/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2004 by Jens Arnold * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include #include "ata.h" #include "ata_mmc.h" #include "ata_idle_notify.h" #include "kernel.h" #include "thread.h" #include "led.h" #include "sh7034.h" #include "system.h" #include "debug.h" #include "panic.h" #include "usb.h" #include "power.h" #include "string.h" #include "hwcompat.h" #include "adc.h" #include "bitswap.h" #include "disk.h" /* for mount/unmount */ #define BLOCK_SIZE 512 /* fixed */ /* Command definitions */ #define CMD_GO_IDLE_STATE 0x40 /* R1 */ #define CMD_SEND_OP_COND 0x41 /* R1 */ #define CMD_SEND_CSD 0x49 /* R1 */ #define CMD_SEND_CID 0x4a /* R1 */ #define CMD_STOP_TRANSMISSION 0x4c /* R1 */ #define CMD_SEND_STATUS 0x4d /* R2 */ #define CMD_SET_BLOCKLEN 0x50 /* R1 */ #define CMD_READ_SINGLE_BLOCK 0x51 /* R1 */ #define CMD_READ_MULTIPLE_BLOCK 0x52 /* R1 */ #define CMD_WRITE_BLOCK 0x58 /* R1b */ #define CMD_WRITE_MULTIPLE_BLOCK 0x59 /* R1b */ #define CMD_READ_OCR 0x7a /* R3 */ /* Response formats: R1 = single byte, msb=0, various error flags R1b = R1 + busy token(s) R2 = 2 bytes (1st byte identical to R1), additional flags R3 = 5 bytes (R1 + OCR register) */ #define R1_PARAMETER_ERR 0x40 #define R1_ADDRESS_ERR 0x20 #define R1_ERASE_SEQ_ERR 0x10 #define R1_COM_CRC_ERR 0x08 #define R1_ILLEGAL_CMD 0x04 #define R1_ERASE_RESET 0x02 #define R1_IN_IDLE_STATE 0x01 #define R2_OUT_OF_RANGE 0x80 #define R2_ERASE_PARAM 0x40 #define R2_WP_VIOLATION 0x20 #define R2_CARD_ECC_FAIL 0x10 #define R2_CC_ERROR 0x08 #define R2_ERROR 0x04 #define R2_ERASE_SKIP 0x02 #define R2_CARD_LOCKED 0x01 /* Data start tokens */ #define DT_START_BLOCK 0xfe #define DT_START_WRITE_MULTIPLE 0xfc #define DT_STOP_TRAN 0xfd /* for compatibility */ int ata_spinup_time = 0; long last_disk_activity = -1; /* private variables */ static struct mutex mmc_mutex; #ifdef HAVE_HOTSWAP static bool mmc_monitor_enabled = true; static long mmc_stack[((DEFAULT_STACK_SIZE*2) + 0x800)/sizeof(long)]; #else static long mmc_stack[(DEFAULT_STACK_SIZE*2)/sizeof(long)]; #endif static const char mmc_thread_name[] = "mmc"; static struct event_queue mmc_queue; static bool initialized = false; static bool new_mmc_circuit; static enum { MMC_UNKNOWN, MMC_UNTOUCHED, MMC_TOUCHED } mmc_status = MMC_UNKNOWN; static enum { SER_POLL_WRITE, SER_POLL_READ, SER_DISABLED } serial_mode; static const unsigned char dummy[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; /* 2 buffers used alternatively for writing, including start token, * dummy CRC and an extra byte to keep word alignment. */ static unsigned char write_buffer[2][BLOCK_SIZE+4]; static int current_buffer = 0; static const unsigned char *send_block_addr = NULL; static tCardInfo card_info[2]; #ifndef HAVE_MULTIVOLUME static int current_card = 0; #endif static bool last_mmc_status = false; static int countdown = HZ/3; /* for mmc switch debouncing */ static bool usb_activity; /* monitoring the USB bridge */ static long last_usb_activity; /* private function declarations */ static int select_card(int card_no); static void deselect_card(void); static void setup_sci1(int bitrate_register); static void set_sci1_poll_read(void); static void write_transfer(const unsigned char *buf, int len) __attribute__ ((section(".icode"))); static void read_transfer(unsigned char *buf, int len) __attribute__ ((section(".icode"))); static unsigned char poll_byte(long timeout); static unsigned char poll_busy(long timeout); static unsigned char send_cmd(int cmd, unsigned long parameter, void *data); static int receive_cxd(unsigned char *buf); static int initialize_card(int card_no); static int receive_block(unsigned char *inbuf, long timeout); static void send_block_prepare(void); static int send_block_send(unsigned char start_token, long timeout, bool prepare_next); static void mmc_tick(void); /* implementation */ void mmc_enable_int_flash_clock(bool on) { /* Internal flash clock is enabled by setting PA12 high with the new * clock circuit, and by setting it low with the old clock circuit */ if (on ^ new_mmc_circuit) and_b(~0x10, &PADRH); /* clear clock gate PA12 */ else or_b(0x10, &PADRH); /* set clock gate PA12 */ } static int select_card(int card_no) { mutex_lock(&mmc_mutex); led(true); last_disk_activity = current_tick; mmc_enable_int_flash_clock(card_no == 0); if (!card_info[card_no].initialized) { setup_sci1(7); /* Initial rate: 375 kbps (need <= 400 per mmc specs) */ write_transfer(dummy, 10); /* allow the card to synchronize */ while (!(SSR1 & SCI_TEND)); } if (card_no == 0) /* internal */ and_b(~0x04, &PADRH); /* assert CS */ else /* external */ and_b(~0x02, &PADRH); /* assert CS */ if (card_info[card_no].initialized) { setup_sci1(card_info[card_no].bitrate_register); return 0; } else { return initialize_card(card_no); } } static void deselect_card(void) { while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */ or_b(0x06, &PADRH); /* deassert CS (both cards) */ led(false); mutex_unlock(&mmc_mutex); last_disk_activity = current_tick; } static void setup_sci1(int bitrate_register) { while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */ SCR1 = 0; /* disable serial port */ SMR1 = SYNC_MODE; /* no prescale */ BRR1 = bitrate_register; SSR1 = 0; SCR1 = SCI_TE; /* enable transmitter */ serial_mode = SER_POLL_WRITE; } static void set_sci1_poll_read(void) { while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */ SCR1 = 0; /* disable transmitter (& receiver) */ SCR1 = (SCI_TE|SCI_RE); /* re-enable transmitter & receiver */ while (!(SSR1 & SCI_TEND)); /* wait for SCI init completion (!) */ serial_mode = SER_POLL_READ; TDR1 = 0xFF; /* send do-nothing while reading */ } static void write_transfer(const unsigned char *buf, int len) { const unsigned char *buf_end = buf + len; register unsigned char data; if (serial_mode != SER_POLL_WRITE) { while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */ SCR1 = 0; /* disable transmitter & receiver */ SSR1 = 0; /* clear all flags */ SCR1 = SCI_TE; /* enable transmitter only */ serial_mode = SER_POLL_WRITE; } while (buf < buf_end) { data = fliptable[(signed char)(*buf++)]; /* bitswap */ while (!(SSR1 & SCI_TDRE)); /* wait for end of transfer */ TDR1 = data; /* write byte */ SSR1 = 0; /* start transmitting */ } } /* don't call this with len == 0 */ static void read_transfer(unsigned char *buf, int len) { unsigned char *buf_end = buf + len - 1; register signed char data; if (serial_mode != SER_POLL_READ) set_sci1_poll_read(); SSR1 = 0; /* start receiving first byte */ while (buf < buf_end) { while (!(SSR1 & SCI_RDRF)); /* wait for data */ data = RDR1; /* read byte */ SSR1 = 0; /* start receiving */ *buf++ = fliptable[data]; /* bitswap */ } while (!(SSR1 & SCI_RDRF)); /* wait for last byte */ *buf = fliptable[(signed char)(RDR1)]; /* read & bitswap */ } /* returns 0xFF on timeout, timeout is in bytes */ static unsigned char poll_byte(long timeout) { long i; unsigned char data = 0; /* stop the compiler complaining */ if (serial_mode != SER_POLL_READ) set_sci1_poll_read(); i = 0; do { SSR1 = 0; /* start receiving */ while (!(SSR1 & SCI_RDRF)); /* wait for data */ data = RDR1; /* read byte */ } while ((data == 0xFF) && (++i < timeout)); return fliptable[(signed char)data]; } /* returns 0 on timeout, timeout is in bytes */ static unsigned char poll_busy(long timeout) { long i; unsigned char data, dummy; if (serial_mode != SER_POLL_READ) set_sci1_poll_read(); /* get data response */ SSR1 = 0; /* start receiving */ while (!(SSR1 & SCI_RDRF)); /* wait for data */ data = fliptable[(signed char)(RDR1)]; /* read byte */ /* wait until the card is ready again */ i = 0; do { SSR1 = 0; /* start receiving */ while (!(SSR1 & SCI_RDRF)); /* wait for data */ dummy = RDR1; /* read byte */ } while ((dummy != 0xFF) && (++i < timeout)); return (dummy == 0xFF) ? data : 0; } /* Send MMC command and get response. Returns R1 byte directly. * Returns further R2 or R3 bytes in *data (can be NULL for other commands) */ static unsigned char send_cmd(int cmd, unsigned long parameter, void *data) { static struct { unsigned char cmd; unsigned long parameter; const unsigned char crc7; /* fixed, valid for CMD0 only */ const unsigned char trailer; } __attribute__((packed)) command = {0x40, 0, 0x95, 0xFF}; unsigned char ret; command.cmd = cmd; command.parameter = htobe32(parameter); write_transfer((unsigned char *)&command, sizeof(command)); ret = poll_byte(20); switch (cmd) { case CMD_SEND_CSD: /* R1 response, leave open */ case CMD_SEND_CID: case CMD_READ_SINGLE_BLOCK: case CMD_READ_MULTIPLE_BLOCK: return ret; case CMD_SEND_STATUS: /* R2 response, close with dummy */ read_transfer(data, 1); break; case CMD_READ_OCR: /* R3 response, close with dummy */ read_transfer(data, 4); break; default: /* R1 response, close with dummy */ break; /* also catches block writes */ } write_transfer(dummy, 1); return ret; } /* Receive CID/ CSD data (16 bytes) */ static int receive_cxd(unsigned char *buf) { if (poll_byte(20) != DT_START_BLOCK) { write_transfer(dummy, 1); return -1; /* not start of data */ } read_transfer(buf, 16); write_transfer(dummy, 3); /* 2 bytes dontcare crc + 1 byte trailer */ return 0; } static int initialize_card(int card_no) { int rc, i; int blk_exp, ts_exp, taac_exp; tCardInfo *card = &card_info[card_no]; static const char mantissa[] = { /* *10 */ 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80 }; static const int exponent[] = { /* use varies */ 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000 }; if (card_no == 1) mmc_status = MMC_TOUCHED; /* switch to SPI mode */ if (send_cmd(CMD_GO_IDLE_STATE, 0, NULL) != 0x01) return -1; /* error or no response */ /* initialize card */ for (i = HZ;;) /* try for 1 second*/ { sleep(1); if (send_cmd(CMD_SEND_OP_COND, 0, NULL) == 0) break; if (--i <= 0) return -2; /* timeout */ } /* get OCR register */ if (send_cmd(CMD_READ_OCR, 0, &card->ocr)) return -3; card->ocr = betoh32(card->ocr); /* no-op on big endian */ /* check voltage */ if (!(card->ocr & 0x00100000)) /* 3.2 .. 3.3 V */ return -4; /* get CSD register */ if (send_cmd(CMD_SEND_CSD, 0, NULL)) return -5; rc = receive_cxd((unsigned char*)card->csd); if (rc) return rc * 10 - 5; blk_exp = card_extract_bits(card->csd, 44, 4); if (blk_exp < 9) /* block size < 512 bytes not supported */ return -6; card->numblocks = (card_extract_bits(card->csd, 54, 12) + 1) << (card_extract_bits(card->csd, 78, 3) + 2 + blk_exp - 9); card->blocksize = BLOCK_SIZE; /* max transmission speed, clock divider */ ts_exp = card_extract_bits(card->csd, 29, 3); ts_exp = (ts_exp > 3) ? 3 : ts_exp; card->speed = mantissa[card_extract_bits(card->csd, 25, 4)] * exponent[ts_exp + 4]; card->bitrate_register = (FREQ/4-1) / card->speed; /* NSAC, TSAC, read timeout */ card->nsac = 100 * card_extract_bits(card->csd, 16, 8); card->tsac = mantissa[card_extract_bits(card->csd, 9, 4)]; taac_exp = card_extract_bits(card->csd, 13, 3); card->read_timeout = ((FREQ/4) / (card->bitrate_register + 1) * card->tsac / exponent[9 - taac_exp] + (10 * card->nsac)); card->read_timeout /= 8; /* clocks -> bytes */ card->tsac = card->tsac * exponent[taac_exp] / 10; /* r2w_factor, write timeout */ card->r2w_factor = 1 << card_extract_bits(card->csd, 99, 3); card->write_timeout = card->read_timeout * card->r2w_factor; if (card->r2w_factor > 32) /* Such cards often need extra read delay */ card->read_timeout *= 4; /* switch to full speed */ setup_sci1(card->bitrate_register); /* always use 512 byte blocks */ if (send_cmd(CMD_SET_BLOCKLEN, BLOCK_SIZE, NULL)) return -7; /* get CID register */ if (send_cmd(CMD_SEND_CID, 0, NULL)) return -8; rc = receive_cxd((unsigned char*)card->cid); if (rc) return rc * 10 - 8; card->initialized = true; return 0; } tCardInfo *mmc_card_info(int card_no) { tCardInfo *card = &card_info[card_no]; if (!card->initialized && ((card_no == 0) || mmc_detect())) { select_card(card_no); deselect_card(); } return card; } /* Receive one block with DMA and bitswap it (chasing bitswap). */ static int receive_block(unsigned char *inbuf, long timeout) { unsigned long buf_end; if (poll_byte(timeout) != DT_START_BLOCK) { write_transfer(dummy, 1); return -1; /* not start of data */ } while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */ SCR1 = 0; /* disable serial */ SSR1 = 0; /* clear all flags */ /* setup DMA channel 0 */ CHCR0 = 0; /* disable */ SAR0 = RDR1_ADDR; DAR0 = (unsigned long) inbuf; DTCR0 = BLOCK_SIZE; CHCR0 = 0x4601; /* fixed source address, RXI1, enable */ DMAOR = 0x0001; SCR1 = (SCI_RE|SCI_RIE); /* kick off DMA */ /* DMA receives 2 bytes more than DTCR2, but the last 2 bytes are not * stored. The first extra byte is available from RDR1 after the DMA ends, * the second one is lost because of the SCI overrun. However, this * behaviour conveniently discards the crc. */ yield(); /* be nice */ /* Bitswap received data, chasing the DMA pointer */ buf_end = (unsigned long)inbuf + BLOCK_SIZE; do { /* Call bitswap whenever (a multiple of) 8 bytes are * available (value optimised by experimentation). */ int swap_now = (DAR0 - (unsigned long)inbuf) & ~0x00000007; if (swap_now) { bitswap(inbuf, swap_now); inbuf += swap_now; } } while ((unsigned long)inbuf < buf_end); while (!(CHCR0 & 0x0002)); /* wait for end of DMA */ while (!(SSR1 & SCI_ORER)); /* wait for the trailing bytes */ SCR1 = 0; serial_mode = SER_DISABLED; write_transfer(dummy, 1); /* send trailer */ last_disk_activity = current_tick; return 0; } /* Prepare a block for sending by copying it to the next write buffer * and bitswapping it. */ static void send_block_prepare(void) { unsigned char *dest; current_buffer ^= 1; /* toggle buffer */ dest = write_buffer[current_buffer] + 2; memcpy(dest, send_block_addr, BLOCK_SIZE); bitswap(dest, BLOCK_SIZE); send_block_addr += BLOCK_SIZE; } /* Send one block with DMA from the current write buffer, possibly preparing * the next block within the next write buffer in the background. */ static int send_block_send(unsigned char start_token, long timeout, bool prepare_next) { int rc = 0; unsigned char *curbuf = write_buffer[current_buffer]; curbuf[1] = fliptable[(signed char)start_token]; *(unsigned short *)(curbuf + BLOCK_SIZE + 2) = 0xFFFF; while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */ SCR1 = 0; /* disable serial */ SSR1 = 0; /* clear all flags */ /* setup DMA channel 0 */ CHCR0 = 0; /* disable */ SAR0 = (unsigned long)(curbuf + 1); DAR0 = TDR1_ADDR; DTCR0 = BLOCK_SIZE + 3; /* start token + block + dummy crc */ CHCR0 = 0x1701; /* fixed dest. address, TXI1, enable */ DMAOR = 0x0001; SCR1 = (SCI_TE|SCI_TIE); /* kick off DMA */ if (prepare_next) send_block_prepare(); yield(); /* be nice */ while (!(CHCR0 & 0x0002)); /* wait for end of DMA */ while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */ SCR1 = 0; serial_mode = SER_DISABLED; if ((poll_busy(timeout) & 0x1F) != 0x05) /* something went wrong */ rc = -1; write_transfer(dummy, 1); last_disk_activity = current_tick; return rc; } int ata_read_sectors(IF_MV2(int drive,) unsigned long start, int incount, void* inbuf) { int rc = 0; int lastblock = 0; unsigned long end_block; tCardInfo *card; #ifndef HAVE_MULTIVOLUME int drive = current_card; #endif card = &card_info[drive]; rc = select_card(drive); if (rc) { rc = rc * 10 - 1; goto error; } end_block = start + incount; if (end_block > card->numblocks) { rc = -2; goto error; } /* Some cards don't like reading the very last block with * CMD_READ_MULTIPLE_BLOCK, so make sure this block is always * read with CMD_READ_SINGLE_BLOCK. */ if (end_block == card->numblocks) lastblock = 1; if (incount > 1) { /* MMC4.2: make multiplication conditional */ if (send_cmd(CMD_READ_MULTIPLE_BLOCK, start * BLOCK_SIZE, NULL)) { rc = -3; goto error; } while (--incount >= lastblock) { rc = receive_block(inbuf, card->read_timeout); if (rc) { /* If an error occurs during multiple block reading, the * host still needs to send CMD_STOP_TRANSMISSION */ send_cmd(CMD_STOP_TRANSMISSION, 0, NULL); rc = rc * 10 - 4; goto error; } inbuf += BLOCK_SIZE; start++; /* ^^ necessary for the abovementioned last block special case */ } if (send_cmd(CMD_STOP_TRANSMISSION, 0, NULL)) { rc = -5; goto error; } } if (incount > 0) { /* MMC4.2: make multiplication conditional */ if (send_cmd(CMD_READ_SINGLE_BLOCK, start * BLOCK_SIZE, NULL)) { rc = -6; goto error; } rc = receive_block(inbuf, card->read_timeout); if (rc) { rc = rc * 10 - 7; goto error; } } error: deselect_card(); return rc; } int ata_write_sectors(IF_MV2(int drive,) unsigned long start, int count, const void* buf) { int rc = 0; int write_cmd; unsigned char start_token; tCardInfo *card; #ifndef HAVE_MULTIVOLUME int drive = current_card; #endif card = &card_info[drive]; rc = select_card(drive); if (rc) { rc = rc * 10 - 1; goto error; } if (start + count > card->numblocks) panicf("Writing past end of card"); send_block_addr = buf; send_block_prepare(); if (count > 1) { write_cmd = CMD_WRITE_MULTIPLE_BLOCK; start_token = DT_START_WRITE_MULTIPLE; } else { write_cmd = CMD_WRITE_BLOCK; start_token = DT_START_BLOCK; } /* MMC4.2: make multiplication conditional */ if (send_cmd(write_cmd, start * BLOCK_SIZE, NULL)) { rc = -2; goto error; } while (--count >= 0) { rc = send_block_send(start_token, card->write_timeout, count > 0); if (rc) { rc = rc * 10 - 3; break; /* If an error occurs during multiple block writing, * the STOP_TRAN token still needs to be sent. */ } } if (write_cmd == CMD_WRITE_MULTIPLE_BLOCK) { static const unsigned char stop_tran = DT_STOP_TRAN; write_transfer(&stop_tran, 1); poll_busy(card->write_timeout); } error: deselect_card(); return rc; } void ata_spindown(int seconds) { (void)seconds; } bool ata_disk_is_active(void) { /* this is correct unless early return from write gets implemented */ return mmc_mutex.locked; } void ata_sleep(void) { } void ata_spin(void) { } static void mmc_thread(void) { struct queue_event ev; bool idle_notified = false; while (1) { queue_wait_w_tmo(&mmc_queue, &ev, HZ); switch ( ev.id ) { case SYS_USB_CONNECTED: usb_acknowledge(SYS_USB_CONNECTED_ACK); /* Wait until the USB cable is extracted again */ usb_wait_for_disconnect(&mmc_queue); break; #ifdef HAVE_HOTSWAP case SYS_HOTSWAP_INSERTED: disk_mount(1); /* mount MMC */ queue_broadcast(SYS_FS_CHANGED, 0); break; case SYS_HOTSWAP_EXTRACTED: disk_unmount(1); /* release "by force" */ queue_broadcast(SYS_FS_CHANGED, 0); break; #endif default: if (TIME_BEFORE(current_tick, last_disk_activity+(3*HZ))) { idle_notified = false; } else { if (!idle_notified) { call_ata_idle_notifys(false); idle_notified = true; } } break; } } } #ifdef HAVE_HOTSWAP void mmc_enable_monitoring(bool on) { mmc_monitor_enabled = on; } #endif bool mmc_detect(void) { return adc_read(ADC_MMC_SWITCH) < 0x200 ? true : false; } bool mmc_touched(void) { if (mmc_status == MMC_UNKNOWN) /* try to detect */ { mutex_lock(&mmc_mutex); setup_sci1(7); /* safe value */ and_b(~0x02, &PADRH); /* assert CS */ if (send_cmd(CMD_SEND_OP_COND, 0, NULL) == 0xFF) mmc_status = MMC_UNTOUCHED; else mmc_status = MMC_TOUCHED; deselect_card(); } return mmc_status == MMC_TOUCHED; } bool mmc_usb_active(int delayticks) { /* reading "inactive" is delayed by user-supplied monoflop value */ return (usb_activity || TIME_BEFORE(current_tick, last_usb_activity + delayticks)); } static void mmc_tick(void) { bool current_status; #ifndef HAVE_HOTSWAP const bool mmc_monitor_enabled = true; #endif if (new_mmc_circuit) /* USB bridge activity is 0 on idle, ~527 on active */ current_status = adc_read(ADC_USB_ACTIVE) > 0x100; else current_status = adc_read(ADC_USB_ACTIVE) < 0x190; if (!current_status && usb_activity) last_usb_activity = current_tick; usb_activity = current_status; if (mmc_monitor_enabled) { current_status = mmc_detect(); /* Only report when the status has changed */ if (current_status != last_mmc_status) { last_mmc_status = current_status; countdown = HZ/3; } else { /* Count down until it gets negative */ if (countdown >= 0) countdown--; if (countdown == 0) { if (current_status) { queue_broadcast(SYS_HOTSWAP_INSERTED, 0); } else { queue_broadcast(SYS_HOTSWAP_EXTRACTED, 0); mmc_status = MMC_UNTOUCHED; card_info[1].initialized = false; } } } } } int ata_soft_reset(void) { return 0; } void ata_enable(bool on) { PBCR1 &= ~0x0CF0; /* PB13, PB11 and PB10 become GPIO, * if not modified below */ if (on) PBCR1 |= 0x08A0; /* as SCK1, TxD1, RxD1 */ and_b(~0x80, &PADRL); /* assert flash reset */ sleep(HZ/100); or_b(0x80, &PADRL); /* de-assert flash reset */ sleep(HZ/100); card_info[0].initialized = false; card_info[1].initialized = false; } int ata_init(void) { int rc = 0; if (!initialized) { mutex_init(&mmc_mutex); queue_init(&mmc_queue, true); } mutex_lock(&mmc_mutex); led(false); last_mmc_status = mmc_detect(); #ifndef HAVE_MULTIVOLUME /* Use MMC if inserted, internal flash otherwise */ current_card = last_mmc_status ? 1 : 0; #endif if (!initialized) { if (!last_mmc_status) mmc_status = MMC_UNTOUCHED; /* Port setup */ PACR1 &= ~0x0F3C; /* GPIO function for PA13 (flash busy), PA12 * (clk gate), PA10 (flash CS), PA9 (MMC CS) */ PACR2 &= ~0x4000; /* GPIO for PA7 (flash reset) */ PADR |= 0x0680; /* set all the selects + reset high (=inactive) */ PAIOR |= 0x1680; /* make outputs for them and the PA12 clock gate */ PBCR1 &= ~0x0CF0; /* GPIO function for PB13, PB11 and PB10 */ PBDR |= 0x2C00; /* SCK1, TxD1 and RxD1 high in GPIO */ PBIOR |= 0x2000; /* SCK1 output */ PBIOR &= ~0x0C00; /* TxD1, RxD1 input */ IPRE &= 0x0FFF; /* disable SCI1 interrupts for the CPU */ new_mmc_circuit = ((HW_MASK & MMC_CLOCK_POLARITY) != 0); create_thread(mmc_thread, mmc_stack, sizeof(mmc_stack), 0, mmc_thread_name IF_PRIO(, PRIORITY_SYSTEM) IF_COP(, CPU)); tick_add_task(mmc_tick); initialized = true; } ata_enable(true); mutex_unlock(&mmc_mutex); return rc; }