_move_player_left(struct maze* maze){ unsigned short cell=maze->maze[maze->player_x][maze->player_y]; if( !(cell & WALL_W) && !(cell & BORDER_W)){ maze->player_x--; } } void maze_move_player_right(struct maze* maze){ unsigned short cell=maze->maze[maze->player_x][maze->player_y]; if( !(cell & WALL_E) && !(cell & BORDER_E)){ maze->player_x++; } } /**********************************/ /* this is the plugin entry point */ /**********************************/ enum plugin_status plugin_start(struct plugin_api* api, void* parameter){ int button, lastbutton = BUTTON_NONE; int quit = 0; int i; struct maze maze; (void)parameter; rb = api; rb->backlight_set_timeout(1); #if LCD_DEPTH > 1 rb->lcd_set_backdrop(NULL); rb->lcd_set_background(LCD_DEFAULT_BG); #if LCD_DEPTH >= 16 rb->lcd_set_foreground( LCD_RGBPACK( 0, 0, 0)); #elif LCD_DEPTH == 2 rb->lcd_set_foreground(0); #endif #endif maze_init(&maze); maze_generate(&maze); FOR_NB_SCREENS(i) maze_draw(&maze, rb->screens[i]); while(!quit) { #ifdef __PLUGINLIB_ACTIONS_H__ button = pluginlib_getaction(rb, TIMEOUT_BLOCK, plugin_contexts, 2); #else button = rb->button_get(true); #endif switch(button) { case MAZE_NEW: #ifdef MAZE_NEW_PRE if(lastbutton != MAZE_NEW_PRE) break; #endif maze_init(&maze); maze_generate(&maze); FOR_NB_SCREENS(i) maze_draw(&maze, rb->screens[i]); break; case MAZE_SOLVE: maze_solve(&maze); FOR_NB_SCREENS(i) maze_draw(&maze, rb->screens[i]); break; case MAZE_RIGHT: case MAZE_RRIGHT: maze_move_player_right(&maze); FOR_NB_SCREENS(i) maze_draw(&maze, rb->screens[i]); break; case MAZE_LEFT: case MAZE_RLEFT: maze_move_player_left(&maze); FOR_NB_SCREENS(i) maze_draw(&maze, rb->screens[i]); break; case MAZE_UP: case MAZE_RUP: maze_move_player_up(&maze); FOR_NB_SCREENS(i) maze_draw(&maze, rb->screens[i]); break; case MAZE_DOWN: case MAZE_RDOWN: maze_move_player_down(&maze); FOR_NB_SCREENS(i) maze_draw(&maze, rb->screens[i]); break; case MAZE_QUIT: /* quit plugin */ quit=true; return PLUGIN_OK; break; default: if (rb->default_event_handler(button) == SYS_USB_CONNECTED) { return PLUGIN_USB_CONNECTED; } break; } if( button != BUTTON_NONE ) lastbutton = button; rb->yield(); } rb->backlight_set_timeout(rb->global_settings->backlight_timeout); return PLUGIN_OK; }