/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2002 Heikki Hannikainen * * All files in this archive are subject to the GNU General Public License. * See the file COPYING in the source tree root for full license agreement. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "config.h" #ifndef SIMULATOR #include #include #include #include "lcd.h" #include "menu.h" #include "debug_menu.h" #include "kernel.h" #include "sprintf.h" #include "button.h" #include "adc.h" #include "mas.h" #include "power.h" #include "rtc.h" #include "debug.h" #include "thread.h" #include "powermgmt.h" #include "system.h" #include "font.h" #include "disk.h" #include "mpeg.h" #include "settings.h" #include "ata.h" #include "fat.h" #ifdef HAVE_LCD_BITMAP #include "widgets.h" #include "peakmeter.h" #endif /*---------------------------------------------------*/ /* SPECIAL DEBUG STUFF */ /*---------------------------------------------------*/ extern int ata_device; extern int ata_io_address; extern int num_threads; extern char *thread_name[]; #ifdef HAVE_LCD_BITMAP /* Test code!!! */ bool dbg_os(void) { char buf[32]; int button; int i; int usage; #ifdef HAVE_LCD_BITMAP lcd_setmargins(0, 0); #endif lcd_clear_display(); while(1) { lcd_puts(0, 0, "Stack usage:"); for(i = 0; i < num_threads;i++) { usage = thread_stack_usage(i); snprintf(buf, 32, "%s: %d%%", thread_name[i], usage); lcd_puts(0, 1+i, buf); } lcd_update(); button = button_get_w_tmo(HZ/10); switch(button) { case BUTTON_OFF: case BUTTON_LEFT: return false; } } return false; } #else bool dbg_os(void) { char buf[32]; int button; int usage; int currval = 0; #ifdef HAVE_LCD_BITMAP lcd_setmargins(0, 0); #endif lcd_clear_display(); while(1) { lcd_puts(0, 0, "Stack usage"); usage = thread_stack_usage(currval); snprintf(buf, 32, "%d: %d%% ", currval, usage); lcd_puts(0, 1, buf); button = button_get_w_tmo(HZ/10); switch(button) { case BUTTON_STOP: return false; case BUTTON_LEFT: currval--; if(currval < 0) currval = num_threads-1; break; case BUTTON_RIGHT: currval++; if(currval > num_threads-1) currval = 0; break; } } return false; } #endif #ifdef HAVE_LCD_BITMAP bool dbg_mpeg_thread(void) { char buf[32]; int button; int percent; struct mpeg_debug d; lcd_setmargins(0, 0); while(1) { button = button_get_w_tmo(HZ/5); switch(button) { case BUTTON_OFF | BUTTON_REL: return false; } mpeg_get_debugdata(&d); lcd_clear_display(); snprintf(buf, sizeof(buf), "read: %x", d.mp3buf_read); lcd_puts(0, 0, buf); snprintf(buf, sizeof(buf), "write: %x", d.mp3buf_write); lcd_puts(0, 1, buf); snprintf(buf, sizeof(buf), "swap: %x", d.mp3buf_swapwrite); lcd_puts(0, 2, buf); snprintf(buf, sizeof(buf), "playing: %d", d.playing); lcd_puts(0, 3, buf); snprintf(buf, sizeof(buf), "playable: %x", d.playable_space); lcd_puts(0, 4, buf); snprintf(buf, sizeof(buf), "unswapped: %x", d.unswapped_space); lcd_puts(0, 5, buf); percent = d.playable_space * 100 / d.mp3buflen; progressbar(0, 6*8, 112, 4, percent, Grow_Right); percent = d.low_watermark_level * 100 / d.mp3buflen; progressbar(0, 6*8+4, 112, 4, percent, Grow_Right); snprintf(buf, sizeof(buf), "wm: %x - %x", d.low_watermark_level, d.lowest_watermark_level); lcd_puts(0, 7, buf); lcd_update(); } return false; } #endif /* Tool function to calculate a CRC16 across some buffer */ unsigned short crc_16(unsigned char* buf, unsigned len) { /* CCITT standard polynomial 0x1021 */ static const unsigned short crc16_lookup[16] = { /* lookup table for 4 bits at a time is affordable */ 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7, 0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF }; unsigned short crc16 = 0xFFFF; /* initialise to 0xFFFF (CCITT specification) */ unsigned t; unsigned char byte; while (len--) { byte = *buf++; /* get one byte of data */ /* upper nibble of our data */ t = crc16 >> 12; /* extract the 4 most significant bits */ t ^= byte >> 4; /* XOR in 4 bits of the data into the extracted bits */ crc16 <<= 4; /* shift the CRC Register left 4 bits */ crc16 ^= crc16_lookup[t]; /* do the table lookup and XOR the result */ /* lower nibble of our data */ t = crc16 >> 12; /* extract the 4 most significant bits */ t ^= byte & 0x0F; /* XOR in 4 bits of the data into the extracted bits */ crc16 <<= 4; /* shift the CRC Register left 4 bits */ crc16 ^= crc16_lookup[t]; /* do the table lookup and XOR the result */ } return crc16; } /* Tool function to read the flash manufacturer and type, if available. Only chips which could be reprogrammed in system will return values. (The mode switch addresses vary between flash manufacturers, hence addr1/2) */ bool dbg_flash_id(unsigned* p_manufacturer, unsigned* p_device, unsigned addr1, unsigned addr2) { unsigned not_manu, not_id; /* read values before switching to ID mode */ unsigned manu, id; /* read values when in ID mode */ volatile unsigned char* flash = (unsigned char*)0x2000000; /* flash mapping */ not_manu = flash[0]; /* read the normal content */ not_id = flash[1]; /* should be 'A' (0x41) and 'R' (0x52) from the "ARCH" marker */ flash[addr1] = 0xAA; /* enter command mode */ flash[addr2] = 0x55; flash[addr1] = 0x90; /* ID command */ sleep(HZ/50); /* Atmel wants 20ms pause here */ manu = flash[0]; /* read the IDs */ id = flash[1]; flash[0] = 0xF0; /* reset flash (back to normal read mode) */ sleep(HZ/50); /* Atmel wants 20ms pause here */ /* I assume success if the obtained values are different from the normal flash content. This is not perfectly bulletproof, they could theoretically be the same by chance, causing us to fail. */ if (not_manu != manu || not_id != id) /* a value has changed */ { *p_manufacturer = manu; /* return the results */ *p_device = id; return true; /* success */ } return false; /* fail */ } #ifdef HAVE_LCD_BITMAP bool dbg_hw_info(void) { char buf[32]; int button; int usb_polarity; int pr_polarity; int bitmask = *(unsigned short*)0x20000fc; int rom_version = *(unsigned short*)0x20000fe; unsigned manu, id; /* flash IDs */ bool got_id; /* flag if we managed to get the flash IDs */ unsigned rom_crc; /* CRC16 of the boot ROM */ if(PADR & 0x400) usb_polarity = 0; /* Negative */ else usb_polarity = 1; /* Positive */ if(PADR & 0x800) pr_polarity = 0; /* Negative */ else pr_polarity = 1; /* Positive */ /* get flash ROM type */ got_id = dbg_flash_id(&manu, &id, 0x5555, 0x2AAA); /* try SST, Atmel, NexFlash */ if (!got_id) got_id = dbg_flash_id(&manu, &id, 0x555, 0x2AA); /* try AMD, Macronix */ /* calculate CRC16 checksum of boot ROM */ rom_crc = crc_16((unsigned char*)0x0000, 64*1024); lcd_setmargins(0, 0); lcd_setfont(FONT_SYSFIXED); lcd_clear_display(); lcd_puts(0, 0, "[Hardware info]"); snprintf(buf, 32, "ROM: %d.%02d", rom_version/100, rom_version%100); lcd_puts(0, 1, buf); snprintf(buf, 32, "Mask: 0x%04x", bitmask); lcd_puts(0, 2, buf); snprintf(buf, 32, "USB: %s", usb_polarity?"positive":"negative"); lcd_puts(0, 3, buf); snprintf(buf, 32, "ATA: 0x%x", ata_io_address); lcd_puts(0, 4, buf); snprintf(buf, 32, "PR: %s", pr_polarity?"positive":"negative"); lcd_puts(0, 5, buf); if (got_id) snprintf(buf, 32, "Flash: M=%02x D=%02x", manu, id); else snprintf(buf, 32, "Flash: M=?? D=??"); /* unknown, sorry */ lcd_puts(0, 6, buf); snprintf(buf, 32-3, "ROM CRC: 0x%04x", rom_crc); if (rom_crc == 0x222F) /* Version 1 */ strcat(buf, " V1"); else if (rom_crc == 0x8C1E) /* Version 2 */ strcat(buf, " V2"); lcd_puts(0, 7, buf); lcd_update(); while(1) { button = button_get(true); if(button == (BUTTON_OFF | BUTTON_REL)) return false; } return false; } #else bool dbg_hw_info(void) { char buf[32]; int button; int currval = 0; int usb_polarity; int bitmask = *(unsigned short*)0x20000fc; int rom_version = *(unsigned short*)0x20000fe; unsigned manu, id; /* flash IDs */ bool got_id; /* flag if we managed to get the flash IDs */ unsigned rom_crc; /* CRC16 of the boot ROM */ if(PADR & 0x400) usb_polarity = 0; /* Negative */ else usb_polarity = 1; /* Positive */ /* get flash ROM type */ got_id = dbg_flash_id(&manu, &id, 0x5555, 0x2AAA); /* try SST, Atmel, NexFlash */ if (!got_id) got_id = dbg_flash_id(&manu, &id, 0x555, 0x2AA); /* try AMD, Macronix */ /* calculate CRC16 checksum of boot ROM */ rom_crc = crc_16((unsigned char*)0x0000, 64*1024); lcd_clear_display(); lcd_puts(0, 0, "[HW Info]"); while(1) { switch(currval) { case 0: snprintf(buf, 32, "ROM: %d.%02d", rom_version/100, rom_version%100); break; case 1: snprintf(buf, 32, "USB: %s", usb_polarity?"pos":"neg"); break; case 2: snprintf(buf, 32, "ATA: 0x%x", ata_io_address); break; case 3: snprintf(buf, 32, "Mask: %04x", bitmask); break; case 4: if (got_id) snprintf(buf, 32, "Flash:%02x,%02x", manu, id); else snprintf(buf, 32, "Flash:??,??"); /* unknown, sorry */ break; case 5: snprintf(buf, 32, "ROM CRC:%04x", rom_crc); } lcd_puts(0, 1, buf); lcd_update(); button = button_get(true); switch(button) { case BUTTON_STOP: return false; case BUTTON_LEFT: currval--; if(currval < 0) currval = 5; break; case BUTTON_RIGHT: currval++; if(currval > 5) currval = 0; break; } } return false; } #endif bool dbg_partitions(void) { int partition=0; lcd_clear_display(); lcd_puts(0, 0, "Partition"); lcd_puts(0, 1, "list"); lcd_update(); sleep(HZ/2); while(1) { char buf[32]; int button; struct partinfo* p = disk_partinfo(partition); lcd_clear_display(); snprintf(buf, sizeof buf, "P%d: S:%x", partition, p->start); lcd_puts(0, 0, buf); snprintf(buf, sizeof buf, "T:%x %d MB", p->type, p->size / 2048); lcd_puts(0, 1, buf); lcd_update(); button = button_get(true); switch(button) { #ifdef HAVE_RECORDER_KEYPAD case BUTTON_OFF: #else case BUTTON_STOP: #endif return false; #ifdef HAVE_RECORDER_KEYPAD case BUTTON_UP: #endif case BUTTON_LEFT: partition--; if (partition < 0) partition = 3; break; #ifdef HAVE_RECORDER_KEYPAD case BUTTON_DOWN: #endif case BUTTON_RIGHT: partition++; if (partition > 3) partition = 0; break; } } return false; } #ifdef HAVE_LCD_BITMAP /* Test code!!! */ bool dbg_ports(void) { unsigned short porta; unsigned short portb; unsigned char portc; char buf[32]; int button; int battery_voltage; int batt_int, batt_frac; #ifdef HAVE_LCD_BITMAP lcd_setmargins(0, 0); #endif lcd_clear_display(); while(1) { porta = PADR; portb = PBDR; portc = PCDR; snprintf(buf, 32, "PADR: %04x", porta); lcd_puts(0, 0, buf); snprintf(buf, 32, "PBDR: %04x", portb); lcd_puts(0, 1, buf); snprintf(buf, 32, "AN0: %03x AN4: %03x", adc_read(0), adc_read(4)); lcd_puts(0, 2, buf); snprintf(buf, 32, "AN1: %03x AN5: %03x", adc_read(1), adc_read(5)); lcd_puts(0, 3, buf); snprintf(buf, 32, "AN2: %03x AN6: %03x", adc_read(2), adc_read(6)); lcd_puts(0, 4, buf); snprintf(buf, 32, "AN3: %03x AN7: %03x", adc_read(3), adc_read(7)); lcd_puts(0, 5, buf); battery_voltage = (adc_read(ADC_UNREG_POWER) * BATTERY_SCALE_FACTOR) / 10000; batt_int = battery_voltage / 100; batt_frac = battery_voltage % 100; snprintf(buf, 32, "Batt: %d.%02dV %d%% ", batt_int, batt_frac, battery_level()); lcd_puts(0, 6, buf); snprintf(buf, 32, "ATA: %s, 0x%x", ata_device?"slave":"master", ata_io_address); lcd_puts(0, 7, buf); lcd_update(); button = button_get_w_tmo(HZ/10); switch(button) { case BUTTON_OFF | BUTTON_REL: return false; } } return false; } #else bool dbg_ports(void) { unsigned short porta; unsigned short portb; unsigned char portc; char buf[32]; int button; int battery_voltage; int batt_int, batt_frac; int currval = 0; #ifdef HAVE_LCD_BITMAP lcd_setmargins(0, 0); #endif lcd_clear_display(); while(1) { porta = PADR; portb = PBDR; portc = PCDR; switch(currval) { case 0: snprintf(buf, 32, "PADR: %04x ", porta); break; case 1: snprintf(buf, 32, "PBDR: %04x ", portb); break; case 2: snprintf(buf, 32, "AN0: %03x ", adc_read(0)); break; case 3: snprintf(buf, 32, "AN1: %03x ", adc_read(1)); break; case 4: snprintf(buf, 32, "AN2: %03x ", adc_read(2)); break; case 5: snprintf(buf, 32, "AN3: %03x ", adc_read(3)); break; case 6: snprintf(buf, 32, "AN4: %03x ", adc_read(4)); break; case 7: snprintf(buf, 32, "AN5: %03x ", adc_read(5)); break; case 8: snprintf(buf, 32, "AN6: %03x ", adc_read(6)); break; case 9: snprintf(buf, 32, "AN7: %03x ", adc_read(7)); break; case 10: snprintf(buf, 32, "%s, 0x%x ", ata_device?"slv":"mst", ata_io_address); break; } lcd_puts(0, 0, buf); battery_voltage = (adc_read(ADC_UNREG_POWER) * BATTERY_SCALE_FACTOR) / 10000; batt_int = battery_voltage / 100; batt_frac = battery_voltage % 100; snprintf(buf, 32, "Batt: %d.%02dV", batt_int, batt_frac); lcd_puts(0, 1, buf); button = button_get_w_tmo(HZ/5); switch(button) { case BUTTON_STOP | BUTTON_REL: return false; case BUTTON_LEFT: currval--; if(currval < 0) currval = 10; break; case BUTTON_RIGHT: currval++; if(currval > 10) currval = 0; break; } } return false; } #endif #ifdef HAVE_RTC /* Read RTC RAM contents and display them */ bool dbg_rtc(void) { char buf[32]; unsigned char addr = 0, r, c; int i; int button; #ifdef HAVE_LCD_BITMAP lcd_setmargins(0, 0); #endif lcd_clear_display(); lcd_puts(0, 0, "RTC read:"); while(1) { for (r = 0; r < 4; r++) { snprintf(buf, 10, "0x%02x: ", addr + r*4); for (c = 0; c <= 3; c++) { i = rtc_read(addr + r*4 + c); snprintf(buf + 6 + c*2, 3, "%02x", i); } lcd_puts(1, r+1, buf); } lcd_update(); button = button_get_w_tmo(HZ/2); switch(button) { case BUTTON_DOWN: if (addr < 63-16) { addr += 16; } break; case BUTTON_UP: if (addr) { addr -= 16; } break; case BUTTON_F2: /* clear the user RAM space */ for (c = 0; c <= 43; c++) rtc_write(0x14 + c, 0); break; case BUTTON_OFF | BUTTON_REL: case BUTTON_LEFT | BUTTON_REL: return false; } } return false; } #else bool dbg_rtc(void) { return false; } #endif #ifdef HAVE_LCD_CHARCELLS #define NUMROWS 1 #else #define NUMROWS 4 #endif /* Read MAS registers and display them */ bool dbg_mas(void) { char buf[32]; unsigned int addr = 0, r, i; #ifdef HAVE_LCD_BITMAP lcd_setmargins(0, 0); #endif lcd_clear_display(); lcd_puts(0, 0, "MAS register read:"); while(1) { for (r = 0; r < NUMROWS; r++) { i = mas_readreg(addr + r); snprintf(buf, 30, "%02x %08x", addr + r, i); lcd_puts(0, r+1, buf); } lcd_update(); switch(button_get_w_tmo(HZ/16)) { #ifdef HAVE_RECORDER_KEYPAD case BUTTON_DOWN: #else case BUTTON_RIGHT: #endif addr += NUMROWS; break; #ifdef HAVE_RECORDER_KEYPAD case BUTTON_UP: #else case BUTTON_LEFT: #endif if(addr) addr -= NUMROWS; break; #ifdef HAVE_RECORDER_KEYPAD case BUTTON_LEFT: #else case BUTTON_DOWN: #endif return false; } } return false; } #ifdef HAVE_MAS3587F bool dbg_mas_codec(void) { char buf[32]; unsigned int addr = 0, r, i; #ifdef HAVE_LCD_BITMAP lcd_setmargins(0, 0); #endif lcd_clear_display(); lcd_puts(0, 0, "MAS codec reg read:"); while(1) { for (r = 0; r < 4; r++) { i = mas_codec_readreg(addr + r); snprintf(buf, 30, "0x%02x: %08x", addr + r, i); lcd_puts(1, r+1, buf); } lcd_update(); switch(button_get_w_tmo(HZ/16)) { case BUTTON_DOWN: addr += 4; break; case BUTTON_UP: if (addr) { addr -= 4; } break; case BUTTON_LEFT | BUTTON_REL: case BUTTON_OFF | BUTTON_REL: return false; } } return false; } #endif #ifdef HAVE_LCD_BITMAP /* * view_battery() shows a automatically scaled graph of the battery voltage * over time. Usable for estimating battery life / charging rate. * The power_history array is updated in power_thread of powermgmt.c. */ #define BAT_FIRST_VAL MAX(POWER_HISTORY_LEN - LCD_WIDTH - 1, 0) #define BAT_YSPACE (LCD_HEIGHT - 20) bool view_battery(void) { int view = 0; int i, x, y; int maxv, minv; char buf[32]; #ifdef HAVE_LCD_BITMAP lcd_setmargins(0, 0); #endif while(1) { switch (view) { case 0: /* voltage history graph */ /* Find maximum and minimum voltage for scaling */ maxv = minv = 0; for (i = BAT_FIRST_VAL; i < POWER_HISTORY_LEN; i++) { if (power_history[i] > maxv) maxv = power_history[i]; if ((minv == 0) || ((power_history[i]) && (power_history[i] < minv)) ) { minv = power_history[i]; } } if (minv < 1) minv = 1; if (maxv < 2) maxv = 2; lcd_clear_display(); lcd_puts(0, 0, "Battery voltage:"); snprintf(buf, 30, "scale %d.%02d-%d.%02d V", minv / 100, minv % 100, maxv / 100, maxv % 100); lcd_puts(0, 1, buf); x = 0; for (i = BAT_FIRST_VAL+1; i < POWER_HISTORY_LEN; i++) { y = (power_history[i] - minv) * BAT_YSPACE / (maxv - minv); lcd_clearline(x, LCD_HEIGHT-1, x, 20); lcd_drawline(x, LCD_HEIGHT-1, x, MIN(MAX(LCD_HEIGHT-1 - y, 20), LCD_HEIGHT-1)); x++; } break; case 1: /* status: */ lcd_clear_display(); lcd_puts(0, 0, "Power status:"); y = (adc_read(ADC_UNREG_POWER) * BATTERY_SCALE_FACTOR) / 10000; snprintf(buf, 30, "Battery: %d.%02d V", y / 100, y % 100); lcd_puts(0, 1, buf); y = (adc_read(ADC_EXT_POWER) * EXT_SCALE_FACTOR) / 10000; snprintf(buf, 30, "External: %d.%02d V", y / 100, y % 100); lcd_puts(0, 2, buf); snprintf(buf, 30, "Charger: %s", charger_inserted() ? "present" : "absent"); lcd_puts(0, 3, buf); #ifdef HAVE_CHARGE_CTRL snprintf(buf, 30, "Charging: %s", charger_enabled ? "yes" : "no"); lcd_puts(0, 4, buf); #endif y = ( power_history[POWER_HISTORY_LEN-1] * 100 + power_history[POWER_HISTORY_LEN-2] * 100 - power_history[POWER_HISTORY_LEN-1-CHARGE_END_NEGD+1] * 100 - power_history[POWER_HISTORY_LEN-1-CHARGE_END_NEGD] * 100 ) / CHARGE_END_NEGD / 2; snprintf(buf, 30, "short delta: %d", y); lcd_puts(0, 5, buf); y = ( power_history[POWER_HISTORY_LEN-1] * 100 + power_history[POWER_HISTORY_LEN-2] * 100 - power_history[POWER_HISTORY_LEN-1-CHARGE_END_ZEROD+1] * 100 - power_history[POWER_HISTORY_LEN-1-CHARGE_END_ZEROD] * 100 ) / CHARGE_END_ZEROD / 2; snprintf(buf, 30, "long delta: %d", y); lcd_puts(0, 6, buf); #ifdef HAVE_CHARGE_CTRL lcd_puts(0, 7, power_message); #endif break; case 2: /* voltage deltas: */ lcd_clear_display(); lcd_puts(0, 0, "Voltage deltas:"); for (i = 0; i <= 6; i++) { y = power_history[POWER_HISTORY_LEN-1-i] - power_history[POWER_HISTORY_LEN-1-i-1]; snprintf(buf, 30, "-%d min: %s%d.%02d V", i, (y < 0) ? "-" : "", ((y < 0) ? y * -1 : y) / 100, ((y < 0) ? y * -1 : y ) % 100); lcd_puts(0, i+1, buf); } break; case 3: /* remeining time estimation: */ lcd_clear_display(); #ifdef HAVE_CHARGE_CTRL snprintf(buf, 30, "charge_state: %d", charge_state); lcd_puts(0, 0, buf); snprintf(buf, 30, "Cycle time: %d m", powermgmt_last_cycle_startstop_min); lcd_puts(0, 1, buf); snprintf(buf, 30, "Lev.at cycle start: %d%%", powermgmt_last_cycle_level); lcd_puts(0, 2, buf); #endif snprintf(buf, 30, "Last PwrHist val: %d.%02d V", power_history[POWER_HISTORY_LEN-1] / 100, power_history[POWER_HISTORY_LEN-1] % 100); lcd_puts(0, 3, buf); snprintf(buf, 30, "battery level: %d%%", battery_level()); lcd_puts(0, 5, buf); snprintf(buf, 30, "Est. remaining: %d m", battery_time()); lcd_puts(0, 6, buf); #ifdef HAVE_CHARGE_CTRL snprintf(buf, 30, "Trickle sec: %d/60", trickle_sec); lcd_puts(0, 7, buf); #endif break; } lcd_update(); switch(button_get_w_tmo(HZ/2)) { case BUTTON_UP: if (view) view--; break; case BUTTON_DOWN: if (view < 3) view++; break; case BUTTON_LEFT | BUTTON_REL: case BUTTON_OFF | BUTTON_REL: return false; } } return false; } #endif #ifdef HAVE_MAS3507D bool dbg_mas_info(void) { int button; char buf[32]; int currval = 0; unsigned long val; unsigned long pll48, pll44, config; int pll_toggle = 0; #ifdef HAVE_LCD_BITMAP lcd_setmargins(0, 0); #endif while(1) { switch(currval) { case 0: mas_readmem(MAS_BANK_D1, 0xff7, &val, 1); lcd_puts(0, 0, "Design Code"); snprintf(buf, 32, "%05x ", val); break; case 1: lcd_puts(0, 0, "DC/DC mode "); snprintf(buf, 32, "8e: %05x ", mas_readreg(0x8e) & 0xfffff); break; case 2: lcd_puts(0, 0, "Mute/Bypass"); snprintf(buf, 32, "aa: %05x ", mas_readreg(0xaa) & 0xfffff); break; case 3: lcd_puts(0, 0, "PIOData "); snprintf(buf, 32, "ed: %05x ", mas_readreg(0xed) & 0xfffff); break; case 4: lcd_puts(0, 0, "Startup Cfg"); snprintf(buf, 32, "e6: %05x ", mas_readreg(0xe6) & 0xfffff); break; case 5: lcd_puts(0, 0, "KPrescale "); snprintf(buf, 32, "e7: %05x ", mas_readreg(0xe7) & 0xfffff); break; case 6: lcd_puts(0, 0, "KBass "); snprintf(buf, 32, "6b: %05x ", mas_readreg(0x6b) & 0xfffff); break; case 7: lcd_puts(0, 0, "KTreble "); snprintf(buf, 32, "6f: %05x ", mas_readreg(0x6f) & 0xfffff); break; case 8: mas_readmem(MAS_BANK_D0, 0x300, &val, 1); lcd_puts(0, 0, "Frame Count"); snprintf(buf, 32, "0/300: %04x", val & 0xffff); break; case 9: mas_readmem(MAS_BANK_D0, 0x301, &val, 1); lcd_puts(0, 0, "Status1 "); snprintf(buf, 32, "0/301: %04x", val & 0xffff); break; case 10: mas_readmem(MAS_BANK_D0, 0x302, &val, 1); lcd_puts(0, 0, "Status2 "); snprintf(buf, 32, "0/302: %04x", val & 0xffff); break; case 11: mas_readmem(MAS_BANK_D0, 0x303, &val, 1); lcd_puts(0, 0, "CRC Count "); snprintf(buf, 32, "0/303: %04x", val & 0xffff); break; case 12: mas_readmem(MAS_BANK_D0, 0x36d, &val, 1); lcd_puts(0, 0, "PLLOffset48"); snprintf(buf, 32, "0/36d %05x", val & 0xfffff); break; case 13: mas_readmem(MAS_BANK_D0, 0x32d, &val, 1); lcd_puts(0, 0, "PLLOffset48"); snprintf(buf, 32, "0/32d %05x", val & 0xfffff); break; case 14: mas_readmem(MAS_BANK_D0, 0x36e, &val, 1); lcd_puts(0, 0, "PLLOffset44"); snprintf(buf, 32, "0/36e %05x", val & 0xfffff); break; case 15: mas_readmem(MAS_BANK_D0, 0x32e, &val, 1); lcd_puts(0, 0, "PLLOffset44"); snprintf(buf, 32, "0/32e %05x", val & 0xfffff); break; case 16: mas_readmem(MAS_BANK_D0, 0x36f, &val, 1); lcd_puts(0, 0, "OutputConf "); snprintf(buf, 32, "0/36f %05x", val & 0xfffff); break; case 17: mas_readmem(MAS_BANK_D0, 0x32f, &val, 1); lcd_puts(0, 0, "OutputConf "); snprintf(buf, 32, "0/32f %05x", val & 0xfffff); break; case 18: mas_readmem(MAS_BANK_D1, 0x7f8, &val, 1); lcd_puts(0, 0, "LL Gain "); snprintf(buf, 32, "1/7f8 %05x", val & 0xfffff); break; case 19: mas_readmem(MAS_BANK_D1, 0x7f9, &val, 1); lcd_puts(0, 0, "LR Gain "); snprintf(buf, 32, "1/7f9 %05x", val & 0xfffff); break; case 20: mas_readmem(MAS_BANK_D1, 0x7fa, &val, 1); lcd_puts(0, 0, "RL Gain "); snprintf(buf, 32, "1/7fa %05x", val & 0xfffff); break; case 21: mas_readmem(MAS_BANK_D1, 0x7fb, &val, 1); lcd_puts(0, 0, "RR Gain "); snprintf(buf, 32, "1/7fb %05x", val & 0xfffff); break; case 22: lcd_puts(0, 0, "L Trailbits"); snprintf(buf, 32, "c5: %05x ", mas_readreg(0xc5) & 0xfffff); break; case 23: lcd_puts(0, 0, "R Trailbits"); snprintf(buf, 32, "c6: %05x ", mas_readreg(0xc6) & 0xfffff); break; } lcd_puts(0, 1, buf); button = button_get_w_tmo(HZ/5); switch(button) { case BUTTON_STOP: return false; case BUTTON_LEFT: currval--; if(currval < 0) currval = 23; break; case BUTTON_RIGHT: currval++; if(currval > 23) currval = 0; break; case BUTTON_PLAY: pll_toggle = !pll_toggle; if(pll_toggle) { /* 14.31818 MHz crystal */ pll48 = 0x5d9d0; pll44 = 0xfffceceb; config = 0; } else { /* 14.725 MHz crystal */ pll48 = 0x2d0de; pll44 = 0xfffa2319; config = 0; } mas_writemem(MAS_BANK_D0, 0x32d, &pll48, 1); mas_writemem(MAS_BANK_D0, 0x32e, &pll44, 1); mas_writemem(MAS_BANK_D0, 0x32f, &config, 1); mas_run(0x475); break; } } return false; } #endif static bool view_runtime(void) { char s[32]; bool done = false; int state = 1; while(!done) { int y=0; int t; int key; lcd_clear_display(); #ifdef HAVE_LCD_BITMAP lcd_puts(0, y++, "Running time:"); y++; #endif if (state & 1) { t = global_settings.runtime; lcd_puts(0, y++, "Current time"); } else { t = global_settings.topruntime; lcd_puts(0, y++, "Top time"); } snprintf(s, sizeof(s), "%dh %dm %ds", t / 3600, (t % 3600) / 60, t % 60); lcd_puts(0, y++, s); lcd_update(); /* Wait for a key to be pushed */ key = button_get_w_tmo(HZ*5); switch(key) { #ifdef HAVE_PLAYER_KEYPAD case BUTTON_STOP | BUTTON_REL: #else case BUTTON_OFF | BUTTON_REL: #endif done = true; break; case BUTTON_LEFT: case BUTTON_RIGHT: if (state == 1) state = 2; else state = 1; break; case BUTTON_PLAY: lcd_clear_display(); lcd_puts(0,0,"Clear time?"); lcd_puts(0,1,"PLAY = Yes"); lcd_update(); while (1) { key = button_get_w_tmo(HZ*10); if ( key & BUTTON_REL ) continue; if ( key == BUTTON_PLAY ) { if ( state == 1 ) global_settings.runtime = 0; else global_settings.topruntime = 0; } break; } break; } } return false; } static bool dbg_disk_info(void) { char buf[128]; bool done = false; int i; int page = 0; const int max_page = 4; unsigned short* identify_info = ata_get_identify(); while(!done) { int y=0; int key; lcd_clear_display(); #ifdef HAVE_LCD_BITMAP lcd_puts(0, y++, "Disk info:"); y++; #endif switch (page) { case 0: for (i=0; i < 20; i++) ((unsigned short*)buf)[i]=identify_info[i+27]; buf[40]=0; /* kill trailing space */ for (i=39; i && buf[i]==' '; i--) buf[i] = 0; lcd_puts(0, y++, "Model"); lcd_puts_scroll(0, y++, buf); break; case 1: for (i=0; i < 4; i++) ((unsigned short*)buf)[i]=identify_info[i+23]; buf[8]=0; lcd_puts(0, y++, "Firmware"); lcd_puts(0, y++, buf); break; case 2: snprintf(buf, sizeof buf, "%d MB", ((unsigned)identify_info[61] << 16 | (unsigned)identify_info[60]) / 2048 ); lcd_puts(0, y++, "Size"); lcd_puts(0, y++, buf); break; case 3: { unsigned int free; fat_size( NULL, &free ); snprintf(buf, sizeof buf, "%d MB", free / 1024 ); lcd_puts(0, y++, "Free"); lcd_puts(0, y++, buf); break; } case 4: snprintf(buf, sizeof buf, "%d ms", ata_spinup_time * (1000/HZ)); lcd_puts(0, y++, "Spinup time"); lcd_puts(0, y++, buf); break; } lcd_update(); /* Wait for a key to be pushed */ key = button_get_w_tmo(HZ*5); switch(key) { #ifdef HAVE_PLAYER_KEYPAD case BUTTON_STOP | BUTTON_REL: #else case BUTTON_OFF | BUTTON_REL: #endif done = true; break; case BUTTON_LEFT: if (--page < 0) page = max_page; break; case BUTTON_RIGHT: if (++page > max_page) page = 0; break; case BUTTON_PLAY: if (page == 3) { mpeg_stop(); /* stop playback, to avoid disk access */ lcd_clear_display(); lcd_puts(0,0,"Scanning"); lcd_puts(0,1,"disk..."); lcd_update(); fat_recalc_free(); } break; } lcd_stop_scroll(); } return false; } bool dbg_save_roms(void) { int fd; fd = creat("/internal_rom_0000-FFFF.bin", O_WRONLY); if(fd >= 0) { write(fd, (void *)0, 0x10000); close(fd); } fd = creat("/internal_rom_2000000-203FFFF.bin", O_WRONLY); if(fd >= 0) { write(fd, (void *)0x2000000, 0x40000); close(fd); } return false; } /* test code, to be removed later */ extern union /* defined in main.c */ { unsigned char port8 [512]; unsigned short port16[256]; unsigned port32[128]; } startup_io; bool dbg_save_io(void) /* dump the initial I/O space to disk */ { int fd; fd = creat("/startup_io.bin", O_WRONLY); if(fd >= 0) { write(fd, (void *)&startup_io, sizeof(startup_io)); close(fd); } return false; } /* end of test code */ bool debug_menu(void) { int m; bool result; struct menu_items items[] = { { "Dump ROM contents", dbg_save_roms }, { "Dump startup I/O", dbg_save_io }, { "View I/O ports", dbg_ports }, #ifdef HAVE_LCD_BITMAP #ifdef HAVE_RTC { "View/clr RTC RAM", dbg_rtc }, #endif /* HAVE_RTC */ #endif /* HAVE_LCD_BITMAP */ { "View OS stacks", dbg_os }, #ifdef HAVE_MAS3507D { "View MAS info", dbg_mas_info }, #endif { "View MAS regs", dbg_mas }, #ifdef HAVE_MAS3587F { "View MAS codec", dbg_mas_codec }, #endif #ifdef HAVE_LCD_BITMAP { "View battery", view_battery }, #endif { "View HW info", dbg_hw_info }, { "View partitions", dbg_partitions }, { "View disk info", dbg_disk_info }, #ifdef HAVE_LCD_BITMAP { "View mpeg thread", dbg_mpeg_thread }, #ifdef PM_DEBUG { "pm histogram", peak_meter_histogram}, #endif /* PM_DEBUG */ #endif /* HAVE_LCD_BITMAP */ { "View runtime", view_runtime }, }; m=menu_init( items, sizeof items / sizeof(struct menu_items) ); result = menu_run(m); menu_exit(m); return result; } #endif /* SIMULATOR */