// Game_Music_Emu 0.5.5. http://www.slack.net/~ant/ #include "nsf_emu.h" #include "multi_buffer.h" #include "blargg_endian.h" /* Copyright (C) 2003-2006 Shay Green. This module is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "blargg_source.h" const char gme_wrong_file_type [] ICONST_ATTR = "Wrong file type for this emulator"; long const clock_divisor = 12; int const stereo = 2; // number of channels for stereo int const silence_max = 6; // seconds int const silence_threshold = 0x10; long const fade_block_size = 512; int const fade_shift = 8; // fade ends with gain at 1.0 / (1 << fade_shift) // number of frames until play interrupts init int const initial_play_delay = 7; // KikiKaikai needed this to work int const rom_addr = 0x8000; static void clear_track_vars( struct Nsf_Emu* this ) { this->current_track = -1; this->out_time = 0; this->emu_time = 0; this->emu_track_ended_ = true; this->track_ended = true; this->fade_start = INT_MAX / 2 + 1; this->fade_step = 1; this->silence_time = 0; this->silence_count = 0; this->buf_remain = 0; } static int pcm_read( void* emu, addr_t addr ) { return *Cpu_get_code( &((struct Nsf_Emu*) emu)->cpu, addr ); } void Nsf_init( struct Nsf_Emu* this ) { this->sample_rate = 0; this->mute_mask_ = 0; this->tempo = (int)(FP_ONE_TEMPO); this->gain = (int)(FP_ONE_GAIN); // defaults this->max_initial_silence = 2; this->ignore_silence = false; this->voice_count = 0; // Set sound gain Sound_set_gain( this, (int)(FP_ONE_GAIN*1.2) ); // Unload clear_track_vars( this ); // Init rom Rom_init( &this->rom, 0x1000 ); // Init & clear nsfe info Info_init( &this->info ); Info_unload( &this->info ); // TODO: extremely hacky! Cpu_init( &this->cpu ); Apu_init( &this->apu ); Apu_dmc_reader( &this->apu, pcm_read, this ); } // Setup static blargg_err_t init_sound( struct Nsf_Emu* this ) { /* if ( header_.chip_flags & ~(fds_flag | namco_flag | vrc6_flag | fme7_flag) ) warning( "Uses unsupported audio expansion hardware" ); **/ this->voice_count = apu_osc_count; int adjusted_gain = (this->gain * 4) / 3; #ifdef NSF_EMU_APU_ONLY { if ( this->header_.chip_flags ) set_warning( "Uses unsupported audio expansion hardware" ); } #else { if ( vrc6_enabled( this ) ) { Vrc6_init( &this->vrc6 ); adjusted_gain = (adjusted_gain*3) / 4; this->voice_count += vrc6_osc_count; } if ( fme7_enabled( this ) ) { Fme7_init( &this->fme7 ); adjusted_gain = (adjusted_gain*3) / 4; this->voice_count += fme7_osc_count; } if ( mmc5_enabled( this ) ) { Mmc5_init( &this->mmc5 ); adjusted_gain = (adjusted_gain*3) / 4; this->voice_count += mmc5_osc_count; } if ( fds_enabled( this ) ) { Fds_init( &this->fds ); adjusted_gain = (adjusted_gain*3) / 4; this->voice_count += fds_osc_count ; } if ( namco_enabled( this ) ) { Namco_init( &this->namco ); adjusted_gain = (adjusted_gain*3) / 4; this->voice_count += namco_osc_count; } if ( vrc7_enabled( this ) ) { #ifndef NSF_EMU_NO_VRC7 Vrc7_init( &this->vrc7 ); Vrc7_set_rate( &this->vrc7, this->sample_rate ); #endif adjusted_gain = (adjusted_gain*3) / 4; this->voice_count += vrc7_osc_count; } if ( vrc7_enabled( this ) ) Vrc7_volume( &this->vrc7, adjusted_gain ); if ( namco_enabled( this ) ) Namco_volume( &this->namco, adjusted_gain ); if ( vrc6_enabled( this ) ) Vrc6_volume( &this->vrc6, adjusted_gain ); if ( fme7_enabled( this ) ) Fme7_volume( &this->fme7, adjusted_gain ); if ( mmc5_enabled( this ) ) Apu_volume( &this->mmc5.apu, adjusted_gain ); if ( fds_enabled( this ) ) Fds_volume( &this->fds, adjusted_gain ); } #endif if ( adjusted_gain > this->gain ) adjusted_gain = this->gain; Apu_volume( &this->apu, adjusted_gain ); return 0; } // Header stuff static bool valid_tag( struct header_t* this ) { return 0 == memcmp( this->tag, "NESM\x1A", 5 ); } // True if file supports only PAL speed static bool pal_only( struct header_t* this ) { return (this->speed_flags & 3) == 1; } static double clock_rate( struct header_t* this ) { return pal_only( this ) ? 1662607.125 : 1789772.727272727; } static int play_period( struct header_t* this ) { // NTSC int clocks = 29780; int value = 0x411A; byte const* rate_ptr = this->ntsc_speed; // PAL if ( pal_only( this ) ) { clocks = 33247; value = 0x4E20; rate_ptr = this->pal_speed; } // Default rate int rate = get_le16( rate_ptr ); if ( rate == 0 ) rate = value; // Custom rate if ( rate != value ) clocks = (int) (rate * clock_rate( this ) * (1.0/1000000.0)); return clocks; } // Gets address, given pointer to it in file header. If zero, returns rom_addr. addr_t get_addr( byte const in [] ) { addr_t addr = get_le16( in ); if ( addr == 0 ) addr = rom_addr; return addr; } static blargg_err_t check_nsf_header( struct header_t* h ) { if ( !valid_tag( h ) ) return gme_wrong_file_type; return 0; } blargg_err_t Nsf_load( struct Nsf_Emu* this, void* data, long size ) { // Unload Info_unload( &this->info ); // TODO: extremely hacky! this->m3u.size = 0; this->voice_count = 0; clear_track_vars( this ); assert( offsetof (struct header_t,unused [4]) == header_size ); if ( !memcmp( data, "NESM\x1A", 5 ) ) { Nsf_disable_playlist( this, true ); RETURN_ERR( Rom_load( &this->rom, data, size, header_size, &this->header, 0 ) ); return Nsf_post_load( this ); } blargg_err_t err = Info_load( &this->info, data, size, this ); Nsf_disable_playlist( this, false ); return err; } blargg_err_t Nsf_post_load( struct Nsf_Emu* this ) { RETURN_ERR( check_nsf_header( &this->header ) ); /* if ( header_.vers != 1 ) warning( "Unknown file version" ); */ // set up data addr_t load_addr = get_le16( this->header.load_addr ); /* if ( load_addr < (fds_enabled() ? sram_addr : rom_addr) ) warning( "Load address is too low" ); */ Rom_set_addr( &this->rom, load_addr % this->rom.bank_size ); /* if ( header_.vers != 1 ) warning( "Unknown file version" ); */ set_play_period( this, play_period( &this->header ) ); // sound and memory blargg_err_t err = init_sound( this ); if ( err ) return err; // Post load Sound_set_tempo( this, this->tempo ); // Remute voices Sound_mute_voices( this, this->mute_mask_ ); // Set track_count this->track_count = this->header.track_count; // Change clock rate & setup buffer this->clock_rate__ = (long) (clock_rate( &this->header ) + 0.5); Buffer_clock_rate( &this->stereo_buf, this->clock_rate__ ); this->buf_changed_count = Buffer_channels_changed_count( &this->stereo_buf ); return 0; } void Nsf_disable_playlist( struct Nsf_Emu* this, bool b ) { Info_disable_playlist( &this->info, b ); this->track_count = this->info.track_count; } void Nsf_clear_playlist( struct Nsf_Emu* this ) { Nsf_disable_playlist( this, true ); } void write_bank( struct Nsf_Emu* this, int bank, int data ) { // Find bank in ROM int offset = mask_addr( data * this->rom.bank_size, this->rom.mask ); /* if ( offset >= rom.size() ) warning( "invalid bank" ); */ void const* rom_data = Rom_at_addr( &this->rom, offset ); #ifndef NSF_EMU_APU_ONLY if ( bank < bank_count - fds_banks && fds_enabled( this ) ) { // TODO: FDS bank switching is kind of hacky, might need to // treat ROM as RAM so changes won't get lost when switching. byte* out = sram( this ); if ( bank >= fds_banks ) { out = fdsram( this ); bank -= fds_banks; } memcpy( &out [bank * this->rom.bank_size], rom_data, this->rom.bank_size ); return; } #endif if ( bank >= fds_banks ) Cpu_map_code( &this->cpu, (bank + 6) * this->rom.bank_size, this->rom.bank_size, rom_data, false ); } void map_memory( struct Nsf_Emu* this ) { // Map standard things Cpu_reset( &this->cpu, unmapped_code( this ) ); Cpu_map_code( &this->cpu, 0, 0x2000, this->low_ram, low_ram_size ); // mirrored four times Cpu_map_code( &this->cpu, sram_addr, sram_size, sram( this ), 0 ); // Determine initial banks byte banks [bank_count]; static byte const zero_banks [sizeof this->header.banks] = { 0 }; if ( memcmp( this->header.banks, zero_banks, sizeof zero_banks ) ) { banks [0] = this->header.banks [6]; banks [1] = this->header.banks [7]; memcpy( banks + fds_banks, this->header.banks, sizeof this->header.banks ); } else { // No initial banks, so assign them based on load_addr int i, first_bank = (get_addr( this->header.load_addr ) - sram_addr) / this->rom.bank_size; unsigned total_banks = this->rom.size / this->rom.bank_size; for ( i = bank_count; --i >= 0; ) { int bank = i - first_bank; if ( (unsigned) bank >= total_banks ) bank = 0; banks [i] = bank; } } // Map banks int i; for ( i = (fds_enabled( this ) ? 0 : fds_banks); i < bank_count; ++i ) write_bank( this, i, banks [i] ); // Map FDS RAM if ( fds_enabled( this ) ) Cpu_map_code( &this->cpu, rom_addr, fdsram_size, fdsram( this ), 0 ); } static void set_voice( struct Nsf_Emu* this, int i, struct Blip_Buffer* buf, struct Blip_Buffer* left, struct Blip_Buffer* right) { #if defined(ROCKBOX) (void) left; (void) right; #endif if ( i < apu_osc_count ) { Apu_osc_output( &this->apu, i, buf ); return; } i -= apu_osc_count; #ifndef NSF_EMU_APU_ONLY { if ( vrc6_enabled( this ) && (i -= vrc6_osc_count) < 0 ) { Vrc6_osc_output( &this->vrc6, i + vrc6_osc_count, buf ); return; } if ( fme7_enabled( this ) && (i -= fme7_osc_count) < 0 ) { Fme7_osc_output( &this->fme7, i + fme7_osc_count, buf ); return; } if ( mmc5_enabled( this ) && (i -= mmc5_osc_count) < 0 ) { Mmc5_set_output( &this->mmc5, i + mmc5_osc_count, buf ); return; } if ( fds_enabled( this ) && (i -= fds_osc_count) < 0 ) { Fds_set_output( &this->fds, i + fds_osc_count, buf ); return; } if ( namco_enabled( this ) && (i -= namco_osc_count) < 0 ) { Namco_osc_output( &this->namco, i + namco_osc_count, buf ); return; } if ( vrc7_enabled( this ) && (i -= vrc7_osc_count) < 0 ) { Vrc7_set_output( &this->vrc7, i + vrc7_osc_count, buf ); return; } } #endif } // Emulation // Music Emu blargg_err_t Nsf_set_sample_rate( struct Nsf_Emu* this, long rate ) { require( !this->sample_rate ); // sample rate can't be changed once set Buffer_init( &this->stereo_buf ); RETURN_ERR( Buffer_set_sample_rate( &this->stereo_buf, rate, 1000 / 20 ) ); // Set bass frequency Buffer_bass_freq( &this->stereo_buf, 80 ); this->sample_rate = rate; return 0; } void Sound_mute_voice( struct Nsf_Emu* this, int index, bool mute ) { require( (unsigned) index < (unsigned) this->voice_count ); int bit = 1 << index; int mask = this->mute_mask_ | bit; if ( !mute ) mask ^= bit; Sound_mute_voices( this, mask ); } void Sound_mute_voices( struct Nsf_Emu* this, int mask ) { require( this->sample_rate ); // sample rate must be set first this->mute_mask_ = mask; int i; for ( i = this->voice_count; i--; ) { if ( mask & (1 << i) ) { set_voice( this, i, 0, 0, 0 ); } else { struct channel_t ch = Buffer_channel( &this->stereo_buf ); assert( (ch.center && ch.left && ch.right) || (!ch.center && !ch.left && !ch.right) ); // all or nothing set_voice( this, i, ch.center, ch.left, ch.right ); } } } void Sound_set_tempo( struct Nsf_Emu* this, int t ) { require( this->sample_rate ); // sample rate must be set first int const min = (int)(FP_ONE_TEMPO*0.02); int const max = (int)(FP_ONE_TEMPO*4.00); if ( t < min ) t = min; if ( t > max ) t = max; this->tempo = t; set_play_period( this, (int) ((play_period( &this->header ) * FP_ONE_TEMPO) / t) ); Apu_set_tempo( &this->apu, t ); #ifndef NSF_EMU_APU_ONLY if ( fds_enabled( this ) ) Fds_set_tempo( &this->fds, t ); #endif } inline void push_byte( struct Nsf_Emu* this, int b ) { this->low_ram [0x100 + this->cpu.r.sp--] = b; } // Jumps to routine, given pointer to address in file header. Pushes idle_addr // as return address, NOT old PC. static void jsr_then_stop( struct Nsf_Emu* this, byte const addr [] ) { this->cpu.r.pc = get_addr( addr ); push_byte( this, (idle_addr - 1) >> 8 ); push_byte( this, (idle_addr - 1) ); } int cpu_read( struct Nsf_Emu* this, addr_t addr ) { #ifndef NSF_EMU_APU_ONLY { if ( namco_enabled( this ) && addr == namco_data_reg_addr ) return Namco_read_data( &this->namco ); if ( fds_enabled( this ) && (unsigned) (addr - fds_io_addr) < fds_io_size ) return Fds_read( &this->fds, Cpu_time( &this->cpu ), addr ); if ( mmc5_enabled( this ) ) { int i = addr - 0x5C00; if ( (unsigned) i < mmc5_exram_size ) return this->mmc5.exram [i]; int m = addr - 0x5205; if ( (unsigned) m < 2 ) return (this->mmc5_mul [0] * this->mmc5_mul [1]) >> (m * 8) & 0xFF; } } #endif /* Unmapped read */ return addr >> 8; } #if 0 /* function currently unused */ static int unmapped_read( struct Nsf_Emu* this, addr_t addr ) { (void) this; switch ( addr ) { case 0x2002: case 0x4016: case 0x4017: return addr >> 8; } // Unmapped read return addr >> 8; } #endif void cpu_write( struct Nsf_Emu* this, addr_t addr, int data ) { #ifndef NSF_EMU_APU_ONLY { nes_time_t time = Cpu_time( &this->cpu ); if ( fds_enabled( this) && (unsigned) (addr - fds_io_addr) < fds_io_size ) { Fds_write( &this->fds, time, addr, data ); return; } if ( namco_enabled( this) ) { if ( addr == namco_addr_reg_addr ) { Namco_write_addr( &this->namco, data ); return; } if ( addr == namco_data_reg_addr ) { Namco_write_data( &this->namco, time, data ); return; } } if ( vrc6_enabled( this) ) { int reg = addr & (vrc6_addr_step - 1); int osc = (unsigned) (addr - vrc6_base_addr) / vrc6_addr_step; if ( (unsigned) osc < vrc6_osc_count && (unsigned) reg < vrc6_reg_count ) { Vrc6_write_osc( &this->vrc6, time, osc, reg, data ); return; } } if ( fme7_enabled( this) && addr >= fme7_latch_addr ) { switch ( addr & fme7_addr_mask ) { case fme7_latch_addr: Fme7_write_latch( &this->fme7, data ); return; case fme7_data_addr: Fme7_write_data( &this->fme7, time, data ); return; } } if ( mmc5_enabled( this) ) { if ( (unsigned) (addr - mmc5_regs_addr) < mmc5_regs_size ) { Mmc5_write_register( &this->mmc5, time, addr, data ); return; } int m = addr - 0x5205; if ( (unsigned) m < 2 ) { this->mmc5_mul [m] = data; return; } int i = addr - 0x5C00; if ( (unsigned) i < mmc5_exram_size ) { this->mmc5.exram [i] = data; return; } } if ( vrc7_enabled( this) ) { if ( addr == 0x9010 ) { Vrc7_write_reg( &this->vrc7, data ); return; } if ( (unsigned) (addr - 0x9028) <= 0x08 ) { Vrc7_write_data( &this->vrc7, time, data ); return; } } } #endif // Unmapped_write } #if 0 /* function currently unused */ static void unmapped_write( struct Nsf_Emu* this, addr_t addr, int data ) { (void) data; switch ( addr ) { case 0x8000: // some write to $8000 and $8001 repeatedly case 0x8001: case 0x4800: // probably namco sound mistakenly turned on in MCK case 0xF800: case 0xFFF8: // memory mapper? return; } if ( mmc5_enabled( this ) && addr == 0x5115 ) return; // FDS memory if ( fds_enabled( this ) && (unsigned) (addr - 0x8000) < 0x6000 ) return; } #endif void fill_buf( struct Nsf_Emu* this ); blargg_err_t Nsf_start_track( struct Nsf_Emu* this, int track ) { clear_track_vars( this ); // Remap track if playlist available if ( this->m3u.size > 0 ) { struct entry_t* e = &this->m3u.entries[track]; track = e->track; } else track = Info_remap_track( &this->info, track ); this->current_track = track; Buffer_clear( &this->stereo_buf ); #ifndef NSF_EMU_APU_ONLY if ( mmc5_enabled( this ) ) { this->mmc5_mul [0] = 0; this->mmc5_mul [1] = 0; memset( this->mmc5.exram, 0, mmc5_exram_size ); } if ( fds_enabled( this ) ) Fds_reset( &this->fds ); if ( namco_enabled( this ) ) Namco_reset( &this->namco ); if ( vrc6_enabled( this ) ) Vrc6_reset( &this->vrc6 ); if ( fme7_enabled( this ) ) Fme7_reset( &this->fme7 ); if ( mmc5_enabled( this ) ) Apu_reset( &this->mmc5.apu, false, 0 ); if ( vrc7_enabled( this ) ) Vrc7_reset( &this->vrc7 ); #endif int speed_flags = 0; #ifdef NSF_EMU_EXTRA_FLAGS speed_flags = this->header.speed_flags; #endif Apu_reset( &this->apu, pal_only( &this->header ), (speed_flags & 0x20) ? 0x3F : 0 ); Apu_write_register( &this->apu, 0, 0x4015, 0x0F ); Apu_write_register( &this->apu, 0, 0x4017, (speed_flags & 0x10) ? 0x80 : 0 ); memset( unmapped_code( this ), halt_opcode, unmapped_size ); memset( this->low_ram, 0, low_ram_size ); memset( sram( this ), 0, sram_size ); map_memory( this ); // Arrange time of first call to play routine this->play_extra = 0; this->next_play = this->play_period; this->play_delay = initial_play_delay; this->saved_state.pc = idle_addr; // Setup for call to init routine this->cpu.r.a = track; this->cpu.r.x = pal_only( &this->header ); this->cpu.r.sp = 0xFF; jsr_then_stop( this, this->header.init_addr ); /* if ( this->cpu.r.pc < get_addr( header.load_addr ) ) warning( "Init address < load address" ); */ this->emu_track_ended_ = false; this->track_ended = false; if ( !this->ignore_silence ) { // play until non-silence or end of track long end; for ( end = this->max_initial_silence * stereo * this->sample_rate; this->emu_time < end; ) { fill_buf( this ); if ( this->buf_remain | (int) this->emu_track_ended_ ) break; } this->emu_time = this->buf_remain; this->out_time = 0; this->silence_time = 0; this->silence_count = 0; } /* return track_ended() ? warning() : 0; */ return 0; } void run_once( struct Nsf_Emu* this, nes_time_t end ) { // Emulate until next play call if possible if ( run_cpu_until( this, min( this->next_play, end ) ) ) { // Halt instruction encountered if ( this->cpu.r.pc != idle_addr ) { // special_event( "illegal instruction" ); Cpu_set_time( &this->cpu, this->cpu.end_time ); return; } // Init/play routine returned this->play_delay = 1; // play can now be called regularly if ( this->saved_state.pc == idle_addr ) { // nothing to run nes_time_t t = this->cpu.end_time; if ( Cpu_time( &this->cpu ) < t ) Cpu_set_time( &this->cpu, t ); } else { // continue init routine that was interrupted by play routine this->cpu.r = this->saved_state; this->saved_state.pc = idle_addr; } } if ( Cpu_time( &this->cpu ) >= this->next_play ) { // Calculate time of next call to play routine this->play_extra ^= 1; // extra clock every other call this->next_play += this->play_period + this->play_extra; // Call routine if ready if ( this->play_delay && !--this->play_delay ) { // Save state if init routine is still running if ( this->cpu.r.pc != idle_addr ) { check( this->saved_state.pc == idle_addr ); this->saved_state = this->cpu.r; // special_event( "play called during init" ); } jsr_then_stop( this, this->header.play_addr ); } } } void run_until( struct Nsf_Emu* this, nes_time_t end ) { while ( Cpu_time( &this->cpu ) < end ) run_once( this, end ); } static void end_frame( struct Nsf_Emu* this, nes_time_t end ) { if ( Cpu_time( &this->cpu ) < end ) run_until( this, end ); Cpu_adjust_time( &this->cpu, -end ); // Localize to new time frame this->next_play -= end; check( this->next_play >= 0 ); if ( this->next_play < 0 ) this->next_play = 0; Apu_end_frame( &this->apu, end ); #ifndef NSF_EMU_APU_ONLY if ( fds_enabled( this ) ) Fds_end_frame( &this->fds, end ); if ( fme7_enabled( this ) ) Fme7_end_frame( &this->fme7, end ); if ( mmc5_enabled( this ) ) Apu_end_frame( &this->mmc5.apu, end ); if ( namco_enabled( this ) ) Namco_end_frame( &this->namco, end ); if ( vrc6_enabled( this ) ) Vrc6_end_frame( &this->vrc6, end ); if ( vrc7_enabled( this ) ) Vrc7_end_frame( &this->vrc7, end ); #endif } // Tell/Seek static blargg_long msec_to_samples( long sample_rate, blargg_long msec ) { blargg_long sec = msec / 1000; msec -= sec * 1000; return (sec * sample_rate + msec * sample_rate / 1000) * stereo; } long Track_tell( struct Nsf_Emu* this ) { blargg_long rate = this->sample_rate * stereo; blargg_long sec = this->out_time / rate; return sec * 1000 + (this->out_time - sec * rate) * 1000 / rate; } blargg_err_t Track_seek( struct Nsf_Emu* this, long msec ) { blargg_long time = msec_to_samples( this->sample_rate, msec ); if ( time < this->out_time ) RETURN_ERR( Nsf_start_track( this, this->current_track ) ); return Track_skip( this, time - this->out_time ); } blargg_err_t skip_( struct Nsf_Emu* this, long count ) ICODE_ATTR; blargg_err_t Track_skip( struct Nsf_Emu* this, long count ) { require( this->current_track >= 0 ); // start_track() must have been called already this->out_time += count; // remove from silence and buf first { long n = min( count, this->silence_count ); this->silence_count -= n; count -= n; n = min( count, this->buf_remain ); this->buf_remain -= n; count -= n; } if ( count && !this->emu_track_ended_ ) { this->emu_time += count; // End track if error if ( skip_( this, count ) ) this->emu_track_ended_ = true; } if ( !(this->silence_count | this->buf_remain) ) // caught up to emulator, so update track ended this->track_ended |= this->emu_track_ended_; return 0; } blargg_err_t play_( struct Nsf_Emu* this, long count, sample_t* out ) ICODE_ATTR; blargg_err_t skip_( struct Nsf_Emu* this, long count ) { // for long skip, mute sound const long threshold = 30000; if ( count > threshold ) { int saved_mute = this->mute_mask_; Sound_mute_voices( this, ~0 ); while ( count > threshold / 2 && !this->emu_track_ended_ ) { RETURN_ERR( play_( this, buf_size, this->buf ) ); count -= buf_size; } Sound_mute_voices( this, saved_mute ); } while ( count && !this->emu_track_ended_ ) { long n = buf_size; if ( n > count ) n = count; count -= n; RETURN_ERR( play_( this, n, this->buf ) ); } return 0; } // Fading void Track_set_fade( struct Nsf_Emu* this, long start_msec, long length_msec ) { this->fade_step = this->sample_rate * length_msec / (fade_block_size * fade_shift * 1000 / stereo); this->fade_start = msec_to_samples( this->sample_rate, start_msec ); } // unit / pow( 2.0, (double) x / step ) static int int_log( blargg_long x, int step, int unit ) { int shift = x / step; int fraction = (x - shift * step) * unit / step; return ((unit - fraction) + (fraction >> 1)) >> shift; } static void handle_fade( struct Nsf_Emu* this, long out_count, sample_t* out ) { int i; for ( i = 0; i < out_count; i += fade_block_size ) { int const shift = 14; int const unit = 1 << shift; int gain = int_log( (this->out_time + i - this->fade_start) / fade_block_size, this->fade_step, unit ); if ( gain < (unit >> fade_shift) ) this->track_ended = this->emu_track_ended_ = true; sample_t* io = &out [i]; int count; for ( count = min( fade_block_size, out_count - i ); count; --count ) { *io = (sample_t) ((*io * gain) >> shift); ++io; } } } // Silence detection void emu_play( struct Nsf_Emu* this, long count, sample_t* out ) ICODE_ATTR; void emu_play( struct Nsf_Emu* this, long count, sample_t* out ) { check( current_track_ >= 0 ); this->emu_time += count; if ( this->current_track >= 0 && !this->emu_track_ended_ ) { // End track if error if ( play_( this, count, out ) ) this->emu_track_ended_ = true; } else memset( out, 0, count * sizeof *out ); } // number of consecutive silent samples at end static long count_silence( sample_t* begin, long size ) { sample_t first = *begin; *begin = silence_threshold; // sentinel sample_t* p = begin + size; while ( (unsigned) (*--p + silence_threshold / 2) <= (unsigned) silence_threshold ) { } *begin = first; return size - (p - begin); } // fill internal buffer and check it for silence void fill_buf( struct Nsf_Emu* this ) { assert( !this->buf_remain ); if ( !this->emu_track_ended_ ) { emu_play( this, buf_size, this->buf ); long silence = count_silence( this->buf, buf_size ); if ( silence < buf_size ) { this->silence_time = this->emu_time - silence; this->buf_remain = buf_size; return; } } this->silence_count += buf_size; } blargg_err_t Nsf_play( struct Nsf_Emu* this, long out_count, sample_t* out ) { if ( this->track_ended ) { memset( out, 0, out_count * sizeof *out ); } else { require( this->current_track >= 0 ); require( out_count % stereo == 0 ); assert( this->emu_time >= this->out_time ); long pos = 0; if ( this->silence_count ) { // during a run of silence, run emulator at >=2x speed so it gets ahead long ahead_time = this->silence_lookahead * (this->out_time + out_count - this->silence_time) + this->silence_time; while ( this->emu_time < ahead_time && !(this->buf_remain | this->emu_track_ended_) ) fill_buf( this ); // fill with silence pos = min( this->silence_count, out_count ); memset( out, 0, pos * sizeof *out ); this->silence_count -= pos; if ( this->emu_time - this->silence_time > silence_max * stereo * this->sample_rate ) { this->track_ended = this->emu_track_ended_ = true; this->silence_count = 0; this->buf_remain = 0; } } if ( this->buf_remain ) { // empty silence buf long n = min( this->buf_remain, out_count - pos ); memcpy( &out [pos], this->buf + (buf_size - this->buf_remain), n * sizeof *out ); this->buf_remain -= n; pos += n; } // generate remaining samples normally long remain = out_count - pos; if ( remain ) { emu_play( this, remain, out + pos ); this->track_ended |= this->emu_track_ended_; if ( !this->ignore_silence || this->out_time > this->fade_start ) { // check end for a new run of silence long silence = count_silence( out + pos, remain ); if ( silence < remain ) this->silence_time = this->emu_time - silence; if ( this->emu_time - this->silence_time >= buf_size ) fill_buf( this ); // cause silence detection on next play() } } if ( this->out_time > this->fade_start ) handle_fade( this, out_count, out ); } this->out_time += out_count; return 0; } blargg_err_t play_( struct Nsf_Emu* this, long count, sample_t* out ) { long remain = count; while ( remain ) { remain -= Buffer_read_samples( &this->stereo_buf, &out [count - remain], remain ); if ( remain ) { if ( this->buf_changed_count != Buffer_channels_changed_count( &this->stereo_buf ) ) { this->buf_changed_count = Buffer_channels_changed_count( &this->stereo_buf ); // Remute voices Sound_mute_voices( this, this->mute_mask_ ); } int msec = Buffer_length( &this->stereo_buf ); blip_time_t clocks_emulated = (blargg_long) msec * this->clock_rate__ / 1000 - 100; RETURN_ERR( run_clocks( this, &clocks_emulated, msec ) ); assert( clocks_emulated ); Buffer_end_frame( &this->stereo_buf, clocks_emulated ); } } return 0; } blargg_err_t run_clocks( struct Nsf_Emu* this, blip_time_t* duration, int msec ) { #if defined(ROCKBOX) (void) msec; #endif end_frame( this, *duration ); return 0; }