// Game_Music_Emu 0.6-pre. http://www.slack.net/~ant/ #include "sgc_emu.h" /* Copyright (C) 2009 Shay Green. This module is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "blargg_source.h" int const osc_count = sms_osc_count + fm_apu_osc_count; int const stereo = 2; // number of channels for stereo int const silence_max = 6; // seconds int const silence_threshold = 0x10; long const fade_block_size = 512; int const fade_shift = 8; // fade ends with gain at 1.0 / (1 << fade_shift) const char gme_wrong_file_type [] = "Wrong file type for this emulator"; static void clear_track_vars( struct Sgc_Emu* this ) { this->current_track = -1; this->out_time = 0; this->emu_time = 0; this->emu_track_ended_ = true; this->track_ended = true; this->fade_start = INT_MAX / 2 + 1; this->fade_step = 1; this->silence_time = 0; this->silence_count = 0; this->buf_remain = 0; /* warning(); // clear warning */ } void Sgc_init( struct Sgc_Emu* this ) { assert( offsetof (struct header_t,copyright [32]) == header_size ); this->sample_rate = 0; this->mute_mask_ = 0; this->tempo = (int)FP_ONE_TEMPO; this->gain = (int)FP_ONE_GAIN; this->voice_count = 0; // defaults this->max_initial_silence = 2; this->silence_lookahead = 6; this->ignore_silence = false; Sms_apu_init( &this->apu ); Fm_apu_create( &this->fm_apu ); Rom_init( &this->rom, 0x4000 ); Z80_init( &this->cpu ); Sound_set_gain( this, (int)(FP_ONE_GAIN*1.2) ); // Unload clear_track_vars( this ); } // Setup blargg_err_t Sgc_load_mem( struct Sgc_Emu* this, const void* data, long size ) { RETURN_ERR( Rom_load( &this->rom, data, size, header_size, &this->header, 0 ) ); if ( !valid_tag( &this->header ) ) return gme_wrong_file_type; /* if ( header.vers != 1 ) warning( "Unknown file version" ); */ /* if ( header.system > 2 ) warning( "Unknown system" ); */ addr_t load_addr = get_le16( this->header.load_addr ); /* if ( load_addr < 0x400 ) set_warning( "Invalid load address" ); */ Rom_set_addr( &this->rom, load_addr ); this->play_period = clock_rate( this ) / 60; if ( sega_mapping( this ) && Fm_apu_supported() ) RETURN_ERR( Fm_apu_init( &this->fm_apu, clock_rate( this ), clock_rate( this ) / 72 ) ); this->m3u.size = 0; this->track_count = this->header.song_count; this->voice_count = sega_mapping( this ) ? osc_count : sms_osc_count; Sms_apu_volume( &this->apu, this->gain ); Fm_apu_volume( &this->fm_apu, this->gain ); // Setup buffer this->clock_rate_ = clock_rate( this ); Buffer_clock_rate( &this->stereo_buf, clock_rate( this ) ); this->buf_changed_count = Buffer_channels_changed_count( &this->stereo_buf ); Sound_set_tempo( this, this->tempo ); // Remute voices Sound_mute_voices( this, this->mute_mask_ ); return 0; } static void Sound_set_voice( struct Sgc_Emu* this, int i, struct Blip_Buffer* c, struct Blip_Buffer* l, struct Blip_Buffer* r ) { if ( i < sms_osc_count ) Sms_apu_set_output( &this->apu, i, c, l, r ); else Fm_apu_set_output( &this->fm_apu, c ); } static blargg_err_t run_clocks( struct Sgc_Emu* this, blip_time_t* duration, int msec ) { #if defined(ROCKBOX) (void) msec; #endif cpu_time_t t = *duration; while ( Z80_time( &this->cpu ) < t ) { cpu_time_t next = min( t, this->next_play ); if ( run_cpu( this, next ) ) { /* warning( "Unsupported CPU instruction" ); */ Z80_set_time( &this->cpu, next ); } if ( this->cpu.r.pc == this->idle_addr ) Z80_set_time( &this->cpu, next ); if ( Z80_time( &this->cpu ) >= this->next_play ) { this->next_play += this->play_period; if ( this->cpu.r.pc == this->idle_addr ) jsr( this, this->header.play_addr ); } } this->next_play -= t; check( this->next_play >= 0 ); Z80_adjust_time( &this->cpu, -t ); Sms_apu_end_frame( &this->apu, t ); if ( sega_mapping( this ) && this->fm_accessed ) { if ( Fm_apu_supported() ) Fm_apu_end_frame( &this->fm_apu, t ); /* else warning( "FM sound not supported" ); */ } return 0; } // Emulation void cpu_out( struct Sgc_Emu* this, cpu_time_t time, addr_t addr, int data ) { int port = addr & 0xFF; if ( sega_mapping( this ) ) { switch ( port ) { case 0x06: Sms_apu_write_ggstereo( &this->apu, time, data ); return; case 0x7E: case 0x7F: Sms_apu_write_data( &this->apu, time, data ); /* dprintf( "$7E<-%02X\n", data ); */ return; case 0xF0: this->fm_accessed = true; if ( Fm_apu_supported() ) Fm_apu_write_addr( &this->fm_apu, data );//, dprintf( "$F0<-%02X\n", data ); return; case 0xF1: this->fm_accessed = true; if ( Fm_apu_supported() ) Fm_apu_write_data( &this->fm_apu, time, data );//, dprintf( "$F1<-%02X\n", data ); return; } } else if ( port >= 0xE0 ) { Sms_apu_write_data( &this->apu, time, data ); return; } } void jsr( struct Sgc_Emu* this, byte addr [2] ) { *Z80_write( &this->cpu, --this->cpu.r.sp ) = this->idle_addr >> 8; *Z80_write( &this->cpu, --this->cpu.r.sp ) = this->idle_addr & 0xFF; this->cpu.r.pc = get_le16( addr ); } static void set_bank( struct Sgc_Emu* this, int bank, void const* data ) { //dprintf( "map bank %d to %p\n", bank, (byte*) data - rom.at_addr( 0 ) ); Z80_map_mem( &this->cpu, bank * this->rom.bank_size, this->rom.bank_size, this->unmapped_write, data ); } void cpu_write( struct Sgc_Emu* this, addr_t addr, int data ) { if ( (addr ^ 0xFFFC) > 3 || !sega_mapping( this ) ) { *Z80_write( &this->cpu, addr ) = data; return; } switch ( addr ) { case 0xFFFC: Z80_map_mem_rw( &this->cpu, 2 * this->rom.bank_size, this->rom.bank_size, this->ram2 ); if ( data & 0x08 ) break; this->bank2 = this->ram2; // FALL THROUGH case 0xFFFF: { bool rom_mapped = (Z80_read( &this->cpu, 2 * this->rom.bank_size ) == this->bank2); this->bank2 = Rom_at_addr( &this->rom, data * this->rom.bank_size ); if ( rom_mapped ) set_bank( this, 2, this->bank2 ); break; } case 0xFFFD: set_bank( this, 0, Rom_at_addr( &this->rom, data * this->rom.bank_size ) ); break; case 0xFFFE: set_bank( this, 1, Rom_at_addr( &this->rom, data * this->rom.bank_size ) ); break; } } blargg_err_t Sgc_set_sample_rate( struct Sgc_Emu* this, long rate ) { require( !this->sample_rate ); // sample rate can't be changed once set Buffer_init( &this->stereo_buf ); Buffer_set_sample_rate( &this->stereo_buf, rate, 1000 / 20 ); // Set buffer bass Buffer_bass_freq( &this->stereo_buf, 80 ); this->sample_rate = rate; return 0; } void Sound_mute_voice( struct Sgc_Emu* this, int index, bool mute ) { require( (unsigned) index < (unsigned) this->voice_count ); int bit = 1 << index; int mask = this->mute_mask_ | bit; if ( !mute ) mask ^= bit; Sound_mute_voices( this, mask ); } void Sound_mute_voices( struct Sgc_Emu* this, int mask ) { require( this->sample_rate ); // sample rate must be set first this->mute_mask_ = mask; int i; for ( i = this->voice_count; i--; ) { if ( mask & (1 << i) ) { Sound_set_voice( this, i, 0, 0, 0 ); } else { struct channel_t ch = Buffer_channel( &this->stereo_buf ); assert( (ch.center && ch.left && ch.right) || (!ch.center && !ch.left && !ch.right) ); // all or nothing Sound_set_voice( this, i, ch.center, ch.left, ch.right ); } } } void Sound_set_tempo( struct Sgc_Emu* this, int t ) { require( this->sample_rate ); // sample rate must be set first int const min = (int)(FP_ONE_TEMPO*0.02); int const max = (int)(FP_ONE_TEMPO*4.00); if ( t < min ) t = min; if ( t > max ) t = max; this->tempo = t; this->play_period = (int) ((clock_rate( this ) * FP_ONE_TEMPO) / (this->header.rate ? 50 : 60) / t); } void fill_buf( struct Sgc_Emu* this ) ICODE_ATTR; blargg_err_t Sgc_start_track( struct Sgc_Emu* this, int track ) { clear_track_vars( this ); // Remap track if playlist available if ( this->m3u.size > 0 ) { struct entry_t* e = &this->m3u.entries[track]; track = e->track; } this->current_track = track; if ( sega_mapping( this ) ) { Sms_apu_reset( &this->apu, 0, 0 ); Fm_apu_reset( &this->fm_apu ); this->fm_accessed = false; } else { Sms_apu_reset( &this->apu, 0x0003, 15 ); } memset( this->ram , 0, sizeof this->ram ); memset( this->ram2, 0, sizeof this->ram2 ); memset( this->vectors, 0xFF, sizeof this->vectors ); Z80_reset( &this->cpu, this->unmapped_write, this->rom.unmapped ); if ( sega_mapping( this ) ) { this->vectors_addr = 0x10000 - page_size; this->idle_addr = this->vectors_addr; int i; for ( i = 1; i < 8; ++i ) { this->vectors [i*8 + 0] = 0xC3; // JP addr this->vectors [i*8 + 1] = this->header.rst_addrs [i - 1] & 0xff; this->vectors [i*8 + 2] = this->header.rst_addrs [i - 1] >> 8; } Z80_map_mem_rw( &this->cpu, 0xC000, 0x2000, this->ram ); Z80_map_mem( &this->cpu, this->vectors_addr, page_size, this->unmapped_write, this->vectors ); this->bank2 = NULL; for ( i = 0; i < 4; ++i ) cpu_write( this, 0xFFFC + i, this->header.mapping [i] ); } else { if ( !this->coleco_bios ) return "Coleco BIOS not set"; /* BLARGG_ERR( BLARGG_ERR_CALLER, "Coleco BIOS not set" ); */ this->vectors_addr = 0; Z80_map_mem( &this->cpu, 0, 0x2000, this->unmapped_write, this->coleco_bios ); int i; for ( i = 0; i < 8; ++i ) Z80_map_mem_rw( &this->cpu, 0x6000 + i*0x400, 0x400, this->ram ); this->idle_addr = 0x2000; Z80_map_mem( &this->cpu, 0x2000, page_size, this->unmapped_write, this->vectors ); for ( i = 0; i < 0x8000 / this->rom.bank_size; ++i ) { int addr = 0x8000 + i*this->rom.bank_size; Z80_map_mem( &this->cpu, addr, this->rom.bank_size, this->unmapped_write, Rom_at_addr( &this->rom, addr ) ); } } this->cpu.r.sp = get_le16( this->header.stack_ptr ); this->cpu.r.b.a = track; this->next_play = this->play_period; jsr( this, this->header.init_addr ); Buffer_clear( &this->stereo_buf ); this->emu_track_ended_ = false; this->track_ended = false; if ( !this->ignore_silence ) { // play until non-silence or end of track long end; for ( end = this->max_initial_silence * stereo * this->sample_rate; this->emu_time < end; ) { fill_buf( this ); if ( this->buf_remain | (int) this->emu_track_ended_ ) break; } this->emu_time = this->buf_remain; this->out_time = 0; this->silence_time = 0; this->silence_count = 0; } /* return track_ended() ? warning() : 0; */ return 0; } // Tell/Seek static blargg_long msec_to_samples( blargg_long msec, long sample_rate ) { blargg_long sec = msec / 1000; msec -= sec * 1000; return (sec * sample_rate + msec * sample_rate / 1000) * stereo; } long Track_tell( struct Sgc_Emu* this ) { blargg_long rate = this->sample_rate * stereo; blargg_long sec = this->out_time / rate; return sec * 1000 + (this->out_time - sec * rate) * 1000 / rate; } blargg_err_t Track_seek( struct Sgc_Emu* this, long msec ) { blargg_long time = msec_to_samples( msec, this->sample_rate ); if ( time < this->out_time ) RETURN_ERR( Sgc_start_track( this, this->current_track ) ); return Track_skip( this, time - this->out_time ); } blargg_err_t skip_( struct Sgc_Emu* this, long count ) ICODE_ATTR; blargg_err_t Track_skip( struct Sgc_Emu* this, long count ) { require( this->current_track >= 0 ); // start_track() must have been called already this->out_time += count; // remove from silence and buf first { long n = min( count, this->silence_count ); this->silence_count -= n; count -= n; n = min( count, this->buf_remain ); this->buf_remain -= n; count -= n; } if ( count && !this->emu_track_ended_ ) { this->emu_time += count; // End track if error if ( skip_( this, count ) ) { this->emu_track_ended_ = true; } } if ( !(this->silence_count | this->buf_remain) ) // caught up to emulator, so update track ended this->track_ended |= this->emu_track_ended_; return 0; } blargg_err_t play_( struct Sgc_Emu* this, long count, sample_t* out ) ICODE_ATTR; blargg_err_t skip_( struct Sgc_Emu* this, long count ) { // for long skip, mute sound const long threshold = 30000; if ( count > threshold ) { int saved_mute = this->mute_mask_; Sound_mute_voices( this, ~0 ); while ( count > threshold / 2 && !this->emu_track_ended_ ) { RETURN_ERR( play_( this, buf_size, this->buf ) ); count -= buf_size; } Sound_mute_voices( this, saved_mute ); } while ( count && !this->emu_track_ended_ ) { long n = buf_size; if ( n > count ) n = count; count -= n; RETURN_ERR( play_( this, n, this->buf ) ); } return 0; } // Fading void Track_set_fade( struct Sgc_Emu* this, long start_msec, long length_msec ) { this->fade_step = this->sample_rate * length_msec / (fade_block_size * fade_shift * 1000 / stereo); this->fade_start = msec_to_samples( start_msec, this->sample_rate ); } // unit / pow( 2.0, (double) x / step ) static int int_log( blargg_long x, int step, int unit ) { int shift = x / step; int fraction = (x - shift * step) * unit / step; return ((unit - fraction) + (fraction >> 1)) >> shift; } static void handle_fade( struct Sgc_Emu* this, long out_count, sample_t* out ) { int i; for ( i = 0; i < out_count; i += fade_block_size ) { int const shift = 14; int const unit = 1 << shift; int gain = int_log( (this->out_time + i - this->fade_start) / fade_block_size, this->fade_step, unit ); if ( gain < (unit >> fade_shift) ) this->track_ended = this->emu_track_ended_ = true; sample_t* io = &out [i]; int count; for ( count = min( fade_block_size, out_count - i ); count; --count ) { *io = (sample_t) ((*io * gain) >> shift); ++io; } } } // Silence detection static void emu_play( struct Sgc_Emu* this, long count, sample_t* out ) { check( this->current_track_ >= 0 ); this->emu_time += count; if ( this->current_track >= 0 && !this->emu_track_ended_ ) { // End track if error if ( play_( this, count, out ) ) this->emu_track_ended_ = true; } else memset( out, 0, count * sizeof *out ); } // number of consecutive silent samples at end static long count_silence( sample_t* begin, long size ) { sample_t first = *begin; *begin = silence_threshold; // sentinel sample_t* p = begin + size; while ( (unsigned) (*--p + silence_threshold / 2) <= (unsigned) silence_threshold ) { } *begin = first; return size - (p - begin); } // fill internal buffer and check it for silence void fill_buf( struct Sgc_Emu* this ) { assert( !this->buf_remain ); if ( !this->emu_track_ended_ ) { emu_play( this, buf_size, this->buf ); long silence = count_silence( this->buf, buf_size ); if ( silence < buf_size ) { this->silence_time = this->emu_time - silence; this->buf_remain = buf_size; return; } } this->silence_count += buf_size; } blargg_err_t Sgc_play( struct Sgc_Emu* this, long out_count, sample_t* out ) { if ( this->track_ended ) { memset( out, 0, out_count * sizeof *out ); } else { require( this->current_track >= 0 ); require( out_count % stereo == 0 ); assert( this->emu_time >= this->out_time ); // prints nifty graph of how far ahead we are when searching for silence //debug_printf( "%*s \n", int ((emu_time - out_time) * 7 / sample_rate()), "*" ); long pos = 0; if ( this->silence_count ) { // during a run of silence, run emulator at >=2x speed so it gets ahead long ahead_time = this->silence_lookahead * (this->out_time + out_count - this->silence_time) + this->silence_time; while ( this->emu_time < ahead_time && !(this->buf_remain | this->emu_track_ended_) ) fill_buf( this ); // fill with silence pos = min( this->silence_count, out_count ); memset( out, 0, pos * sizeof *out ); this->silence_count -= pos; if ( this->emu_time - this->silence_time > silence_max * stereo * this->sample_rate ) { this->track_ended = this->emu_track_ended_ = true; this->silence_count = 0; this->buf_remain = 0; } } if ( this->buf_remain ) { // empty silence buf long n = min( this->buf_remain, out_count - pos ); memcpy( &out [pos], this->buf + (buf_size - this->buf_remain), n * sizeof *out ); this->buf_remain -= n; pos += n; } // generate remaining samples normally long remain = out_count - pos; if ( remain ) { emu_play( this, remain, out + pos ); this->track_ended |= this->emu_track_ended_; if ( !this->ignore_silence || this->out_time > this->fade_start ) { // check end for a new run of silence long silence = count_silence( out + pos, remain ); if ( silence < remain ) this->silence_time = this->emu_time - silence; if ( this->emu_time - this->silence_time >= buf_size ) fill_buf( this ); // cause silence detection on next play() } } if ( this->out_time > this->fade_start ) handle_fade( this, out_count, out ); } this->out_time += out_count; return 0; } blargg_err_t play_( struct Sgc_Emu* this, long count, sample_t* out ) { long remain = count; while ( remain ) { remain -= Buffer_read_samples( &this->stereo_buf, &out [count - remain], remain ); if ( remain ) { if ( this->buf_changed_count != Buffer_channels_changed_count( &this->stereo_buf ) ) { this->buf_changed_count = Buffer_channels_changed_count( &this->stereo_buf ); // Remute voices Sound_mute_voices( this, this->mute_mask_ ); } int msec = Buffer_length( &this->stereo_buf ); blip_time_t clocks_emulated = msec * this->clock_rate_ / 1000 - 100; RETURN_ERR( run_clocks( this, &clocks_emulated, msec ) ); assert( clocks_emulated ); Buffer_end_frame( &this->stereo_buf, clocks_emulated ); } } return 0; }