/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2015 by Amaury Pouly * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "soc_desc.hpp" #include #include #include #include #include #include #include #include #include #include using namespace soc_desc; #define HEADERGEN_VERSION "3.0.0" /** * Useful stuff */ std::string tolower(const std::string s) { std::string res = s; for(size_t i = 0; i < s.size(); i++) res[i] = ::tolower(res[i]); return res; } std::string toupper(const std::string& s) { std::string res = s; for(size_t i = 0; i < s.size(); i++) res[i] = ::toupper(res[i]); return res; } template< typename T > std::string to_str(const T& v) { std::ostringstream oss; oss << v; return oss.str(); } template< typename T > std::string to_hex(const T& v) { std::ostringstream oss; oss << "0x" << std::hex << v; return oss.str(); } std::string strsubst(const std::string& str, const std::string& pattern, const std::string& subst) { std::string res = str; size_t pos = 0; while((pos = res.find(pattern, pos)) != std::string::npos) { res.replace(pos, pattern.size(), subst); pos += subst.size(); } return res; } void print_context(const error_context_t& ctx) { for(size_t j = 0; j < ctx.count(); j++) { err_t e = ctx.get(j); switch(e.level()) { case err_t::INFO: printf("[INFO]"); break; case err_t::WARNING: printf("[WARN]"); break; case err_t::FATAL: printf("[FATAL]"); break; default: printf("[UNK]"); break; } if(e.location().size() != 0) printf(" %s:", e.location().c_str()); printf(" %s\n", e.message().c_str()); } } void print_inst(node_inst_t inst, bool end = true) { if(!inst.is_root()) { print_inst(inst.parent(), false); printf(".%s", inst.name().c_str()); if(inst.is_indexed()) printf("[%u]", (unsigned)inst.index()); } else { printf("%s", inst.soc().get()->name.c_str()); } if(end) printf("\n"); } void create_dir(const std::string& path) { mkdir(path.c_str(), 0755); } void create_alldir(const std::string& prefix, const std::string& path) { size_t p = path.find('/'); if(p == std::string::npos) return; create_dir(prefix + "/" + path.substr(0, p)); create_alldir(prefix + "/" + path.substr(0, p), path.substr(p + 1)); } /** * Printer utils */ struct limited_column_context_t { limited_column_context_t(size_t nr_col = 80) :m_nr_col(nr_col), m_prevent_wordcut(true) {} void set_prefix(const std::string& prefix) { m_prefix = prefix; } void add(const std::string& text) { for(size_t i = 0; i < text.size();) { size_t offset = 0; if(m_cur_line.size() == 0) m_cur_line = m_prefix; size_t len = std::min(text.size() - i, m_nr_col - m_cur_line.size()); // prevent word cut if(m_prevent_wordcut && !isspace(text[i + len - 1]) && i + len < text.size() && !isspace(text[i + len])) { size_t pos = text.find_last_of(" \t\n\v\r\f", i + len - 1); if(pos == std::string::npos || pos < i) len = 0; else len = pos - i + 1; } size_t pos = text.find('\n', i); if(pos != std::string::npos && pos <= i + len) { offset = 1; len = pos - i; } m_cur_line += text.substr(i, len); // len == 0 means we need a new line if(m_cur_line.size() == m_nr_col || len == 0) { m_lines.push_back(m_cur_line); m_cur_line = ""; } i += len + offset; } } std::ostream& print(std::ostream& oss) { for(size_t i = 0; i < m_lines.size(); i++) oss << m_lines[i] << "\n"; if(m_cur_line.size() != 0) oss << m_cur_line << "\n"; return oss; } std::string str() { std::ostringstream oss; print(oss); return oss.str(); } std::vector< std::string > m_lines; std::string m_cur_line; std::string m_prefix; size_t m_nr_col; bool m_prevent_wordcut; }; struct define_align_context_t { define_align_context_t():m_max_name(0) {} void add(const std::string& name, const std::string& val) { m_lines.push_back(std::make_pair(name, val)); m_max_name = std::max(m_max_name, name.size()); } void add_raw(const std::string& line) { m_lines.push_back(std::make_pair("", line)); } std::ostream& print(std::ostream& oss) { std::string define = "#define "; size_t align = define.size() + m_max_name + 1; align = ((align + 3) / 4) * 4; for(size_t i = 0; i < m_lines.size(); i++) { std::string name = m_lines[i].first; // raw entry ? if(name.size() != 0) { name.insert(name.end(), align - define.size() - name.size(), ' '); oss << define << name << m_lines[i].second << "\n"; } else oss << m_lines[i].second; } return oss; } size_t m_max_name; std::vector< std::pair< std::string, std::string > > m_lines; }; limited_column_context_t print_description(const std::string& desc, const std::string& prefix) { limited_column_context_t ctx; if(desc.size() == 0) return ctx; ctx.set_prefix(prefix); ctx.add(desc); return ctx; } void print_copyright(std::ostream& fout, const std::vector< soc_ref_t >& socs) { fout << "\ /***************************************************************************\n\ * __________ __ ___.\n\ * Open \\______ \\ ____ ____ | | _\\_ |__ _______ ___\n\ * Source | _// _ \\_/ ___\\| |/ /| __ \\ / _ \\ \\/ /\n\ * Jukebox | | ( <_> ) \\___| < | \\_\\ ( <_> > < <\n\ * Firmware |____|_ /\\____/ \\___ >__|_ \\|___ /\\____/__/\\_ \\\n\ * \\/ \\/ \\/ \\/ \\/\n\ * This file was automatically generated by headergen, DO NOT EDIT it.\n\ * headergen version: " HEADERGEN_VERSION "\n"; for(size_t i = 0; i < socs.size(); i++) { soc_t& s = *socs[i].get(); if(!s.version.empty()) fout << " * " << s.name << " version: " << s.version << "\n"; if(!s.author.empty()) { fout << " * " << s.name << " authors:"; for(size_t j = 0; j < s.author.size(); j++) { if(j != 0) fout << ","; fout << " " << s.author[j]; } fout << "\n"; } } fout << "\ *\n\ * Copyright (C) 2015 by the authors\n\ *\n\ * This program is free software; you can redistribute it and/or\n\ * modify it under the terms of the GNU General Public License\n\ * as published by the Free Software Foundation; either version 2\n\ * of the License, or (at your option) any later version.\n\ *\n\ * This software is distributed on an \"AS IS\" basis, WITHOUT WARRANTY OF ANY\n\ * KIND, either express or implied.\n\ *\n\ ****************************************************************************/\n"; } void print_guard(std::ostream& fout, const std::string& guard, bool begin) { if(begin) { fout << "#ifndef " << guard << "\n"; fout << "#define " << guard << "\n"; } else fout << "\n#endif /* " << guard << "*/\n"; } /** * Generator interface */ class abstract_generator { public: /// set output directory (default is current directory) void set_output_dir(const std::string& dir); /// add a SoC to the list void add_soc(const soc_t& soc); /// generate headers, returns true on success virtual bool generate(error_context_t& ctx) = 0; protected: std::vector< soc_t > m_soc; /// list of socs std::string m_outdir; /// output directory path }; void abstract_generator::set_output_dir(const std::string& dir) { m_outdir = dir; } void abstract_generator::add_soc(const soc_t& soc) { m_soc.push_back(soc); } /** * Common Generator * * This generator is an abstract class which can generate register headers while * giving the user a lot of control on how the macros are named and generated. * * The first thing the generator will want to know is whether you want to generate * selector headers or not. Selector headers are used when generating headers from * several SoCs: the selector will include the right header based on some user-defined * logic. For example, imagine you have two socs vsoc1000 and vsoc2000, you could * generate the following files and directories: * * regs/ * regs-vsoc.h [selector] * vsoc1000/ * regs-vsoc.h [vsoc1000 header] * vsoc2000/ * regs-vsoc.h [vsoc2000 header] * * The generator will call has_selectors() to determine if it should generate * selector files or not. If it returns true, it will call selector_soc_dir() * for each of the socs to know in which subdirectory it should include the headers. * The generator will create one macro per soc, which name is given by * selector_soc_macro() and it will finally include the select header YOU will * have to write, which name is given by selector_include_header() * The selector file will typically look like this: * * [regs-vsoc.h] * #define VSOC1000_INCLUDE "vsoc1000/regs-vsoc.h" // returned by selector_soc_macro(vsoc1000) * #define VSOC2000_INCLUDE "vsoc2000/regs-vsoc.h" // returned by selector_soc_macro(vsoc2000) * #include "regs-select.h" // returned by selector_include_header() * * NOTE: it may happen that some header only exists in some soc (for example * in vsoc2000 but not in vsoc1000), in this case the macros will only be * generated for the socs in which it exists. * NOTE: and this is *VERY* important: the register selector file MUST NOT * be protected by include guards since it will included several times, once * for each register file. * * The generator will create one set of files per soc. For each register, it * will call register_header() to determine in which file you want the register * to be put. You can put everything in one file, or one register per file, * that's entirely up to you. Here is an example: * * register_header(vsoc1000.cpu.ctrl) -> "regs-cpu.h" * register_header(vsoc1000.cpu.reset) -> "regs-cpu.h" * register_header(vsoc1000.cop.ctrl) -> "regs-cop.h" * register_header(vsoc1000.cop.magic) -> "regs-magic.h" * * regs-cpu.h: * vsoc1000.cpu.ctrl * vsoc1000.cpu.reset * regs-cop.h: * vsoc1000.cop.ctrl * regs-magic.h * vsoc1000.cop.magic * * Once the list of register files is determine, it will begin generating each * file. A register header is always protected from double inclusion by an * include guard. You can tweak the name by redefining header_include_guard() * or keep the default behaviour which generates something like this: * * #ifndef __HEADERGEN_REGS_CPU_H__ * #define __HEADERGEN_REGS_CPU_H__ * ... * #endif * * NOTE: the tool will also generate a copyright header which contains the Rockbox * logo, a list of soc names and version, and authors in the description file. * This part cannot be customised at the moment. * * In order to list all registers, the generator will recursively enumerate all * nodes and instances. When a instance is of RANGE type, the generator can generate * two types of macros: * - one for each instance * - one with an index parameter * The generator will ask you if you want to generate one for each instance by * calling register_flag(RF_GENERATE_ALL_INST) and if you want to generate a * parametrized one by calling register_flag(RF_GENERATE_PARAM_INST). You can * generate either one or both (or none). * * register_flag(vsoc.int.enable, RF_GENERATE_ALL_INST) -> true * => will generate vsoc.int.enable[1], vsoc.int.enable[2], ... * register_flag(vsoc.int.enable, RF_GENERATE_PARAM_INST) -> true * => will generate vsoc.int.enable[n] * * This process will give a list of pseudo-instances: these are register instances * where some ranges have a given index and some ranges are parametric. The generator * will create one set of macro per pseudo-instance. The exact list of macros * generated is the following: * - ADDR: this macro will contain the address of the register (possibly parametrized) * - TYPE: this macro will contain the type of the register (width, access) * - NAME: this macro expands to the name of the register (useful for fields and other variants) * - INDEX: this macro expands to the index of the register (or empty is not indexed) * - VAR: this macros expands to a fake variable that can be read/written * - for each field F: * - BP: this macro contains the bit position of F * - BM: this macro contains the bit mask of F * - for each field enum value V: * - BV: this macro contains the value of V (not shifted to the position) * - BF: this macro generate the mask for a value: (((v) << pos) & mask) * - BFV: same as BF but the parameter is the name of an enum value * - BFM: this macro is like BF but ignores value returns mask * - BFMV: like BFV but returns masks like BFM * The generator will also create the following macros for each variant: * - ADDR: same as ADDR but with offset * - TYPE: same as TYPE but depends on variant * - NAME: same as NAME (ie same fields) * - INDEX: same as INDEX * * In order to generate the macro name, the generate relies on you providing detailled * information. Given an pseudo-instance I and a macro type MT, the generator * will always call type_xfix(MT) to know which prefix/suffix you want for the * macro and generate names of the form: * type_xfix(MT, true)basename(I)type_xfix(MT, false) * The basename() functions will call inst_prefix() for each each instance on the * pseudo-instance path, and then instance_name() to know the name. You can * (and must) create a different name for parametrised instances. The basename * looks like this for pseudo-inst i1.i2.i3....in: * instance_name(i1)inst_prefix(i1.i2)instance_name(i1.i2)...inst_name(i1.i2...in) * For field macros, the process is the same with an extra prefix returned by * field_prefix() and you can select the field name with field_name() to obtain * for example for field F in I: * type_xfix(MT,true)basename(I)field_prefix()field_name(I.F)type_xfix(MT,false) * For field enum macros, there is an extra prefix given by enum_prefix() * and the enum name is given by enum_name() * For variants, the basename is surrounded by prefix/suffix given by variant_xfix(): * variant_xfix(var, true)basename(I)variant_xfix(var, false) * * Let's illustrate this on example * type_xfix(MT_REG_ADDR, true) -> "RA_x" * type_xfix(MT_REG_ADDR, false) -> "x_AR" * instance_name(vsoc1000.cpu) -> "CPU" * inst_prefix(vsoc1000.cpu.ctrl) -> "_" * instance_name(vsoc1000.cpu.ctrl) -> "CTRL" * => RA_xCPU_CTRLx_AR * type_xfix(MT_FIELD_BF, true) -> "BF_" * type_xfix(MT_FIELD_BF, false) -> "" * field_prefix() -> "__" * field_name(vsoc1000.cpu.ctrl.speed) -> "SPEED" * => BF_CPU_CTRL__SPEED * variant_xfix("set", true) -> "VAR_" * variant_xfix("set", false) -> "_SET" * => HW_VAR_CPU_CTRL_SET * * The generator will also create a macro header file, it will call macro_header() * once to know the name of this file. * The macro header contains useful macro to read, write and manipulate registers * and fields. You must implement the macro_header_macro() method to let the * generator know the name of each macro. Note that the macro header macros * depend on the specific naming of the other macros, which are given by * type_xfix() and field_prefix() most notably. The exact list of generated macros * is the following: * - BF_OR: field ORing (see details below) * - BF_OM: mask ORing (same as BF_OR but except field value is the mask) * * The BF_OR macro is one of the most important and useful macro. It allows for * compact ORing of register field, both for immediate values or value names. * For this macro to work properly, there are constraints that the generator * must satisfy. Notably, type_xfix(MT_FIELD_BF, true) == type_xfix(MT_FIELD_BFV, true) * and similarly for MT_FIELD_BM * The general format is as follows: * * BF_OR(, , , ...) expands to BF(,) | BF(,) | ... * BM_OR(, , , ...) expands to BM(,) | BM(,) | ... * * Typical usages of this macro will be of the form: * * BF_OR(, (), (), (), ...) * BM_OR(, , , , ...) * * * Let's illustrate this on example. * type_xfix(MT_FIELD_BF, true) -> "BF_" * type_xfix(MT_FIELD_BFV, true) -> "BF_" * type_xfix(MT_FIELD_BF, false) -> "BF_" * type_xfix(MT_FIELD_BF, false) -> "_V" * field_prefix() -> "__" * enum_prefix() -> "___" * macro_header_macro(MMM_BF_OR) -> "BF_OR" * => BF_OR(, , , ...) expands to BF___ | BF___ | ... * => BF_OR(CPU_CTRL, DIVIDER(1), PRIO_V(HIGH), SPEED(100)) * expands to * BF_CPU_CTRL__DIVIDER(1) | BF_CPU_CTRL__DIVIDER_V(HIGH) | BF_CPU_CTRL__SPEED(1000) * expands to * BF_CPU_CTRL__DIVIDER(1) | BF_CPU_CTRL__DIVIDER(BV_CPU_CTRL__DIVIDER___HIGH) | BF_CPU_CTRL__SPEED(1000) * and so on... * */ class common_generator : public abstract_generator { struct pseudo_node_inst_t { node_inst_t inst; std::vector< bool > parametric; }; public: virtual bool generate(error_context_t& ctx); private: void gather_files(const pseudo_node_inst_t& inst, const std::string& prefix, std::map< std::string, std::vector< pseudo_node_inst_t > >& map); void print_inst(const pseudo_node_inst_t& inst, bool end = true); // debug std::vector< soc_ref_t > list_socs(const std::vector< pseudo_node_inst_t >& list); bool generate_register(std::ostream& os, const pseudo_node_inst_t& reg); bool generate_macro_header(error_context_t& ectx); protected: /// return true to generate selector files virtual bool has_selectors() const = 0; /// [selector only] return the directory name for the soc virtual std::string selector_soc_dir(const soc_ref_t& ref) const = 0; /// [selector only] return the header to include to select betweens socs virtual std::string selector_include_header() const = 0; /// [selector only] return the name of the macro to emit for each soc virtual std::string selector_soc_macro(const soc_ref_t& ref) const = 0; /// return the relative filename in which to put the register virtual std::string register_header(const node_inst_t& inst) const = 0; /// return the include guard for a file (default does its best) virtual std::string header_include_guard(const std::string& filename); /// return the name of the macros header to generate virtual std::string macro_header() const = 0; /// macro from macro header enum macro_name_t { MN_REG_READ, /// register read MN_FIELD_READ, /// register's field read MN_FIELD_READX, /// register value field read MN_REG_WRITE, /// register write MN_REG_SET, /// register set MN_REG_CLEAR, /// register clear MN_REG_CLEAR_SET, /// register clear then set MN_FIELD_WRITE, /// register's field(s) write MN_FIELD_WRITEX, /// register's field(s) write MN_FIELD_OVERWRITE, /// register full write MN_FIELD_SET, /// register's field(s) set MN_FIELD_CLEAR, /// register's field(s) clear MN_FIELD_TOG, /// register's field(s) toggle MN_FIELD_CLEAR_SET, /// register's field(s) clear then set MN_FIELD_OR, /// field ORing MN_FIELD_OR_MASK, /// field ORing but in fact mask ORing MN_MASK_OR, /// mask ORing MN_GET_VARIANT, /// get register variant MN_VARIABLE, /// return variable-like for register }; /// return macro name defined in the macro header virtual std::string macro_name(macro_name_t macro) const = 0; /// flag to consider enum register_flag_t { RF_GENERATE_ALL_INST, /// for range instance, generate one macro set per instance ? RF_GENERATE_PARAM_INST, /// for range instance, generate a parametrised macro set ? }; /** tweak instance generaton and its children * NOTE: for range flags, although the instance will be numbered, the index is * to be ignored */ virtual bool register_flag(const node_inst_t& inst, register_flag_t flag) const = 0; /// prefix/suffix type enum macro_type_t { MT_REG_ADDR, /// register address MT_REG_TYPE, /// register type MT_REG_NAME, /// register prefix for fields MT_REG_INDEX, /// register index/indices MT_REG_VAR, /// variable-like macro MT_FIELD_BP, /// bit position of a field MT_FIELD_BM, /// bit mask of a field MT_FIELD_BV, /// bit value of a field enum MT_FIELD_BF, /// bit field value: (v << pos) & mask MT_FIELD_BFM, /// ignore value and return mask MT_FIELD_BFV, /// bit field enum value: (enum_v << pos) & mask MT_FIELD_BFMV, /// ignore value and return mask MT_IO_TYPE, /// register io type }; /// register access types enum access_type_t { AT_RO, /// read-only: write are disallowed AT_RW, /// read-write: read/writes are allowed, field write by generated a RMW AT_WO, /// write-only: read are disallowed, field write will set other fields to 0 }; /// register operation enum register_op_t { RO_VAR, /// variable-like RO_READ, /// read RO_WRITE, /// write RO_RMW, /// read-modify-write }; /// return type prefix/suffix for register macro virtual std::string type_xfix(macro_type_t type, bool prefix) const = 0; /// return variant prefix/suffix virtual std::string variant_xfix(const std::string& variant, bool prefix) const = 0; /// return instance prefix in macro name virtual std::string inst_prefix(const node_inst_t& inst) const = 0; /// return field prefix in field macro names virtual std::string field_prefix() const = 0; /// return field enum prefix in field macro names virtual std::string enum_prefix() const = 0; /// return the field enum name in field macro names virtual std::string enum_name(const enum_ref_t& enum_) const = 0; /// return instance name in macro, default is instance name then index if any virtual std::string instance_name(const node_inst_t& inst, bool parametric) const; /// return field name in macro, default is field name virtual std::string field_name(const field_ref_t& field) const; /// return the complete macro name with prefix, default uses all the other functions virtual std::string macro_basename(const pseudo_node_inst_t& inst) const; /// return the complete macro name with prefix, default uses macro_basename() virtual std::string macro_basename(const pseudo_node_inst_t& inst, macro_type_t type) const; /// generate address string for a register instance, and fill the parametric /// argument list, default does it the obvious way and parameters are _n1, _n2, ... virtual std::string register_address(const pseudo_node_inst_t& reg, std::vector< std::string >& params) const; /// return access type for a variant and a given register access /// NOTE variant with the unspecified access type will be promoted to register access virtual access_type_t register_access(const std::string& variant, access_t access) const = 0; /// return register type name virtual std::string register_type_name(access_type_t access, int width) const; /// get register operation name virtual std::string register_op_name(register_op_t op) const; /// register operation prefix virtual std::string register_op_prefix() const; /// generate a macro pasting that is safe even when macro is empty /// ie: safe_macro_paste(false, "A") -> ##A /// ie: safe_macro_paste(false, "A") -> std::string safe_macro_paste(bool left, const std::string& macro) const; /// generate SCT macros using register variant ? virtual bool has_sct() const = 0; /// return the associated SCT variant (only if RF_GENERATE_SCT) /// empty means don't generate virtual std::string sct_variant(macro_name_t name) const = 0; }; std::string common_generator::instance_name(const node_inst_t& inst, bool parametric) const { std::ostringstream oss; oss << inst.name(); if(inst.is_indexed() && !parametric) oss << inst.index(); return oss.str(); } std::string common_generator::field_name(const field_ref_t& field) const { return field.get()->name; } std::string common_generator::macro_basename(const pseudo_node_inst_t& inst_) const { pseudo_node_inst_t inst = inst_; std::string str; while(!inst.inst.is_root()) { str = instance_name(inst.inst, inst.parametric.back()) + str; inst.inst = inst.inst.parent(); inst.parametric.pop_back(); if(!inst.inst.is_root()) str = inst_prefix(inst.inst) + str; } return str; } std::string common_generator::macro_basename(const pseudo_node_inst_t& inst, macro_type_t type) const { return type_xfix(type, true) + macro_basename(inst); } void common_generator::print_inst(const pseudo_node_inst_t& inst, bool end) { if(!inst.inst.is_root()) { pseudo_node_inst_t p = inst; p.inst = p.inst.parent(); p.parametric.pop_back(); print_inst(p, false); printf(".%s", inst.inst.name().c_str()); if(inst.inst.is_indexed()) { if(inst.parametric.back()) printf("[]"); else printf("[%u]", (unsigned)inst.inst.index()); } } else { printf("%s", inst.inst.soc().get()->name.c_str()); } if(end) printf("\n"); } std::string common_generator::register_type_name(access_type_t access, int width) const { std::ostringstream oss; oss << width << "_"; switch(access) { case AT_RO: oss << "RO"; break; case AT_RW: oss << "RW"; break; case AT_WO: oss << "WO"; break; default: oss << "error"; break; } return type_xfix(MT_IO_TYPE, true) + oss.str() + type_xfix(MT_IO_TYPE, false); } std::string common_generator::register_op_name(register_op_t op) const { switch(op) { case RO_VAR: return "VAR"; case RO_READ: return "RD"; case RO_WRITE: return "WR"; case RO_RMW: return "RMW"; default: return ""; } } std::string common_generator::register_op_prefix() const { return "_"; } std::string common_generator::safe_macro_paste(bool left, const std::string& macro) const { if(macro.size() == 0) return ""; return left ? "##" + macro : macro + "##"; } void common_generator::gather_files(const pseudo_node_inst_t& inst, const std::string& prefix, std::map< std::string, std::vector< pseudo_node_inst_t > >& map) { if(inst.inst.node().reg().valid()) map[prefix + register_header(inst.inst)].push_back(inst); // if asked, generate one for each instance std::vector< node_inst_t > list = inst.inst.children(); for(size_t i = 0; i < list.size(); i++) { pseudo_node_inst_t c = inst; c.inst = list[i]; if(!list[i].is_indexed() || register_flag(inst.inst, RF_GENERATE_ALL_INST)) { c.parametric.push_back(false); gather_files(c, prefix, map); c.parametric.pop_back(); } if(list[i].is_indexed() && register_flag(list[i], RF_GENERATE_PARAM_INST)) { bool first = list[i].index() == list[i].get()->range.first; if(first) { c.parametric.push_back(true); gather_files(c, prefix, map); } } } } std::vector< soc_ref_t > common_generator::list_socs(const std::vector< pseudo_node_inst_t >& list) { std::set< soc_ref_t > socs; std::vector< pseudo_node_inst_t >::const_iterator it = list.begin(); for(; it != list.end(); ++it) socs.insert(it->inst.soc()); std::vector< soc_ref_t > soc_list; for(std::set< soc_ref_t >::iterator jt = socs.begin(); jt != socs.end(); ++jt) soc_list.push_back(*jt); return soc_list; } std::string common_generator::header_include_guard(const std::string& filename) { std::string guard = "__HEADERGEN_" + toupper(filename) + "__"; for(size_t i = 0; i < guard.size(); i++) if(!isalnum(guard[i])) guard[i] = '_'; return guard; } std::string common_generator::register_address(const pseudo_node_inst_t& reg, std::vector< std::string >& params) const { std::ostringstream oss; unsigned counter = 1; oss << "("; for(size_t i = 0; i < reg.parametric.size(); i++) { if(i != 0) oss << " + "; node_inst_t ninst = reg.inst.parent(reg.parametric.size() - i - 1); instance_t& inst = *ninst.get(); if(reg.parametric[i]) params.push_back("_n" + to_str(counter++)); if(inst.type == instance_t::RANGE) { if(inst.range.type == range_t::STRIDE) { if(reg.parametric[i]) { oss << to_hex(inst.range.base) << " + "; oss << "(" << params.back() << ") * " << to_hex(inst.range.stride); } else oss << to_hex(inst.range.base + ninst.index() * inst.range.stride); } else if(inst.range.type == range_t::FORMULA) { if(!reg.parametric[i]) { soc_word_t res; std::map< std::string, soc_word_t > vars; vars[inst.range.variable] = ninst.index(); error_context_t ctx; if(!evaluate_formula(inst.range.formula, vars, res, "", ctx)) oss << "#error cannot evaluate formula"; else oss << to_hex(res); } else oss << strsubst(inst.range.formula, inst.range.variable, "(" + params.back() + ")"); } else if(inst.range.type == range_t::LIST) { if(reg.parametric[i]) { oss << "("; for(size_t j = 0; j + 1 < inst.range.list.size(); j++) { oss << "(" << params.back() << ") == " << (inst.range.first + j) << " ? " << to_hex(inst.range.list[j]) << " : "; } oss << to_hex(inst.range.list.back()) << ")"; } else oss << to_hex(inst.range.list[ninst.index() - inst.range.first]); } else { return "#error unknown range type"; } } else if(inst.type == instance_t::SINGLE) oss << to_hex(inst.addr); else return "#error unknown instance type"; } oss << ")"; return oss.str(); } bool common_generator::generate_register(std::ostream& os, const pseudo_node_inst_t& reg) { os << "\n"; define_align_context_t ctx; std::vector< std::string > params; std::string addr = register_address(reg, params); std::string basename = macro_basename(reg); std::string param_str; std::string param_str_no_paren; std::string param_str_no_paren_comma; if(params.size() > 0) { for(size_t i = 0; i < params.size(); i++) param_str_no_paren += (i == 0 ? "" : ",") + params[i]; param_str = "(" + param_str_no_paren + ")"; param_str_no_paren_comma = param_str_no_paren + ","; } std::string bp_prefix = macro_basename(reg, MT_FIELD_BP) + field_prefix(); std::string bm_prefix = macro_basename(reg, MT_FIELD_BM) + field_prefix(); std::string bf_prefix = macro_basename(reg, MT_FIELD_BF) + field_prefix(); std::string bfm_prefix = macro_basename(reg, MT_FIELD_BFM) + field_prefix(); std::string bfv_prefix = macro_basename(reg, MT_FIELD_BFV) + field_prefix(); std::string bfmv_prefix = macro_basename(reg, MT_FIELD_BFMV) + field_prefix(); register_ref_t regr = reg.inst.node().reg(); /* handle register the same way as variants */ std::vector< std::string > var_prefix; std::vector< std::string > var_suffix; std::vector< std::string > var_addr; std::vector< access_type_t > var_access; var_prefix.push_back(""); var_suffix.push_back(""); var_access.push_back(register_access("", regr.get()->access)); var_addr.push_back(addr); std::vector< variant_ref_t > variants = regr.variants(); for(size_t i = 0; i < variants.size(); i++) { var_prefix.push_back(variant_xfix(variants[i].type(), true)); var_suffix.push_back(variant_xfix(variants[i].type(), false)); var_addr.push_back("(" + type_xfix(MT_REG_ADDR, true) + basename + type_xfix(MT_REG_ADDR, false) + param_str + " + " + to_hex(variants[i].offset()) + ")"); access_t acc = variants[i].get()->access; if(acc == UNSPECIFIED) acc = regr.get()->access; // fallback to register access var_access.push_back(register_access(variants[i].type(), acc)); } for(size_t i = 0; i < var_prefix.size(); i++) { std::string var_basename = var_prefix[i] + basename + var_suffix[i]; std::string macro_var = type_xfix(MT_REG_VAR, true) + var_basename + type_xfix(MT_REG_VAR, false); std::string macro_addr = type_xfix(MT_REG_ADDR, true) + var_basename + type_xfix(MT_REG_ADDR, false); std::string macro_type = type_xfix(MT_REG_TYPE, true) + var_basename + type_xfix(MT_REG_TYPE, false); std::string macro_prefix = type_xfix(MT_REG_NAME, true) + var_basename + type_xfix(MT_REG_NAME, false); std::string macro_index = type_xfix(MT_REG_INDEX, true) + var_basename + type_xfix(MT_REG_INDEX, false); /* print VAR macro */ ctx.add(macro_var + param_str, macro_name(MN_VARIABLE) + "(" + var_basename + param_str + ")"); /* print ADDR macro */ ctx.add(macro_addr + param_str, var_addr[i]); /* print TYPE macro */ ctx.add(macro_type + param_str, register_type_name(var_access[i], regr.get()->width)); /* print PREFIX macro */ ctx.add(macro_prefix + param_str, basename); /* print INDEX macro */ ctx.add(macro_index + param_str, param_str); } /* print fields */ std::vector< field_ref_t > fields = regr.fields(); for(size_t i = 0; i < fields.size(); i++) { /* print BP macro: pos */ std::string fname = field_name(fields[i]); ctx.add(bp_prefix + fname + type_xfix(MT_FIELD_BP, false), to_str(fields[i].get()->pos)); /* print BM macro: mask */ ctx.add(bm_prefix + fname + type_xfix(MT_FIELD_BM, false), to_hex(fields[i].get()->bitmask())); std::vector< enum_ref_t > enums = fields[i].enums(); std::string bv_prefix = macro_basename(reg, MT_FIELD_BV) + field_prefix() + fname + enum_prefix(); /* print BV macros: enum_v */ for(size_t j = 0; j < enums.size(); j++) ctx.add(bv_prefix + enum_name(enums[j]) + type_xfix(MT_FIELD_BV, false), to_hex(enums[j].get()->value)); /* print BF macro: (((v) & mask) << pos) */ ctx.add(bf_prefix + fname + type_xfix(MT_FIELD_BF, false) + "(v)", "(((v) & " + to_hex(fields[i].get()->unshifted_bitmask()) + ") << " + to_str(fields[i].get()->pos) + ")"); /* print BFM macro: masl */ ctx.add(bfm_prefix + fname + type_xfix(MT_FIELD_BFM, false) + "(v)", bm_prefix + fname + type_xfix(MT_FIELD_BM, false)); /* print BFV macro: ((enum_v) << pos) & mask) */ ctx.add(bfv_prefix + fname + type_xfix(MT_FIELD_BFV, false) + "(e)", bf_prefix + fname + type_xfix(MT_FIELD_BF, false) + "(" + bv_prefix + "##e)"); /* print BFMV macro: masl */ ctx.add(bfmv_prefix + fname + type_xfix(MT_FIELD_BFMV, false) + "(v)", bm_prefix + fname + type_xfix(MT_FIELD_BM, false)); } ctx.print(os); return true; } bool common_generator::generate_macro_header(error_context_t& ectx) { std::ofstream fout((m_outdir + "/" + macro_header()).c_str()); if(!fout) { printf("Cannot create '%s'\n", (m_outdir + "/" + macro_header()).c_str()); return false; } print_copyright(fout, std::vector< soc_ref_t >()); std::string guard = header_include_guard(macro_header()); print_guard(fout, guard, true); fout << "\n"; /* ensure that types uintXX_t are defined */ fout << "#include \n\n"; /* print variadic OR macros: * __VAR_OR1(prefix, suffix) expands to prefix##suffix * and more n>=2, using multiple layers of macros: * __VAR_ORn(pre, s01, s02, ..., sn) expands to pre##s01 | .. | pre##sn */ std::string var_or = "__VAR_OR"; const int MAX_N = 13; fout << "#define " << var_or << "1(prefix, suffix) \\\n"; fout << " (prefix##suffix)\n"; for(int n = 2; n <= MAX_N; n++) { fout << "#define " << var_or << n << "(pre"; for(int j = 1; j <= n; j++) fout << ", s" << j; fout << ") \\\n"; /* dichotmoty: expands ORn using ORj and ORk where j=n/2 and k=n-j */ int half = n / 2; fout << " (" << var_or << half << "(pre"; for(int j = 1; j <= half; j++) fout << ", s" << j; fout << ") | " << var_or << (n - half) << "(pre"; for(int j = half + 1; j <= n; j++) fout << ", s" << j; fout << "))\n"; } fout << "\n"; /* print macro to compute number of arguments */ std::string var_nargs = "__VAR_NARGS"; fout << "#define " << var_nargs << "(...) " << var_nargs << "_(__VA_ARGS__"; for(int i = MAX_N; i >= 1; i--) fout << ", " << i; fout << ")\n"; fout << "#define " << var_nargs << "_("; for(int i = 1; i <= MAX_N; i++) fout << "_" << i << ", "; fout << "N, ...) N\n\n"; /* print macro for variadic register macros */ std::string var_expand = "__VAR_EXPAND"; fout << "#define " << var_expand << "(macro, prefix, ...) " << var_expand << "_(macro, " << var_nargs << "(__VA_ARGS__), prefix, __VA_ARGS__)\n"; fout << "#define " << var_expand << "_(macro, cnt, prefix, ...) " << var_expand << "__(macro, cnt, prefix, __VA_ARGS__)\n"; fout << "#define " << var_expand << "__(macro, cnt, prefix, ...) " << var_expand << "___(macro##cnt, prefix, __VA_ARGS__)\n"; fout << "#define " << var_expand << "___(macro, prefix, ...) " << "macro(prefix, __VA_ARGS__)\n\n"; /* print type macros */ define_align_context_t ctx; access_type_t at[3] = { AT_RO, AT_RW, AT_WO }; int width[3] = { 8, 16, 32 }; for(int i = 0; i < 3; i++) { for(int j = 0; j < 3; j++) { std::string io_type = register_type_name(at[i], width[j]); ctx.add(io_type + "(op, name, ...)", io_type + register_op_prefix() + "##op(name, __VA_ARGS__)"); // read std::ostringstream oss; std::string reg_addr = safe_macro_paste(false, type_xfix(MT_REG_ADDR, true)) + "name" + safe_macro_paste(true, type_xfix(MT_REG_ADDR, false)); if(at[i] == AT_RO) oss << "(*(const volatile uint" << width[j] << "_t *)(" << reg_addr << "))"; else if(at[i] == AT_RW) oss << "(*(volatile uint" << width[j] << "_t *)(" << reg_addr << "))"; else oss << "({_Static_assert(0, #name \" is write-only\"); 0;})"; ctx.add(io_type + register_op_prefix() + register_op_name(RO_READ) + "(name, ...)", oss.str()); // write oss.str(""); if(at[i] != AT_RO) oss << "(*(volatile uint" << width[j] << "_t *)(" << reg_addr << ")) = (val)"; else oss << "_Static_assert(0, #name \" is read-only\")"; ctx.add(io_type + register_op_prefix() + register_op_name(RO_WRITE) + "(name, val)", oss.str()); // read-modify-write oss.str(""); if(at[i] == AT_RW) { oss << io_type << register_op_prefix() << register_op_name(RO_WRITE) + "(name, "; oss << "(" << io_type << register_op_prefix() << register_op_name(RO_READ) + "(name) & (vand))"; oss << " | (vor))"; } else if(at[i] == AT_WO) oss << io_type << register_op_prefix() << register_op_name(RO_WRITE) + "(name, vor)"; else oss << "_Static_assert(0, #name \" is read-only\")"; ctx.add(io_type + register_op_prefix() + register_op_name(RO_RMW) + "(name, vand, vor)", oss.str()); // variable oss.str(""); if(at[i] == AT_RO) oss << "(*(const volatile uint" << width[j] << "_t *)(" << reg_addr << "))"; else oss << "(*(volatile uint" << width[j] << "_t *)(" << reg_addr << "))"; ctx.add(io_type + register_op_prefix() + register_op_name(RO_VAR) + "(name, ...)", oss.str()); ctx.add_raw("\n"); } } ctx.print(fout); fout << "\n"; /* print GET_VARIANT macro */ std::string get_var = macro_name(MN_GET_VARIANT); fout << "/** " << get_var << "\n"; fout << " *\n"; fout << " * usage: " << get_var << "(register, variant_prefix, variant_postfix)\n"; fout << " *\n"; fout << " * effect: expands to register variant given as argument\n"; fout << " * note: internal usage\n"; fout << " * note: register must be fully qualified if indexed\n"; fout << " *\n"; fout << " * example: " << get_var << "(ICOLL_CTRL, , _SET)\n"; fout << " * example: " << get_var << "(ICOLL_ENABLE(3), , _CLR)\n"; fout << " */\n"; fout << "#define " << get_var << "(name, varp, vars) " << get_var << "_(" << safe_macro_paste(false, type_xfix(MT_REG_NAME, true)) << "name" << safe_macro_paste(true, type_xfix(MT_REG_NAME, false)) << ", " << safe_macro_paste(false, type_xfix(MT_REG_INDEX, true)) << "name" << safe_macro_paste(true, type_xfix(MT_REG_INDEX, false)) << ", varp, vars)\n"; fout << "#define " << get_var << "_(...) " << get_var << "__(__VA_ARGS__)\n"; fout << "#define " << get_var << "__(name, index, varp, vars) " << "varp##name##vars index\n"; fout << "\n"; /* print BF_OR macro */ std::string bf_or = macro_name(MN_FIELD_OR); fout << "/** " << bf_or << "\n"; fout << " *\n"; fout << " * usage: " << bf_or << "(register, f1(v1), f2(v2), ...)\n"; fout << " *\n"; fout << " * effect: expands to the register value where each field fi has value vi.\n"; fout << " * Informally: reg_f1(v1) | reg_f2(v2) | ...\n"; fout << " * note: enumerated values for fields can be obtained by using the syntax:\n"; fout << " * f1" << type_xfix(MT_FIELD_BFV, false) << "(name)\n"; fout << " *\n"; fout << " * example: " << bf_or << "(ICOLL_CTRL, SFTRST(1), CLKGATE(0), TZ_LOCK_V(UNLOCKED))\n"; fout << " */\n"; fout << "#define " << bf_or << "(reg, ...) " << var_expand << "(" << var_or << ", " << type_xfix(MT_FIELD_BF, true) << "##reg##" << field_prefix() << ", __VA_ARGS__)\n"; fout << "\n"; /* print BF_OR macro */ std::string bfm_or = macro_name(MN_FIELD_OR_MASK); fout << "/** " << bfm_or << "\n"; fout << " *\n"; fout << " * usage: " << bfm_or << "(register, f1(v1), f2(v2), ...)\n"; fout << " *\n"; fout << " * effect: expands to the register value where each field fi has maximum value (vi is ignored).\n"; fout << " * note: internal usage\n"; fout << " *\n"; fout << " * example: " << bfm_or << "(ICOLL_CTRL, SFTRST(1), CLKGATE(0), TZ_LOCK_V(UNLOCKED))\n"; fout << " */\n"; fout << "#define " << bfm_or << "(reg, ...) " << var_expand << "(" << var_or << ", " << type_xfix(MT_FIELD_BFM, true) << "##reg##" << field_prefix() << ", __VA_ARGS__)\n"; fout << "\n"; /* print BM_OR macro */ std::string bm_or = macro_name(MN_MASK_OR); fout << "/** " << bm_or << "\n"; fout << " *\n"; fout << " * usage: " << bm_or << "(register, f1, f2, ...)\n"; fout << " *\n"; fout << " * effect: expands to the register value where each field fi is set to its maximum value.\n"; fout << " * Informally: reg_f1_mask | reg_f2_mask | ...\n"; fout << " *\n"; fout << " * example: " << bm_or << "(ICOLL_CTRL, SFTRST, CLKGATE)\n"; fout << " */\n"; fout << "#define " << bm_or << "(reg, ...) " << var_expand << "(" << var_or << ", " << type_xfix(MT_FIELD_BM, true) << "##reg##" << field_prefix() << ", __VA_ARGS__)\n\n"; fout << "\n"; /* print REG_READ macro */ std::string reg_read = macro_name(MN_REG_READ); fout << "/** " << reg_read << "\n"; fout << " *\n"; fout << " * usage: " << reg_read << "(register)\n"; fout << " *\n"; fout << " * effect: read a register and return its value\n"; fout << " * note: register must be fully qualified if indexed\n"; fout << " *\n"; fout << " * example: " << reg_read << "(ICOLL_STATUS)\n"; fout << " * " << reg_read << "(ICOLL_ENABLE(42))\n"; fout << " */\n"; fout << "#define " << reg_read << "(name) " << safe_macro_paste(false, type_xfix(MT_REG_TYPE, true)) << "name" << safe_macro_paste(true, type_xfix(MT_REG_TYPE, false)) << "(" << register_op_name(RO_READ) << ", name)\n"; fout << "\n"; /* print FIELD_READX macro */ std::string bf_readx = macro_name(MN_FIELD_READX); fout << "/** " << bf_readx << "\n"; fout << " *\n"; fout << " * usage: " << bf_readx << "(value, register, field)\n"; fout << " *\n"; fout << " * effect: given a register value, return the value of a particular field\n"; fout << " * note: this macro does NOT read any register\n"; fout << " *\n"; fout << " * example: " << bf_readx << "(0xc0000000, ICOLL_CTRL, SFTRST)\n"; fout << " * " << bf_readx << "(0x46ff, ICOLL_ENABLE, CPU0_PRIO)\n"; fout << " */\n"; fout << "#define " << bf_readx << "(val, name, field) " << "(((val) & " << safe_macro_paste(false, type_xfix(MT_FIELD_BM, true)) << "name" << safe_macro_paste(true, type_xfix(MT_FIELD_BM, false)) << safe_macro_paste(true, field_prefix()) << "##field" << ") >> " << safe_macro_paste(false, type_xfix(MT_FIELD_BP, true)) << "name" << safe_macro_paste(true, type_xfix(MT_FIELD_BP, false)) << safe_macro_paste(true, field_prefix()) << "##field" << ")\n"; fout << "\n"; /* print FIELD_READ macro */ std::string bf_read = macro_name(MN_FIELD_READ); fout << "/** " << bf_read << "\n"; fout << " *\n"; fout << " * usage: " << bf_read << "(register, field)\n"; fout << " *\n"; fout << " * effect: read a register and return the value of a particular field\n"; fout << " * note: register must be fully qualified if indexed\n"; fout << " *\n"; fout << " * example: " << bf_read << "(ICOLL_CTRL, SFTRST)\n"; fout << " * " << bf_read << "(ICOLL_ENABLE(3), CPU0_PRIO)\n"; fout << " */\n"; fout << "#define " << bf_read << "(name, field) " << bf_read << "_(" << reg_read << "(name), " << safe_macro_paste(false, type_xfix(MT_REG_NAME, true)) << "name" << safe_macro_paste(true, type_xfix(MT_REG_NAME, false)) << ", field)\n"; fout << "#define " << bf_read << "_(...) " << bf_readx << "(__VA_ARGS__)\n"; fout << "\n"; /* print REG_WRITE macro */ std::string reg_write = macro_name(MN_REG_WRITE); fout << "/** " << reg_write << "\n"; fout << " *\n"; fout << " * usage: " << reg_write << "(register, value)\n"; fout << " *\n"; fout << " * effect: write a register\n"; fout << " * note: register must be fully qualified if indexed\n"; fout << " *\n"; fout << " * example: " << reg_write << "(ICOLL_CTRL, 0x42)\n"; fout << " * " << reg_write << "(ICOLL_ENABLE_SET(3), 0x37)\n"; fout << " */\n"; fout << "#define " << reg_write << "(name, val) " << safe_macro_paste(false, type_xfix(MT_REG_TYPE, true)) << "name" << safe_macro_paste(true, type_xfix(MT_REG_TYPE, false)) << "(" << register_op_name(RO_WRITE) << ", name, val)\n"; fout << "\n"; /* print FIELD_WRITE macro */ std::string bf_write = macro_name(MN_FIELD_WRITE); fout << "/** " << bf_write << "\n"; fout << " *\n"; fout << " * usage: " << bf_write << "(register, f1(v1), f2(v2), ...)\n"; fout << " *\n"; fout << " * effect: change the register value so that field fi has value vi\n"; fout << " * note: register must be fully qualified if indexed\n"; fout << " * note: this macro may perform a read-modify-write\n"; fout << " *\n"; fout << " * example: " << bf_write << "(ICOLL_CTRL, SFTRST(1), CLKGATE(0), TZ_LOCK_V(UNLOCKED))\n"; fout << " * " << bf_write << "(ICOLL_ENABLE(3), CPU0_PRIO(1), CPU0_TYPE_V(FIQ))\n"; fout << " */\n"; fout << "#define " << bf_write << "(name, ...) " << bf_write << "_(name, " << safe_macro_paste(false, type_xfix(MT_REG_NAME, true)) << "name" << safe_macro_paste(true, type_xfix(MT_REG_NAME, false)) << ", __VA_ARGS__)\n"; fout << "#define " << bf_write << "_(name, name2, ...) " << safe_macro_paste(false, type_xfix(MT_REG_TYPE, true)) << "name" << safe_macro_paste(true, type_xfix(MT_REG_TYPE, false)) << "(" << register_op_name(RO_RMW) << ", name, " << "~" << macro_name(MN_FIELD_OR_MASK) << "(name2, __VA_ARGS__), " << macro_name(MN_FIELD_OR) << "(name2, __VA_ARGS__))\n"; fout << "\n"; /* print FIELD_OVERWRITE macro */ std::string bf_overwrite = macro_name(MN_FIELD_OVERWRITE); fout << "/** " << bf_overwrite << "\n"; fout << " *\n"; fout << " * usage: " << bf_overwrite << "(register, f1(v1), f2(v2), ...)\n"; fout << " *\n"; fout << " * effect: change the register value so that field fi has value vi and other fields have value zero\n"; fout << " * thus this macro is equivalent to:\n"; fout << " * " << reg_write << "(register, " << bf_or << "(register, f1(v1), ...))\n"; fout << " * note: register must be fully qualified if indexed\n"; fout << " * note: this macro will overwrite the register (it is NOT a read-modify-write)\n"; fout << " *\n"; fout << " * example: " << bf_overwrite << "(ICOLL_CTRL, SFTRST(1), CLKGATE(0), TZ_LOCK_V(UNLOCKED))\n"; fout << " * " << bf_overwrite << "(ICOLL_ENABLE(3), CPU0_PRIO(1), CPU0_TYPE_V(FIQ))\n"; fout << " */\n"; fout << "#define " << bf_overwrite << "(name, ...) " << bf_overwrite << "_(name, " << safe_macro_paste(false, type_xfix(MT_REG_NAME, true)) << "name" << safe_macro_paste(true, type_xfix(MT_REG_NAME, false)) << ", __VA_ARGS__)\n"; fout << "#define " << bf_overwrite << "_(name, name2, ...) " << safe_macro_paste(false, type_xfix(MT_REG_TYPE, true)) << "name" << safe_macro_paste(true, type_xfix(MT_REG_TYPE, false)) << "(" << register_op_name(RO_WRITE) << ", name, " << macro_name(MN_FIELD_OR) << "(name2, __VA_ARGS__))\n"; fout << "\n"; /* print FIELD_WRITEX macro */ std::string bf_writex = macro_name(MN_FIELD_WRITEX); fout << "/** " << bf_writex << "\n"; fout << " *\n"; fout << " * usage: " << bf_writex << "(var, register, f1(v1), f2(v2), ...)\n"; fout << " *\n"; fout << " * effect: change the variable value so that field fi has value vi\n"; fout << " * note: this macro will perform a read-modify-write\n"; fout << " *\n"; fout << " * example: " << bf_writex << "(var, ICOLL_CTRL, SFTRST(1), CLKGATE(0), TZ_LOCK_V(UNLOCKED))\n"; fout << " * " << bf_writex << "(var, ICOLL_ENABLE, CPU0_PRIO(1), CPU0_TYPE_V(FIQ))\n"; fout << " */\n"; fout << "#define " << bf_writex << "(var, name, ...) " << "(var) = " << macro_name(MN_FIELD_OR) << "(name, __VA_ARGS__) | (~" << macro_name(MN_FIELD_OR_MASK) << "(name, __VA_ARGS__) & (var))\n"; fout << "\n"; /* print FIELD_SET/FIELD_CLEAR macro */ for(int i = 0; i < 2; i++) { macro_name_t n = (i == 0) ? MN_FIELD_SET : MN_FIELD_CLEAR; std::string bf_set = macro_name(n); std::string set_var = sct_variant(n); fout << "/** " << bf_set << "\n"; fout << " *\n"; fout << " * usage: " << bf_set << "(register, f1, f2, ...)\n"; fout << " *\n"; fout << " * effect: change the register value so that field fi has "; if(i == 0) fout << "maximum value\n"; else fout << "value zero\n"; if(has_sct()) fout << " * IMPORTANT: this macro performs a write to the " << set_var << " variant of the register\n"; else fout << " * note: this macro will perform a read-modify-write\n"; fout << " * note: register must be fully qualified if indexed\n"; fout << " *\n"; fout << " * example: " << bf_set << "(ICOLL_CTRL, SFTRST, CLKGATE)\n"; fout << " * " << bf_set << "(ICOLL_ENABLE(3), CPU0_PRIO, CPU0_TYPE)\n"; fout << " */\n"; if(has_sct()) { fout << "#define " << bf_set << "(name, ...) " << bf_set << "_(" << macro_name(MN_GET_VARIANT) << "(name, " << variant_xfix(set_var, true) << ", " << variant_xfix(set_var, false) << "), " << safe_macro_paste(false, type_xfix(MT_REG_NAME, true)) << "name" << safe_macro_paste(true, type_xfix(MT_REG_NAME, false)) << ", __VA_ARGS__)\n"; fout << "#define " << bf_set << "_(name, name2, ...) " << macro_name(MN_REG_WRITE) << "(name, " << macro_name(MN_MASK_OR) << "(name2, __VA_ARGS__))\n"; } else { fout << "#define " << bf_set << "(name, ...) " << bf_set << "_(name, " << safe_macro_paste(false, type_xfix(MT_REG_NAME, true)) << "name" << safe_macro_paste(true, type_xfix(MT_REG_NAME, false)) << ", __VA_ARGS__)\n"; fout << "#define " << bf_set << "_(name, name2, ...) " << safe_macro_paste(false, type_xfix(MT_REG_TYPE, true)) << "name" << safe_macro_paste(true, type_xfix(MT_REG_TYPE, false)) << "(" << register_op_name(RO_RMW) << ", name, ~"; if(i == 0) fout << "0," << macro_name(MN_MASK_OR) << "(name2, __VA_ARGS__))\n"; else fout << macro_name(MN_MASK_OR) << "(name2, __VA_ARGS__), 0)\n"; } fout << "\n"; } if(has_sct()) { std::string set_var = sct_variant(MN_FIELD_SET); std::string clr_var = sct_variant(MN_FIELD_CLEAR); /* print REG_SET */ std::string reg_set = macro_name(MN_REG_SET); fout << "/** " << reg_set << "\n"; fout << " *\n"; fout << " * usage: " << reg_set << "(register, set_value)\n"; fout << " *\n"; fout << " * effect: set some bits using " << set_var << " variant\n"; fout << " * note: register must be fully qualified if indexed\n"; fout << " *\n"; fout << " * example: " << reg_set << "(ICOLL_CTRL, 0x42)\n"; fout << " * " << reg_set << "(ICOLL_ENABLE(3), 0x37)\n"; fout << " */\n"; fout << "#define " << reg_set << "(name, sval) " << reg_set << "_(" << macro_name(MN_GET_VARIANT) << "(name, " << variant_xfix(set_var, true) << ", " << variant_xfix(set_var, false) << "), sval)\n"; fout << "#define " << reg_set << "_(sname, sval) " << macro_name(MN_REG_WRITE) << "(sname, sval)\n"; fout << "\n"; /* print REG_CLR */ std::string reg_clr = macro_name(MN_REG_CLEAR); fout << "/** " << reg_clr << "\n"; fout << " *\n"; fout << " * usage: " << reg_clr << "(register, clr_value)\n"; fout << " *\n"; fout << " * effect: clear some bits using " << clr_var << " variant\n"; fout << " * note: register must be fully qualified if indexed\n"; fout << " *\n"; fout << " * example: " << reg_clr << "(ICOLL_CTRL, 0x42)\n"; fout << " * " << reg_clr << "(ICOLL_ENABLE(3), 0x37)\n"; fout << " */\n"; fout << "#define " << reg_clr << "(name, cval) " << reg_clr << "_(" << macro_name(MN_GET_VARIANT) << "(name, " << variant_xfix(clr_var, true) << ", " << variant_xfix(clr_var, false) << "), cval)\n"; fout << "#define " << reg_clr << "_(cname, cval) " << macro_name(MN_REG_WRITE) << "(cname, cval)\n"; fout << "\n"; /* print REG_CS */ std::string reg_cs = macro_name(MN_REG_CLEAR_SET); fout << "/** " << reg_cs << "\n"; fout << " *\n"; fout << " * usage: " << reg_cs << "(register, clear_value, set_value)\n"; fout << " *\n"; fout << " * effect: clear some bits using " << clr_var << " variant and then set some using " << set_var << " variant\n"; fout << " * note: register must be fully qualified if indexed\n"; fout << " *\n"; fout << " * example: " << reg_cs << "(ICOLL_CTRL, 0xff, 0x42)\n"; fout << " * " << reg_cs << "(ICOLL_ENABLE(3), 0xff, 0x37)\n"; fout << " */\n"; fout << "#define " << reg_cs << "(name, cval, sval) " << reg_cs << "_(" << macro_name(MN_GET_VARIANT) << "(name, " << variant_xfix(clr_var, true) << ", " << variant_xfix(clr_var, false) << "), " << macro_name(MN_GET_VARIANT) << "(name, " << variant_xfix(set_var, true) << ", " << variant_xfix(set_var, false) << "), cval, sval)\n"; fout << "#define " << reg_cs << "_(cname, sname, cval, sval) " << "do { " << macro_name(MN_REG_WRITE) << "(cname, cval); " << macro_name(MN_REG_WRITE) << "(sname, sval); } while(0)\n"; fout << "\n"; /* print BF_CS */ std::string bf_cs = macro_name(MN_FIELD_CLEAR_SET); fout << "/** " << bf_cs << "\n"; fout << " *\n"; fout << " * usage: " << bf_cs << "(register, f1(v1), f2(v2), ...)\n"; fout << " *\n"; fout << " * effect: change the register value so that field fi has value vi using " << clr_var << " and " << set_var << " variants\n"; fout << " * note: register must be fully qualified if indexed\n"; fout << " * note: this macro will NOT perform a read-modify-write and is thus safer\n"; fout << " * IMPORTANT: this macro will set some fields to 0 temporarily, make sure this is acceptable\n"; fout << " *\n"; fout << " * example: " << bf_cs << "(ICOLL_CTRL, SFTRST(1), CLKGATE(0), TZ_LOCK_V(UNLOCKED))\n"; fout << " * " << bf_cs << "(ICOLL_ENABLE(3), CPU0_PRIO(1), CPU0_TYPE_V(FIQ))\n"; fout << " */\n"; fout << "#define " << bf_cs << "(name, ...) " << bf_cs << "_(name, " << safe_macro_paste(false, type_xfix(MT_REG_NAME, true)) << "name" << safe_macro_paste(true, type_xfix(MT_REG_NAME, false)) << ", __VA_ARGS__)\n"; fout << "#define " << bf_cs << "_(name, name2, ...) " << macro_name(MN_REG_CLEAR_SET) << "(name, " << macro_name(MN_FIELD_OR_MASK) << "(name2, __VA_ARGS__), " << macro_name(MN_FIELD_OR) << "(name2, __VA_ARGS__))\n"; fout << "\n"; } /* print REG_VAR macro */ std::string reg_var = macro_name(MN_VARIABLE); fout << "/** " << reg_var << "\n"; fout << " *\n"; fout << " * usage: " << reg_var << "(register)\n"; fout << " *\n"; fout << " * effect: return a variable-like expression that can be read/written\n"; fout << " * note: register must be fully qualified if indexed\n"; fout << " * note: read-only registers will yield a constant expression\n"; fout << " *\n"; fout << " * example: unsigned x = " << reg_var << "(ICOLL_STATUS)\n"; fout << " * unsigned x = " << reg_var << "(ICOLL_ENABLE(42))\n"; fout << " * " << reg_var << "(ICOLL_ENABLE(42)) = 64\n"; fout << " */\n"; fout << "#define " << reg_var << "(name) " << safe_macro_paste(false, type_xfix(MT_REG_TYPE, true)) << "name" << safe_macro_paste(true, type_xfix(MT_REG_TYPE, false)) << "(" << register_op_name(RO_VAR) << ", name)\n"; fout << "\n"; print_guard(fout, guard, false); fout.close(); return true; } bool common_generator::generate(error_context_t& ectx) { /* first find which inst goes to which file */ std::map< std::string, std::vector< pseudo_node_inst_t > > regmap; for(size_t i = 0; i < m_soc.size(); i++) { soc_ref_t soc(&m_soc[i]); pseudo_node_inst_t inst; inst.inst = soc.root_inst(); gather_files(inst, has_selectors() ? selector_soc_dir(soc) + "/" : "", regmap); } /* create output directory */ create_dir(m_outdir); /* print files */ std::map< std::string, std::vector< pseudo_node_inst_t > >::iterator it = regmap.begin(); for(; it != regmap.end(); ++it) { create_alldir(m_outdir, it->first.c_str()); std::ofstream fout((m_outdir + "/" + it->first).c_str()); if(!fout) { printf("Cannot create '%s'\n", (m_outdir + "/" + it->first).c_str()); return false; } std::vector< soc_ref_t > soc_list = list_socs(it->second); print_copyright(fout, soc_list); std::string guard = header_include_guard(it->first); print_guard(fout, guard, true); /* if we generate selectors, we include the macro header in them, otherwise * we include the macro header right here */ if(!has_selectors()) { fout << "\n"; fout << "#include \"" << macro_header() << "\"\n"; } for(size_t i = 0; i < it->second.size(); i++) { if(!generate_register(fout, it->second[i])) { printf("Cannot generate register"); print_inst(it->second[i]); return false; } } print_guard(fout, guard, false); fout.close(); } /* for selectors only */ if(has_selectors()) { /* list all possible headers and per soc headers */ std::map< std::string, std::set< soc_ref_t > > headers; for(it = regmap.begin(); it != regmap.end(); ++it) { /* pick the first instance in the file to extract the file name */ node_inst_t inst = it->second[0].inst; headers[register_header(inst)].insert(inst.node().soc()); } /* create selector headers */ std::map< std::string, std::set< soc_ref_t > >::iterator jt; for(jt = headers.begin(); jt != headers.end(); ++jt) { std::ofstream fout((m_outdir + "/" + jt->first).c_str()); if(!fout) { printf("Cannot create selector '%s'\n", (m_outdir + "/" + jt->first).c_str()); return false; } print_copyright(fout, std::vector< soc_ref_t >()); std::string guard = header_include_guard(jt->first); print_guard(fout, guard, true); /* if we generate selectors, we include the macro header in them */ fout << "\n"; fout << "#include \"" << macro_header() << "\"\n"; std::set< soc_ref_t >::iterator kt; define_align_context_t ctx; for(kt = jt->second.begin(); kt != jt->second.end(); ++kt) { std::ostringstream oss; oss << "\"" << selector_soc_dir(*kt) << "/" << jt->first << "\""; ctx.add(selector_soc_macro(*kt), oss.str()); } fout << "\n"; ctx.print(fout); fout << "\n"; fout << "#include \"" << selector_include_header() << "\"\n"; fout << "\n"; for(kt = jt->second.begin(); kt != jt->second.end(); ++kt) fout << "#undef " << selector_soc_macro(*kt) << "\n"; print_guard(fout, guard, false); fout.close(); } } /* generate macro header */ if(!generate_macro_header(ectx)) return false; return true; } /** * Generator: jz */ class jz_generator : public common_generator { bool has_selectors() const { return m_soc.size() >= 2; } std::string selector_soc_dir(const soc_ref_t& ref) const { return ref.get()->name; } std::string selector_include_header() const { return "select.h"; } std::string selector_soc_macro(const soc_ref_t& ref) const { return toupper(ref.get()->name) + "_INCLUDE"; } std::string register_header(const node_inst_t& inst) const { /* one register header per top-level block */ if(inst.is_root()) return ""; if(inst.parent().is_root()) return tolower(inst.node().name()) + ".h"; else return register_header(inst.parent()); } std::string macro_name(macro_name_t macro) const { switch(macro) { case MN_REG_READ: return "jz_read"; case MN_FIELD_READ: return "jz_readf"; case MN_FIELD_READX: return "jz_vreadf"; case MN_REG_WRITE: return "jz_write"; case MN_REG_SET: return "jz_set"; case MN_REG_CLEAR: return "jz_clr"; case MN_FIELD_WRITE: return "jz_writef"; case MN_FIELD_OVERWRITE: return "jz_overwritef"; case MN_FIELD_WRITEX: return "jz_vwritef"; case MN_FIELD_SET: return "jz_setf"; case MN_FIELD_CLEAR: return "jz_clrf"; case MN_FIELD_TOG: return "jz_togf"; case MN_FIELD_CLEAR_SET: return "jz_csf"; case MN_FIELD_OR: return "jz_orf"; case MN_FIELD_OR_MASK: return "__jz_orfm"; // internal macro case MN_MASK_OR: return "jz_orm"; case MN_REG_CLEAR_SET: return "jz_cs"; case MN_GET_VARIANT: return "__jz_variant"; // internal macro case MN_VARIABLE: return "jz_reg"; default: return ""; } } std::string macro_header() const { return "macro.h"; } bool register_flag(const node_inst_t& inst, register_flag_t flag) const { /* make everything parametrized */ switch(flag) { case RF_GENERATE_ALL_INST: return false; case RF_GENERATE_PARAM_INST: return true; default: return false; } } std::string type_xfix(macro_type_t type, bool prefix) const { switch(type) { case MT_REG_ADDR: return prefix ? "JA_" : ""; case MT_REG_TYPE: return prefix ? "JT_" : ""; case MT_REG_NAME: return prefix ? "JN_" : ""; case MT_REG_INDEX: return prefix ? "JI_" : ""; case MT_REG_VAR: return prefix ? "REG_" : ""; case MT_FIELD_BP: return prefix ? "BP_" : ""; case MT_FIELD_BM: return prefix ? "BM_" : ""; case MT_FIELD_BV: return prefix ? "BV_" : ""; case MT_FIELD_BF: return prefix ? "BF_" : ""; case MT_FIELD_BFM: return prefix ? "BFM_" : ""; case MT_FIELD_BFV: return prefix ? "BF_" : "_V"; case MT_FIELD_BFMV: return prefix ? "BFM_" : "_V"; case MT_IO_TYPE: return prefix ? "JIO_" : ""; default: return ""; } } std::string variant_xfix(const std::string& variant, bool prefix) const { /* variant X -> reg_X */ if(prefix) return ""; else return "_" + toupper(variant); } std::string inst_prefix(const node_inst_t& inst) const { /* separate blocks with _: block_reg */ return "_"; } std::string field_prefix() const { /* separate fields with _: block_reg_field */ return "_"; } std::string enum_prefix() const { /* separate enums with __: block_reg_field__enum */ return "__"; } std::string enum_name(const enum_ref_t& enum_) const { return enum_.get()->name; } access_type_t register_access(const std::string& variant, access_t access) const { /* SET and CLR are special and always promoted to WO */ if(variant == "set" || variant == "clr" || access == WRITE_ONLY) return AT_WO; else if(access == READ_ONLY) return AT_RO; else return AT_RW; } bool has_sct() const { return true; } std::string sct_variant(macro_name_t name) const { switch(name) { case MN_FIELD_SET: return "set"; // always use set variant case MN_FIELD_CLEAR: return "clr"; // always use clr variant default: return ""; } } }; /** * Generator: imx */ class imx_generator : public common_generator { bool has_selectors() const { return m_soc.size() >= 2; } std::string selector_soc_dir(const soc_ref_t& ref) const { return ref.get()->name; } std::string selector_include_header() const { return "select.h"; } std::string selector_soc_macro(const soc_ref_t& ref) const { return toupper(ref.get()->name) + "_INCLUDE"; } std::string register_header(const node_inst_t& inst) const { /* one register header per top-level block */ if(inst.is_root()) return ""; if(inst.parent().is_root()) return tolower(inst.node().name()) + ".h"; else return register_header(inst.parent()); } std::string macro_name(macro_name_t macro) const { switch(macro) { case MN_REG_READ: return "REG_RD"; case MN_FIELD_READ: return "BF_RD"; case MN_FIELD_READX: return "BF_RDX"; case MN_REG_WRITE: return "REG_WR"; case MN_REG_SET: return ""; // no macro for this case MN_REG_CLEAR: return ""; // no macro for this case MN_FIELD_WRITE: return "BF_WR"; case MN_FIELD_OVERWRITE: return "BF_WR_ALL"; case MN_FIELD_WRITEX: return "BF_WRX"; case MN_FIELD_SET: return "BF_SET"; case MN_FIELD_CLEAR: return "BF_CLR"; case MN_FIELD_TOG: return "BF_TOG"; case MN_FIELD_CLEAR_SET: return "BF_CS"; case MN_FIELD_OR: return "BF_OR"; case MN_FIELD_OR_MASK: return "__BFM_OR"; case MN_MASK_OR: return "BM_OR"; case MN_REG_CLEAR_SET: return "REG_CS"; case MN_GET_VARIANT: return "__REG_VARIANT"; case MN_VARIABLE: return "HW"; default: return ""; } } std::string macro_header() const { return "macro.h"; } bool register_flag(const node_inst_t& inst, register_flag_t flag) const { /* make everything parametrized */ switch(flag) { case RF_GENERATE_ALL_INST: return false; case RF_GENERATE_PARAM_INST: return true; default: return false; } } std::string type_xfix(macro_type_t type, bool prefix) const { switch(type) { case MT_REG_ADDR: return prefix ? "HWA_" : ""; case MT_REG_TYPE: return prefix ? "HWT_" : ""; case MT_REG_NAME: return prefix ? "HWN_" : ""; case MT_REG_INDEX: return prefix ? "HWI_" : ""; case MT_REG_VAR: return prefix ? "HW_" : ""; case MT_FIELD_BP: return prefix ? "BP_" : ""; case MT_FIELD_BM: return prefix ? "BM_" : ""; case MT_FIELD_BV: return prefix ? "BV_" : ""; case MT_FIELD_BF: return prefix ? "BF_" : ""; case MT_FIELD_BFM: return prefix ? "BFM_" : ""; case MT_FIELD_BFV: return prefix ? "BF_" : "_V"; case MT_FIELD_BFMV: return prefix ? "BFM_" : "_V"; case MT_IO_TYPE: return prefix ? "HWIO_" : ""; default: return ""; } } std::string variant_xfix(const std::string& variant, bool prefix) const { /* variant X -> reg_X */ if(prefix) return ""; else return "_" + toupper(variant); } std::string inst_prefix(const node_inst_t& inst) const { /* separate blocks with _: block_reg */ return "_"; } std::string field_prefix() const { /* separate fields with _: block_reg_field */ return "_"; } std::string enum_prefix() const { /* separate enums with __: block_reg_field__enum */ return "__"; } std::string enum_name(const enum_ref_t& enum_) const { return enum_.get()->name; } access_type_t register_access(const std::string& variant, access_t access) const { /* SET, CLR and TOG are special and always promoted to WO */ if(variant == "set" || variant == "clr" || variant == "tog" || access == WRITE_ONLY) return AT_WO; else if(access == READ_ONLY) return AT_RO; else return AT_RW; } bool has_sct() const { return true; } std::string sct_variant(macro_name_t name) const { switch(name) { case MN_FIELD_SET: return "set"; // always use set variant case MN_FIELD_CLEAR: return "clr"; // always use clr variant case MN_FIELD_TOG: return "tog"; // always use tog variant default: return ""; } } }; /** * Driver */ abstract_generator *get_generator(const std::string& name) { if(name == "jz") return new jz_generator(); else if(name == "imx") return new imx_generator(); else return 0; } void usage() { printf("usage: headergen [options] \n"); printf("options:\n"); printf(" -?/--help Dispaly this help\n"); printf(" -g/--generator Select generator (jz, imx)\n"); printf(" -o/--outdir Output directory\n"); exit(1); } int main(int argc, char **argv) { char *generator_name = NULL; char *outdir = NULL; if(argc <= 1) usage(); while(1) { static struct option long_options[] = { {"help", no_argument, 0, '?'}, {"generator", required_argument, 0, 'g'}, {"outdir", required_argument, 0, 'o'}, {0, 0, 0, 0} }; int c = getopt_long(argc, argv, "?g:o:", long_options, NULL); if(c == -1) break; switch(c) { case -1: break; case '?': usage(); break; case 'g': generator_name = optarg; break; case 'o': outdir = optarg; break; default: abort(); } } if(argc == optind) { printf("You need at least one description file\n"); return 3; } if(outdir == 0) { printf("You need to select an output directory\n"); return 4; } if(generator_name == 0) { printf("You need to select a generator\n"); return 1; } abstract_generator *gen = get_generator(generator_name); if(gen == 0) { printf("Unknown generator name '%s'\n", generator_name); return 2; } gen->set_output_dir(outdir); for(int i = optind; i < argc; i++) { error_context_t ctx; soc_t s; bool ret = parse_xml(argv[i], s, ctx); if(ctx.count() != 0) printf("In file %s:\n", argv[i]); print_context(ctx); if(!ret) { printf("Cannot parse file '%s'\n", argv[i]); return 1; } gen->add_soc(s); } error_context_t ctx; bool ret = gen->generate(ctx); print_context(ctx); if(!ret) { printf("Cannot generate headers\n"); return 5; } return 0; }