/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2002 by Philipp Pertermann * * All files in this archive are subject to the GNU General Public License. * See the file COPYING in the source tree root for full license agreement. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #ifdef SIMULATOR #include /* sim uses rand for peakmeter simulation */ #endif #include "config.h" #include "mas.h" #include "thread.h" #include "kernel.h" #include "settings.h" #include "ata.h" #include "lcd.h" #include "scrollbar.h" #include "gwps.h" #include "sprintf.h" #include "button.h" #include "system.h" #include "font.h" #include "icons.h" #include "lang.h" #include "peakmeter.h" #include "audio.h" #include "screen_access.h" #ifdef HAVE_BACKLIGHT #include "backlight.h" #endif #include "action.h" #if CONFIG_CODEC == SWCODEC #include "pcm.h" #ifdef HAVE_RECORDING #include "pcm_record.h" #endif static bool pm_playback = true; /* selects between playback and recording peaks */ #endif static struct meter_scales scales[NB_SCREENS]; #if !defined(SIMULATOR) && CONFIG_CODEC != SWCODEC /* Data source */ static int pm_src_left = MAS_REG_DQPEAK_L; static int pm_src_right = MAS_REG_DQPEAK_R; #endif /* Current values and cumulation */ static int pm_cur_left; /* current values (last peak_meter_peek) */ static int pm_cur_right; static int pm_max_left; /* maximum values between peak meter draws */ static int pm_max_right; #ifdef HAVE_AGC static int pm_peakhold_left; /* max. peak values between peakhold calls */ static int pm_peakhold_right; /* used for AGC and histogram display */ #endif /* Clip hold */ static bool pm_clip_left = false; /* when true a clip has occurred */ static bool pm_clip_right = false; static long pm_clip_timeout_l; /* clip hold timeouts */ static long pm_clip_timeout_r; /* Temporarily en- / disables peak meter. This is especially for external applications to detect if the peak_meter is in use and needs drawing at all */ bool peak_meter_enabled = true; /** Parameters **/ /* Range */ unsigned short peak_meter_range_min; /* minimum of range in samples */ unsigned short peak_meter_range_max; /* maximum of range in samples */ static unsigned short pm_range; /* range width in samples */ static bool pm_use_dbfs = true; /* true if peakmeter displays dBfs */ static bool level_check; /* true if peeked at peakmeter before drawing */ static unsigned short pm_db_min = 0; /* minimum of range in 1/100 dB */ static unsigned short pm_db_max = 9000; /* maximum of range in 1/100 dB */ static unsigned short pm_db_range = 9000; /* range width in 1/100 dB */ /* Timing behaviour */ static int pm_peak_hold = 1; /* peak hold timeout index */ static int pm_peak_release = 8; /* peak release in units per read */ static int pm_clip_hold = 16; /* clip hold timeout index */ static bool pm_clip_eternal = false; /* true if clip timeout is disabled */ #ifdef HAVE_RECORDING static unsigned short trig_strt_threshold; static long trig_strt_duration; static long trig_strt_dropout; static unsigned short trig_stp_threshold; static long trig_stp_hold; static long trig_rstrt_gap; /* point in time when the threshold was exceeded */ static long trig_hightime; /* point in time when the volume fell below the threshold*/ static long trig_lowtime; /* The output value of the trigger. See TRIG_XXX constants for valid values */ static int trig_status = TRIG_OFF; static void (*trigger_listener)(int) = NULL; /* clipping counter (only used for recording) */ static unsigned int pm_clipcount = 0; /* clipping count */ static bool pm_clipcount_active = false; /* counting or not */ #endif /* debug only */ #ifdef PM_DEBUG static int peek_calls = 0; #define PEEKS_PER_DRAW_SIZE 40 static unsigned int peeks_per_redraw[PEEKS_PER_DRAW_SIZE]; #define TICKS_PER_DRAW_SIZE 20 static unsigned int ticks_per_redraw[TICKS_PER_DRAW_SIZE]; #endif static void peak_meter_draw(struct screen *display, struct meter_scales *meter_scales, int x, int y, int width, int height); /* time out values for max */ static const short peak_time_out[] = { 0 * HZ, HZ / 5, 30, HZ / 2, HZ, 2 * HZ, 3 * HZ, 4 * HZ, 5 * HZ, 6 * HZ, 7 * HZ, 8 * HZ, 9 * HZ, 10 * HZ, 15 * HZ, 20 * HZ, 30 * HZ, 60 * HZ }; /* time out values for clip */ static const long clip_time_out[] = { 0 * HZ, 1 * HZ, 2 * HZ, 3 * HZ, 4 * HZ, 5 * HZ, 6 * HZ, 7 * HZ, 8 * HZ, 9 * HZ, 10 * HZ, 15 * HZ, 20 * HZ, 25 * HZ, 30 * HZ, 45 * HZ, 60 * HZ, 90 * HZ, 120 * HZ, 180 * HZ, 300 * HZ, 600L * HZ, 1200L * HZ, 2700L * HZ, 5400L * HZ }; /* precalculated peak values that represent magical dBfs values. Used to draw the scale */ static const short db_scale_src_values[DB_SCALE_SRC_VALUES_SIZE] = { 32736, /* 0 db */ 22752, /* - 3 db */ 16640, /* - 6 db */ 11648, /* - 9 db */ 8320, /* -12 db */ 4364, /* -18 db */ 2064, /* -24 db */ 1194, /* -30 db */ 363, /* -40 db */ 101, /* -50 db */ 34, /* -60 db */ 0, /* -inf */ }; static int db_scale_count = DB_SCALE_SRC_VALUES_SIZE; /** * Calculates dB Value for the peak meter, uses peak value as input * @param int sample - The input value * Make sure that 0 <= value < SAMPLE_RANGE * * @return int - The 2 digit fixed point result of the euation * 20 * log (sample / SAMPLE_RANGE) + 90 * Output range is 0-9000 (that is 0.0 - 90.0 dB). * Normally 0dB is full scale, here it is shifted +90dB. * The calculation is based on the results of a linear * approximation tool written specifically for this problem * by Andreas Zwirtes (radhard@gmx.de). The result has an * accurracy of better than 2%. It is highly runtime optimized, * the cascading if-clauses do an successive approximation on * the input value. This avoids big lookup-tables and * for-loops. * Improved by Jvo Studer for errors < 0.2dB for critical * range of -12dB to 0dB (78.0 to 90.0dB). */ int calc_db (int isample) { /* return n+m*(isample-istart)/100 */ int n; long m; int istart; if (isample < 2308) { /* Range 1-5 */ if (isample < 115) { /* Range 1-3 */ if (isample < 24) { if (isample < 5) { istart = 1; /* Range 1 */ n = 98; m = 34950; } else { istart = 5; /* Range 2 */ n = 1496; m = 7168; } } else { istart = 24; /* Range 3 */ n = 2858; m = 1498; } } else { /* Range 4-5 */ if (isample < 534) { istart = 114; /* Range 4 */ n = 4207; m = 319; } else { istart = 588; /* Range 5 */ n = 5583; m = 69; } } } else { /* Range 6-9 */ if (isample < 12932) { if (isample < 6394) { istart = 2608; /* Range 6 */ n = 6832; m = 21; } else { istart = 7000; /* Range 7 */ n = 7682; m = 9; } } else { if (isample < 22450) { istart = 13000; /* Range 8 */ n = 8219; m = 5; } else { istart = 22636; /* Range 9 */ n = 8697; m = 3; } } } return n + (m * (long)(isample - istart)) / 100L; } /** * A helper function for peak_meter_db2sample. Don't call it separately but * use peak_meter_db2sample. If one or both of min and max are outside the * range 0 <= min (or max) < 8961 the behaviour of this function is * undefined. It may not return. * @param int min - The minimum of the value range that is searched. * @param int max - The maximum of the value range that is searched. * @param int db - The value in dBfs * (-100) for which the according * minimal peak sample is searched. * @return int - A linear volume value with 0 <= value < MAX_PEAK */ static int db_to_sample_bin_search(int min, int max, int db) { int test = min + (max - min) / 2; if (min < max) { if (calc_db(test) < db) { test = db_to_sample_bin_search(test, max, db); } else { if (calc_db(test-1) > db) { test = db_to_sample_bin_search(min, test, db); } } } return test; } /** * Converts a value representing dBfs to a linear * scaled volume info as it is used by the MAS. * An incredibly inefficiant function which is * the vague inverse of calc_db. This really * should be replaced by something better soon. * * @param int db - A dBfs * 100 value with * -9000 < value <= 0 * @return int - The return value is in the range of * 0 <= return value < MAX_PEAK */ int peak_meter_db2sample(int db) { int retval = 0; /* what is the maximum pseudo db value */ int max_peak_db = calc_db(MAX_PEAK - 1); /* range check: db value to big */ if (max_peak_db + db < 0) { retval = 0; } /* range check: db value too small */ else if (max_peak_db + db >= max_peak_db) { retval = MAX_PEAK -1; } /* value in range: find the matching linear value */ else { retval = db_to_sample_bin_search(0, MAX_PEAK, max_peak_db + db); /* as this is a dirty function anyway, we want to adjust the full scale hit manually to avoid users complaining that when they adjust maximum for 0 dBfs and display it in percent it shows 99%. That is due to precision loss and this is the optical fix */ } return retval; } /** * Set the min value for restriction of the value range. * @param int newmin - depending whether dBfs is used * newmin is a value in dBfs * 100 or in linear percent values. * for dBfs: -9000 < newmin <= 0 * for linear: 0 <= newmin <= 100 */ static void peak_meter_set_min(int newmin) { if (pm_use_dbfs) { peak_meter_range_min = peak_meter_db2sample(newmin); } else { if (newmin < peak_meter_range_max) { peak_meter_range_min = newmin * MAX_PEAK / 100; } } pm_range = peak_meter_range_max - peak_meter_range_min; /* Avoid division by zero. */ if (pm_range == 0) { pm_range = 1; } pm_db_min = calc_db(peak_meter_range_min); pm_db_range = pm_db_max - pm_db_min; int i; FOR_NB_SCREENS(i) scales[i].db_scale_valid = false; } /** * Returns the minimum value of the range the meter * displays. If the scale is set to dBfs it returns * dBfs values * 100 or linear percent values. * @return: using dBfs : -9000 < value <= 0 * using linear scale: 0 <= value <= 100 */ int peak_meter_get_min(void) { int retval = 0; if (pm_use_dbfs) { retval = calc_db(peak_meter_range_min) - calc_db(MAX_PEAK - 1); } else { retval = peak_meter_range_min * 100 / MAX_PEAK; } return retval; } /** * Set the max value for restriction of the value range. * @param int newmax - depending wether dBfs is used * newmax is a value in dBfs * 100 or in linear percent values. * for dBfs: -9000 < newmax <= 0 * for linear: 0 <= newmax <= 100 */ static void peak_meter_set_max(int newmax) { if (pm_use_dbfs) { peak_meter_range_max = peak_meter_db2sample(newmax); } else { if (newmax > peak_meter_range_min) { peak_meter_range_max = newmax * MAX_PEAK / 100; } } pm_range = peak_meter_range_max - peak_meter_range_min; /* Avoid division by zero. */ if (pm_range == 0) { pm_range = 1; } pm_db_max = calc_db(peak_meter_range_max); pm_db_range = pm_db_max - pm_db_min; int i; FOR_NB_SCREENS(i) scales[i].db_scale_valid = false; } /** * Returns the minimum value of the range the meter * displays. If the scale is set to dBfs it returns * dBfs values * 100 or linear percent values * @return: using dBfs : -9000 < value <= 0 * using linear scale: 0 <= value <= 100 */ int peak_meter_get_max(void) { int retval = 0; if (pm_use_dbfs) { retval = calc_db(peak_meter_range_max) - calc_db(MAX_PEAK - 1); } else { retval = peak_meter_range_max * 100 / MAX_PEAK; } return retval; } /** * Returns whether the meter is currently displaying dBfs or percent values. * @return bool - true if the meter is displaying dBfs false if the meter is displaying percent values. */ bool peak_meter_get_use_dbfs(void) { return pm_use_dbfs; } /** * Specifies whether the values displayed are scaled * as dBfs or as linear percent values. * @param use - set to true for dBfs, * set to false for linear scaling in percent */ void peak_meter_set_use_dbfs(bool use) { int i; pm_use_dbfs = use; FOR_NB_SCREENS(i) scales[i].db_scale_valid = false; } /** * Initialize the range of the meter. Only values * that are in the range of [range_min ... range_max] * are displayed. * @param bool dbfs - set to true for dBfs, * set to false for linear scaling in percent * @param int range_min - Specifies the lower value of the range. * Pass a value dBfs * 100 when dbfs is set to true. * Pass a percent value when dbfs is set to false. * @param int range_max - Specifies the upper value of the range. * Pass a value dBfs * 100 when dbfs is set to true. * Pass a percent value when dbfs is set to false. */ void peak_meter_init_range( bool dbfs, int range_min, int range_max) { pm_use_dbfs = dbfs; peak_meter_set_min(range_min); peak_meter_set_max(range_max); } /** * Initialize the peak meter with all relevant values concerning times. * @param int release - Set the maximum amount of pixels the meter is allowed * to decrease with each redraw * @param int hold - Select the time preset for the time the peak indicator * is reset after a peak occurred. The preset values are * stored in peak_time_out. * @param int clip_hold - Select the time preset for the time the peak * indicator is reset after a peak occurred. The preset * values are stored in clip_time_out. */ void peak_meter_init_times(int release, int hold, int clip_hold) { pm_peak_hold = hold; pm_peak_release = release; pm_clip_hold = clip_hold; } #ifdef HAVE_RECORDING /** * Enable/disable clip counting */ void pm_activate_clipcount(bool active) { pm_clipcount_active = active; } /** * Get clipping counter value */ int pm_get_clipcount(void) { return pm_clipcount; } /** * Set clipping counter to zero (typically at start of recording or playback) */ void pm_reset_clipcount(void) { pm_clipcount = 0; } #endif /** * Set the source of the peak meter to playback or to * record. * @param: bool playback - If true playback peak meter is used. * If false recording peak meter is used. */ void peak_meter_playback(bool playback) { #ifdef SIMULATOR (void)playback; #elif CONFIG_CODEC == SWCODEC pm_playback = playback; #else if (playback) { pm_src_left = MAS_REG_DQPEAK_L; pm_src_right = MAS_REG_DQPEAK_R; } else { pm_src_left = MAS_REG_QPEAK_L; pm_src_right = MAS_REG_QPEAK_R; } #endif } #ifdef HAVE_RECORDING static void set_trig_status(int new_state) { if (trig_status != new_state) { trig_status = new_state; if (trigger_listener != NULL) { trigger_listener(trig_status); } } } #endif /** * Reads peak values from the MAS, and detects clips. The * values are stored in pm_max_left pm_max_right for later * evauluation. Consecutive calls to peak_meter_peek detect * that ocurred. This function could be used by a thread for * busy reading the MAS. */ void peak_meter_peek(void) { int left, right; #ifdef HAVE_RECORDING bool was_clipping = pm_clip_left || pm_clip_right; #endif /* read current values */ #if CONFIG_CODEC == SWCODEC if (pm_playback) pcm_calculate_peaks(&pm_cur_left, &pm_cur_right); #ifdef HAVE_RECORDING else pcm_calculate_rec_peaks(&pm_cur_left, &pm_cur_right); #endif left = pm_cur_left; right = pm_cur_right; #else #ifndef SIMULATOR pm_cur_left = left = mas_codec_readreg(pm_src_left); pm_cur_right = right = mas_codec_readreg(pm_src_right); #else pm_cur_left = left = 8000; pm_cur_right = right = 9000; #endif #endif /* check for clips An clip is assumed when two consecutive readouts of the volume are at full scale. This is proven to be inaccurate in both ways: it may detect clips when no clip occurred and it may fail to detect a real clip. For software codecs, the peak is already the max of a bunch of samples, so use one max value or you fail to detect clipping! */ #if CONFIG_CODEC == SWCODEC if (left == MAX_PEAK - 1) { #else if ((left == pm_max_left) && (left == MAX_PEAK - 1)) { #endif pm_clip_left = true; pm_clip_timeout_l = current_tick + clip_time_out[pm_clip_hold]; } #if CONFIG_CODEC == SWCODEC if (right == MAX_PEAK - 1) { #else if ((right == pm_max_right) && (right == MAX_PEAK - 1)) { #endif pm_clip_right = true; pm_clip_timeout_r = current_tick + clip_time_out[pm_clip_hold]; } #ifdef HAVE_RECORDING if(!was_clipping && (pm_clip_left || pm_clip_right)) { if(pm_clipcount_active) pm_clipcount++; } #endif /* peaks are searched -> we have to find the maximum. When many calls of peak_meter_peek the maximum value will be stored in pm_max_xxx. This maximum is reset by the functions peak_meter_read_x. */ pm_max_left = MAX(pm_max_left, left); pm_max_right = MAX(pm_max_right, right); #ifdef HAVE_RECORDING #if CONFIG_CODEC == SWCODEC /* Ignore any unread peakmeter data */ #define MAX_DROP_TIME HZ/7 /* this value may need tweaking. Increase if you are getting trig events when you shouldn't with trig_stp_hold = 0 */ if (!trig_stp_hold) trig_stp_hold = MAX_DROP_TIME; #endif switch (trig_status) { case TRIG_READY: /* no more changes, if trigger was activated as release trigger */ /* threshold exceeded? */ if ((left > trig_strt_threshold) || (right > trig_strt_threshold)) { /* reset trigger duration */ trig_hightime = current_tick; /* reset dropout duration */ trig_lowtime = current_tick; if (trig_strt_duration) set_trig_status(TRIG_STEADY); else /* if trig_duration is set to 0 the user wants to start recording immediately */ set_trig_status(TRIG_GO); } break; case TRIG_STEADY: case TRIG_RETRIG: /* trigger duration exceeded */ if (current_tick - trig_hightime > trig_strt_duration) { set_trig_status(TRIG_GO); } else { /* threshold exceeded? */ if ((left > trig_strt_threshold) || (right > trig_strt_threshold)) { /* reset lowtime */ trig_lowtime = current_tick; } /* volume is below threshold */ else { /* dropout occurred? */ if (current_tick - trig_lowtime > trig_strt_dropout){ if (trig_status == TRIG_STEADY){ set_trig_status(TRIG_READY); } /* trig_status == TRIG_RETRIG */ else { /* the gap has already expired */ trig_lowtime = current_tick - trig_rstrt_gap - 1; set_trig_status(TRIG_POSTREC); } } } } break; case TRIG_GO: case TRIG_CONTINUE: /* threshold exceeded? */ if ((left > trig_stp_threshold) || (right > trig_stp_threshold)) { /* restart hold time countdown */ trig_lowtime = current_tick; #if CONFIG_CODEC == SWCODEC } else if (current_tick - trig_lowtime > MAX_DROP_TIME){ #else } else { #endif set_trig_status(TRIG_POSTREC); trig_hightime = current_tick; } break; case TRIG_POSTREC: /* gap time expired? */ if (current_tick - trig_lowtime > trig_rstrt_gap){ /* start threshold exceeded? */ if ((left > trig_strt_threshold) || (right > trig_strt_threshold)) { set_trig_status(TRIG_RETRIG); trig_hightime = current_tick; trig_lowtime = current_tick; } else /* stop threshold exceeded */ if ((left > trig_stp_threshold) || (right > trig_stp_threshold)) { if (current_tick - trig_hightime > trig_stp_hold){ trig_lowtime = current_tick; set_trig_status(TRIG_CONTINUE); } else { trig_lowtime = current_tick - trig_rstrt_gap - 1; } } /* below any threshold */ else { if (current_tick - trig_lowtime > trig_stp_hold){ set_trig_status(TRIG_READY); } else { trig_hightime = current_tick; } } } /* still within the gap time */ else { /* stop threshold exceeded */ if ((left > trig_stp_threshold) || (right > trig_stp_threshold)) { set_trig_status(TRIG_CONTINUE); trig_lowtime = current_tick; } /* hold time expired */ else if (current_tick - trig_lowtime > trig_stp_hold){ trig_hightime = current_tick; trig_lowtime = current_tick; set_trig_status(TRIG_READY); } } break; } #if CONFIG_CODEC == SWCODEC /* restore stop hold value */ if (trig_stp_hold == MAX_DROP_TIME) trig_stp_hold = 0; #endif #endif /* check levels next time peakmeter drawn */ level_check = true; #ifdef PM_DEBUG peek_calls++; #endif } /** * Reads out the peak volume of the left channel. * @return int - The maximum value that has been detected * since the last call of peak_meter_read_l. The value * is in the range 0 <= value < MAX_PEAK. */ static int peak_meter_read_l(void) { /* pm_max_left contains the maximum of all peak values that were read by peak_meter_peek since the last call of peak_meter_read_l */ int retval = pm_max_left; #ifdef HAVE_AGC /* store max peak value for peak_meter_get_peakhold_x readout */ pm_peakhold_left = MAX(pm_max_left, pm_peakhold_left); #endif #ifdef PM_DEBUG peek_calls = 0; #endif /* reset pm_max_left so that subsequent calls of peak_meter_peek don't get fooled by an old maximum value */ pm_max_left = pm_cur_left; #if defined(SIMULATOR) && (CONFIG_CODEC != SWCODEC) srand(current_tick); retval = rand()%MAX_PEAK; #endif return retval; } /** * Reads out the peak volume of the right channel. * @return int - The maximum value that has been detected * since the last call of peak_meter_read_l. The value * is in the range 0 <= value < MAX_PEAK. */ static int peak_meter_read_r(void) { /* peak_meter_r contains the maximum of all peak values that were read by peak_meter_peek since the last call of peak_meter_read_r */ int retval = pm_max_right; #ifdef HAVE_AGC /* store max peak value for peak_meter_get_peakhold_x readout */ pm_peakhold_right = MAX(pm_max_right, pm_peakhold_right); #endif #ifdef PM_DEBUG peek_calls = 0; #endif /* reset pm_max_right so that subsequent calls of peak_meter_peek don't get fooled by an old maximum value */ pm_max_right = pm_cur_right; #if defined(SIMULATOR) && (CONFIG_CODEC != SWCODEC) srand(current_tick); retval = rand()%MAX_PEAK; #endif return retval; } #ifdef HAVE_AGC /** * Reads out the current peak-hold values since the last call. * This is used by the histogram feature in the recording screen. * Values are in the range 0 <= peak_x < MAX_PEAK. MAX_PEAK is typ 32767. */ void peak_meter_get_peakhold(int *peak_left, int *peak_right) { if (peak_left) *peak_left = pm_peakhold_left; if (peak_right) *peak_right = pm_peakhold_right; pm_peakhold_left = 0; pm_peakhold_right = 0; } #endif /** * Reset the detected clips. This method is for * use by the user interface. * @param int unused - This parameter was added to * make the function compatible with set_int */ void peak_meter_set_clip_hold(int time) { pm_clip_left = false; pm_clip_right = false; pm_clip_eternal = (time > 0) ? false : true; } /** * Scales a peak value as read from the MAS to the range of meterwidth. * The scaling is performed according to the scaling method (dBfs / linear) * and the range (peak_meter_range_min .. peak_meter_range_max). * @param unsigned short val - The volume value. Range: 0 <= val < MAX_PEAK * @param int meterwidht - The widht of the meter in pixel * @return unsigned short - A value 0 <= return value <= meterwidth */ unsigned short peak_meter_scale_value(unsigned short val, int meterwidth) { int retval; if (val <= peak_meter_range_min) { return 0; } if (val >= peak_meter_range_max) { return meterwidth; } retval = val; /* different scaling is used for dBfs and linear percent */ if (pm_use_dbfs) { /* scale the samples dBfs */ retval = (calc_db(retval) - pm_db_min) * meterwidth / pm_db_range; } /* Scale for linear percent display */ else { /* scale the samples */ retval = ((retval - peak_meter_range_min) * meterwidth) / pm_range; } return retval; } void peak_meter_screen(struct screen *display, int x, int y, int height) { peak_meter_draw(display, &scales[display->screen_type], x, y, display->width - x, height); } /** * Draws a peak meter in the specified size at the specified position. * @param int x - The x coordinate. * Make sure that 0 <= x and x + width < display->width * @param int y - The y coordinate. * Make sure that 0 <= y and y + height < display->height * @param int width - The width of the peak meter. Note that for display * of clips a 3 pixel wide area is used -> * width > 3 * @param int height - The height of the peak meter. height > 3 */ static void peak_meter_draw(struct screen *display, struct meter_scales *scales, int x, int y, int width, int height) { static int left_level = 0, right_level = 0; int left = 0, right = 0; int meterwidth = width - 3; int i, delta; #if defined(HAVE_REMOTE_LCD) && !defined (ROCKBOX_HAS_LOGF) static long peak_release_tick[2] = {0,0}; int screen_nr = display->screen_type == SCREEN_MAIN ? 0 : 1; #else static long peak_release_tick = 0; #endif #ifdef PM_DEBUG static long pm_tick = 0; int tmp = peek_calls; #endif /* if disabled only draw the peak meter */ if (peak_meter_enabled) { if (level_check){ /* only read the volume info from MAS if peek since last read*/ left_level = peak_meter_read_l(); right_level = peak_meter_read_r(); level_check = false; } /* scale the samples dBfs */ left = peak_meter_scale_value(left_level, meterwidth); right = peak_meter_scale_value(right_level, meterwidth); /*if the scale has changed -> recalculate the scale (The scale becomes invalid when the range changed.) */ if (!scales->db_scale_valid){ if (pm_use_dbfs) { db_scale_count = DB_SCALE_SRC_VALUES_SIZE; for (i = 0; i < db_scale_count; i++){ /* find the real x-coords for predefined interesting dBfs values. These only are recalculated when the scaling of the meter changed. */ scales->db_scale_lcd_coord[i] = peak_meter_scale_value( db_scale_src_values[i], meterwidth - 1); } } /* when scaling linear we simly make 10% steps */ else { db_scale_count = 10; for (i = 0; i < db_scale_count; i++) { scales->db_scale_lcd_coord[i] = (i * (MAX_PEAK / 10) - peak_meter_range_min) * meterwidth / pm_range; } } /* mark scale valid to avoid recalculating dBfs values of the scale. */ scales->db_scale_valid = true; } /* apply release */ #if defined(HAVE_REMOTE_LCD) && !defined (ROCKBOX_HAS_LOGF) delta = current_tick - peak_release_tick[screen_nr]; peak_release_tick[screen_nr] = current_tick; #else delta = current_tick - peak_release_tick; peak_release_tick = current_tick; #endif left = MAX(left , scales->last_left - delta * pm_peak_release); right = MAX(right, scales->last_right - delta * pm_peak_release); /* reset max values after timeout */ if (TIME_AFTER(current_tick, scales->pm_peak_timeout_l)){ scales->pm_peak_left = 0; } if (TIME_AFTER(current_tick, scales->pm_peak_timeout_r)){ scales->pm_peak_right = 0; } if (!pm_clip_eternal) { if (pm_clip_left && TIME_AFTER(current_tick, pm_clip_timeout_l)){ pm_clip_left = false; } if (pm_clip_right && TIME_AFTER(current_tick, pm_clip_timeout_r)){ pm_clip_right = false; } } /* check for new max values */ if (left > scales->pm_peak_left) { scales->pm_peak_left = left - 1; scales->pm_peak_timeout_l = current_tick + peak_time_out[pm_peak_hold]; } if (right > scales->pm_peak_right) { scales->pm_peak_right = right - 1; scales->pm_peak_timeout_r = current_tick + peak_time_out[pm_peak_hold]; } } /* draw the peak meter */ display->set_drawmode(DRMODE_SOLID|DRMODE_INVERSEVID); display->fillrect(x, y, width, height); display->set_drawmode(DRMODE_SOLID); /* draw left */ display->fillrect (x, y, left, height / 2 - 2 ); if (scales->pm_peak_left > 0) { display->vline(x + scales->pm_peak_left, y, y + height / 2 - 2 ); } if (pm_clip_left) { display->fillrect(x + meterwidth, y, 3, height / 2 - 1); } /* draw right */ display->fillrect(x, y + height / 2 + 1, right, height / 2 - 2); if (scales->pm_peak_right > 0) { display->vline( x + scales->pm_peak_right, y + height / 2, y + height - 2); } if (pm_clip_right) { display->fillrect(x + meterwidth, y + height / 2, 3, height / 2 - 1); } /* draw scale end */ display->vline(x + meterwidth, y, y + height - 2); /* draw dots for scale marks */ for (i = 0; i < db_scale_count; i++) { /* The x-coordinates of interesting scale mark points have been calculated before */ display->drawpixel(x + scales->db_scale_lcd_coord[i], y + height / 2 - 1); } #ifdef HAVE_RECORDING #ifdef HAVE_BACKLIGHT /* cliplight */ if ((pm_clip_left || pm_clip_right) && global_settings.cliplight && #if CONFIG_CODEC == SWCODEC !pm_playback) #else !(audio_status() & (AUDIO_STATUS_PLAY | AUDIO_STATUS_ERROR))) #endif { /* if clipping, cliplight setting on and in recording screen */ if (global_settings.cliplight <= 2) { /* turn on main unit light if setting set to main or both*/ backlight_on(); } #ifdef HAVE_REMOTE_LCD if (global_settings.cliplight >= 2) { /* turn remote light unit on if setting set to remote or both */ remote_backlight_on(); } #endif /* HAVE_REMOTE_LCD */ } #endif /* HAVE_BACKLIGHT */ if (trig_status != TRIG_OFF) { int start_trigx, stop_trigx, ycenter; display->set_drawmode(DRMODE_SOLID); ycenter = y + height / 2; /* display threshold value */ start_trigx = x+peak_meter_scale_value(trig_strt_threshold,meterwidth); display->vline(start_trigx, ycenter - 2, ycenter); start_trigx ++; if (start_trigx < display->width ) display->drawpixel(start_trigx, ycenter - 1); stop_trigx = x + peak_meter_scale_value(trig_stp_threshold,meterwidth); display->vline(stop_trigx, ycenter - 2, ycenter); if (stop_trigx > 0) display->drawpixel(stop_trigx - 1, ycenter - 1); } #endif /*HAVE_RECORDING*/ #ifdef PM_DEBUG /* display a bar to show how many calls to peak_meter_peek have ocurred since the last display */ display->set_drawmode(DRMODE_COMPLEMENT); display->fillrect(x, y, tmp, 3); if (tmp < PEEKS_PER_DRAW_SIZE) { peeks_per_redraw[tmp]++; } tmp = current_tick - pm_tick; if (tmp < TICKS_PER_DRAW_SIZE ){ ticks_per_redraw[tmp] ++; } /* display a bar to show how many ticks have passed since the last redraw */ display->fillrect(x, y + height / 2, current_tick - pm_tick, 2); pm_tick = current_tick; #endif scales->last_left = left; scales->last_right = right; display->set_drawmode(DRMODE_SOLID); } #ifdef HAVE_RECORDING /** * Defines the parameters of the trigger. After these parameters are defined * the trigger can be started either by peak_meter_attack_trigger or by * peak_meter_release_trigger. Note that you can pass either linear (%) or * logarithmic (db) values to the thresholds. Positive values are intepreted as * percent (0 is 0% .. 100 is 100%). Negative values are interpreted as db. * To avoid ambiguosity of the value 0 the negative values are shifted by -1. * Thus -75 is -74db .. -1 is 0db. * @param start_threshold - The threshold used for attack trigger. Negative * values are interpreted as db -1, positive as %. * @param start_duration - The minimum time span within which start_threshold * must be exceeded to fire the attack trigger. * @param start_dropout - The maximum time span the level may fall below * start_threshold without releasing the attack trigger. * @param stop_threshold - The threshold the volume must fall below to release * the release trigger.Negative values are * interpreted as db -1, positive as %. * @param stop_hold - The minimum time the volume must fall below the * stop_threshold to release the trigger. * @param */ void peak_meter_define_trigger( int start_threshold, long start_duration, long start_dropout, int stop_threshold, long stop_hold_time, long restart_gap ) { if (start_threshold < 0) { /* db */ if (start_threshold < -89) { trig_strt_threshold = 0; } else { trig_strt_threshold =peak_meter_db2sample((start_threshold+1)*100); } } else { /* linear percent */ trig_strt_threshold = start_threshold * MAX_PEAK / 100; } trig_strt_duration = start_duration; trig_strt_dropout = start_dropout; if (stop_threshold < 0) { /* db */ trig_stp_threshold = peak_meter_db2sample((stop_threshold + 1) * 100); } else { /* linear percent */ trig_stp_threshold = stop_threshold * MAX_PEAK / 100; } trig_stp_hold = stop_hold_time; trig_rstrt_gap = restart_gap; } /** * Enables or disables the trigger. * @param on - If true the trigger is turned on. */ void peak_meter_trigger(bool on) { /* don't use set_trigger here as that would fire an undesired event */ trig_status = on ? TRIG_READY : TRIG_OFF; } /** * Registers the listener function that listenes on trig_status changes. * @param listener - The function that is called with each change of * trig_status. May be set to NULL if no callback is desired. */ void peak_meter_set_trigger_listener(void (*listener)(int status)) { trigger_listener = listener; } /** * Fetches the status of the trigger. * TRIG_OFF: the trigger is inactive * TRIG_RELEASED: The volume level is below the threshold * TRIG_ACTIVATED: The volume level has exceeded the threshold, but the trigger * hasn't been fired yet. * TRIG_FIRED: The volume exceeds the threshold * * To activate the trigger call either peak_meter_attack_trigger or * peak_meter_release_trigger. To turn the trigger off call * peak_meter_trigger_off. */ int peak_meter_trigger_status(void) { return trig_status; /* & TRIG_PIT_MASK;*/ } void peak_meter_draw_trig(int xpos[], int ypos[], int trig_width[], int nb_screens) { int barstart[NB_SCREENS]; int barend[NB_SCREENS]; int icon; int ixpos[NB_SCREENS]; int i; int trigbar_width[NB_SCREENS]; FOR_NB_SCREENS(i) trigbar_width[i] = (trig_width[i] - (2 * (ICON_PLAY_STATE_WIDTH + 1))); switch (trig_status) { case TRIG_READY: FOR_NB_SCREENS(i){ barstart[i] = 0; barend[i] = 0; } icon = Icon_Stop; FOR_NB_SCREENS(i) ixpos[i] = xpos[i]; break; case TRIG_STEADY: case TRIG_RETRIG: FOR_NB_SCREENS(i) { barstart[i] = 0; barend[i] = (trig_strt_duration == 0) ? trigbar_width[i] : trigbar_width[i] * (current_tick - trig_hightime) / trig_strt_duration; } icon = Icon_Stop; FOR_NB_SCREENS(i) ixpos[i] = xpos[i]; break; case TRIG_GO: case TRIG_CONTINUE: FOR_NB_SCREENS(i) { barstart[i] = trigbar_width[i]; barend[i] = trigbar_width[i]; } icon = Icon_Record; FOR_NB_SCREENS(i) ixpos[i] = xpos[i]+ trig_width[i] - ICON_PLAY_STATE_WIDTH; break; case TRIG_POSTREC: FOR_NB_SCREENS(i) { barstart[i] = (trig_stp_hold == 0) ? 0 : trigbar_width[i] - trigbar_width[i] * (current_tick - trig_lowtime) / trig_stp_hold; barend[i] = trigbar_width[i]; } icon = Icon_Record; FOR_NB_SCREENS(i) ixpos[i] = xpos[i] + trig_width[i] - ICON_PLAY_STATE_WIDTH; break; default: return; } for(i = 0; i < nb_screens; i++) { gui_scrollbar_draw(&screens[i], xpos[i] + ICON_PLAY_STATE_WIDTH + 1, ypos[i] + 1, trigbar_width[i], TRIG_HEIGHT - 2, trigbar_width[i], barstart[i], barend[i], HORIZONTAL); screens[i].mono_bitmap(bitmap_icons_7x8[icon], ixpos[i], ypos[i], ICON_PLAY_STATE_WIDTH, STATUSBAR_HEIGHT); } } #endif int peak_meter_draw_get_btn(int x, int y[], int height, int nb_screens) { int button = BUTTON_NONE; long next_refresh = current_tick; long next_big_refresh = current_tick + HZ / 10; int i; #if (CONFIG_CODEC == SWCODEC) || defined(SIMULATOR) bool highperf = false; #else /* On MAS targets, we need to poll as often as possible in order to not * miss a peak, as the MAS does only provide a quasi-peak. When the disk * is active, it must not draw too much CPU power or a buffer overrun can * happen when saving a recording. As a compromise, poll only once per tick * when the disk is active, otherwise spin around as fast as possible. */ bool highperf = !ata_disk_is_active(); #endif bool dopeek = true; while (TIME_BEFORE(current_tick, next_big_refresh)) { button = get_action(CONTEXT_RECSCREEN, TIMEOUT_NOBLOCK); if (button != BUTTON_NONE) { break; } if (dopeek) { /* Peek only once per refresh when disk is */ peak_meter_peek(); /* spinning, but as often as possible */ dopeek = highperf; /* otherwise. */ yield(); } else { sleep(0); /* Sleep until end of current tick. */ } if (TIME_AFTER(current_tick, next_refresh)) { for(i = 0; i < nb_screens; i++) { peak_meter_screen(&screens[i], x, y[i], height); screens[i].update_rect(x, y[i], screens[i].width - x, height); } next_refresh += HZ / PEAK_METER_FPS; dopeek = true; } } return button; } #ifdef PM_DEBUG static void peak_meter_clear_histogram(void) { int i = 0; for (i = 0; i < TICKS_PER_DRAW_SIZE; i++) { ticks_per_redraw[i] = (unsigned int)0; } for (i = 0; i < PEEKS_PER_DRAW_SIZE; i++) { peeks_per_redraw[i] = (unsigned int)0; } } bool peak_meter_histogram(void) { int i; int btn = BUTTON_NONE; while ((btn & BUTTON_OFF) != BUTTON_OFF ) { unsigned int max = 0; int y = 0; int x = 0; screens[0].clear_display(); for (i = 0; i < PEEKS_PER_DRAW_SIZE; i++) { max = MAX(max, peeks_per_redraw[i]); } for (i = 0; i < PEEKS_PER_DRAW_SIZE; i++) { x = peeks_per_redraw[i] * (LCD_WIDTH - 1)/ max; screens[0].hline(0, x, y + i); } y = PEEKS_PER_DRAW_SIZE + 1; max = 0; for (i = 0; i < TICKS_PER_DRAW_SIZE; i++) { max = MAX(max, ticks_per_redraw[i]); } for (i = 0; i < TICKS_PER_DRAW_SIZE; i++) { x = ticks_per_redraw[i] * (LCD_WIDTH - 1)/ max; screens[0].hline(0, x, y + i); } screens[0].update(); btn = button_get(true); if (btn == BUTTON_PLAY) { peak_meter_clear_histogram(); } } return false; } #endif