/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * * Copyright (C) 2006-2007 Adam Gashlin (hcs) * Copyright (C) 2004-2007 Shay Green (blargg) * Copyright (C) 2002 Brad Martin * * All files in this archive are subject to the GNU General Public License. * See the file COPYING in the source tree root for full license agreement. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ /* lovingly ripped off from Game_Music_Emu 0.5.2. http://www.slack.net/~ant/ */ /* DSP Based on Brad Martin's OpenSPC DSP emulator */ /* tag reading from sexyspc by John Brawn (John_Brawn@yahoo.com) and others */ #include "codeclib.h" #include "inttypes.h" #include "system.h" /* rather than comment out asserts, just define NDEBUG */ #define NDEBUG #include #undef check #define check assert CODEC_HEADER #ifdef CPU_ARM #undef ICODE_ATTR #define ICODE_ATTR #undef IDATA_ATTR #define IDATA_ATTR #endif /* TGB is the only target fast enough for gaussian and realtime BRR decode */ /* echo is almost fast enough but not quite */ #ifndef TOSHIBA_GIGABEAT_F /* Cache BRR waves */ #define SPC_BRRCACHE 1 /* Disable gaussian interpolation */ #define SPC_NOINTERP 1 /* Disable echo processing */ #define SPC_NOECHO 1 #else /* Don't cache BRR waves */ #define SPC_BRRCACHE 0 /* Allow gaussian interpolation */ #define SPC_NOINTERP 0 /* Allow echo processing */ #define SPC_NOECHO 0 #endif /* Samples per channel per iteration */ #ifdef CPU_COLDFIRE #define WAV_CHUNK_SIZE 1024 #else #define WAV_CHUNK_SIZE 2048 #endif /* simple profiling with USEC_TIMER */ /*#define SPC_PROFILE*/ #include "spc/spc_profiler.h" #define THIS struct Spc_Emu* const this /**************** Little-endian handling ****************/ static inline unsigned get_le16( void const* p ) { return ((unsigned char const*) p) [1] * 0x100u + ((unsigned char const*) p) [0]; } static inline int get_le16s( void const* p ) { return ((signed char const*) p) [1] * 0x100 + ((unsigned char const*) p) [0]; } static inline void set_le16( void* p, unsigned n ) { ((unsigned char*) p) [1] = (unsigned char) (n >> 8); ((unsigned char*) p) [0] = (unsigned char) n; } #define GET_LE16( addr ) get_le16( addr ) #define SET_LE16( addr, data ) set_le16( addr, data ) #ifdef ROCKBOX_LITTLE_ENDIAN #define GET_LE16A( addr ) (*(uint16_t*) (addr)) #define GET_LE16SA( addr ) (*( int16_t*) (addr)) #define SET_LE16A( addr, data ) (void) (*(uint16_t*) (addr) = (data)) #else #define GET_LE16A( addr ) get_le16 ( addr ) #define GET_LE16SA( addr ) get_le16s( addr ) #define SET_LE16A( addr, data ) set_le16 ( addr, data ) #endif static struct { union { uint8_t padding1 [0x100]; uint16_t align; } padding1 [1]; uint8_t ram [0x10000]; uint8_t padding2 [0x100]; } ram; #include "spc/Spc_Dsp.h" #undef RAM #define RAM ram.ram /**************** Timers ****************/ enum { timer_count = 3 }; struct Timer { long next_tick; int period; int count; int shift; int enabled; int counter; }; static void Timer_run_( struct Timer* t, long time ) ICODE_ATTR; static void Timer_run_( struct Timer* t, long time ) { /* when disabled, next_tick should always be in the future */ assert( t->enabled ); int elapsed = ((time - t->next_tick) >> t->shift) + 1; t->next_tick += elapsed << t->shift; elapsed += t->count; if ( elapsed >= t->period ) /* avoid unnecessary division */ { int n = elapsed / t->period; elapsed -= n * t->period; t->counter = (t->counter + n) & 15; } t->count = elapsed; } static inline void Timer_run( struct Timer* t, long time ) { if ( time >= t->next_tick ) Timer_run_( t, time ); } /**************** SPC emulator ****************/ /* 1.024 MHz clock / 32000 samples per second */ enum { clocks_per_sample = 32 }; enum { extra_clocks = clocks_per_sample / 2 }; /* using this disables timer (since this will always be in the future) */ enum { timer_disabled_time = 127 }; enum { rom_size = 64 }; enum { rom_addr = 0xFFC0 }; struct cpu_regs_t { long pc; /* more than 16 bits to allow overflow detection */ uint8_t a; uint8_t x; uint8_t y; uint8_t status; uint8_t sp; }; struct Spc_Emu { uint8_t cycle_table [0x100]; struct cpu_regs_t r; int32_t* sample_buf; long next_dsp; int rom_enabled; int extra_cycles; struct Timer timer [timer_count]; /* large objects at end */ struct Spc_Dsp dsp; uint8_t extra_ram [rom_size]; uint8_t boot_rom [rom_size]; }; static void SPC_enable_rom( THIS, int enable ) { if ( this->rom_enabled != enable ) { this->rom_enabled = enable; memcpy( RAM + rom_addr, (enable ? this->boot_rom : this->extra_ram), rom_size ); /* TODO: ROM can still get overwritten when DSP writes to echo buffer */ } } static void SPC_Init( THIS ) { this->timer [0].shift = 4 + 3; /* 8 kHz */ this->timer [1].shift = 4 + 3; /* 8 kHz */ this->timer [2].shift = 4; /* 8 kHz */ /* Put STOP instruction around memory to catch PC underflow/overflow. */ memset( ram.padding1, 0xFF, sizeof ram.padding1 ); memset( ram.padding2, 0xFF, sizeof ram.padding2 ); /* A few tracks read from the last four bytes of IPL ROM */ this->boot_rom [sizeof this->boot_rom - 2] = 0xC0; this->boot_rom [sizeof this->boot_rom - 1] = 0xFF; memset( this->boot_rom, 0, sizeof this->boot_rom - 2 ); } static void SPC_load_state( THIS, struct cpu_regs_t const* cpu_state, const void* new_ram, const void* dsp_state ) { memcpy(&(this->r),cpu_state,sizeof this->r); /* ram */ memcpy( RAM, new_ram, sizeof RAM ); memcpy( this->extra_ram, RAM + rom_addr, sizeof this->extra_ram ); /* boot rom (have to force enable_rom() to update it) */ this->rom_enabled = !(RAM [0xF1] & 0x80); SPC_enable_rom( this, !this->rom_enabled ); /* dsp */ /* some SPCs rely on DSP immediately generating one sample */ this->extra_cycles = 32; DSP_reset( &this->dsp ); int i; for ( i = 0; i < register_count; i++ ) DSP_write( &this->dsp, i, ((uint8_t const*) dsp_state) [i] ); /* timers */ for ( i = 0; i < timer_count; i++ ) { struct Timer* t = &this->timer [i]; t->next_tick = -extra_clocks; t->enabled = (RAM [0xF1] >> i) & 1; if ( !t->enabled ) t->next_tick = timer_disabled_time; t->count = 0; t->counter = RAM [0xFD + i] & 15; int p = RAM [0xFA + i]; if ( !p ) p = 0x100; t->period = p; } /* Handle registers which already give 0 when read by setting RAM and not changing it. Put STOP instruction in registers which can be read, to catch attempted execution. */ RAM [0xF0] = 0; RAM [0xF1] = 0; RAM [0xF3] = 0xFF; RAM [0xFA] = 0; RAM [0xFB] = 0; RAM [0xFC] = 0; RAM [0xFD] = 0xFF; RAM [0xFE] = 0xFF; RAM [0xFF] = 0xFF; } static void clear_echo( THIS ) { if ( !(DSP_read( &this->dsp, 0x6C ) & 0x20) ) { unsigned addr = 0x100 * DSP_read( &this->dsp, 0x6D ); size_t size = 0x800 * DSP_read( &this->dsp, 0x7D ); size_t max_size = sizeof RAM - addr; if ( size > max_size ) size = sizeof RAM - addr; memset( RAM + addr, 0xFF, size ); } } enum { spc_file_size = 0x10180 }; struct spc_file_t { char signature [27]; char unused [10]; uint8_t pc [2]; uint8_t a; uint8_t x; uint8_t y; uint8_t status; uint8_t sp; char unused2 [212]; uint8_t ram [0x10000]; uint8_t dsp [128]; uint8_t ipl_rom [128]; }; static int SPC_load_spc( THIS, const void* data, long size ) { struct spc_file_t const* spc = (struct spc_file_t const*) data; struct cpu_regs_t regs; if ( size < spc_file_size ) return -1; if ( memcmp( spc->signature, "SNES-SPC700 Sound File Data", 27 ) != 0 ) return -1; regs.pc = spc->pc [1] * 0x100 + spc->pc [0]; regs.a = spc->a; regs.x = spc->x; regs.y = spc->y; regs.status = spc->status; regs.sp = spc->sp; if ( (unsigned long) size >= sizeof *spc ) memcpy( this->boot_rom, spc->ipl_rom, sizeof this->boot_rom ); SPC_load_state( this, ®s, spc->ram, spc->dsp ); clear_echo(this); return 0; } /**************** DSP interaction ****************/ static void SPC_run_dsp_( THIS, long time ) ICODE_ATTR; static void SPC_run_dsp_( THIS, long time ) { /* divide by clocks_per_sample */ int count = ((time - this->next_dsp) >> 5) + 1; int32_t* buf = this->sample_buf; this->sample_buf = buf + count; this->next_dsp += count * clocks_per_sample; DSP_run( &this->dsp, count, buf ); } static inline void SPC_run_dsp( THIS, long time ) { if ( time >= this->next_dsp ) SPC_run_dsp_( this, time ); } static int SPC_read( THIS, unsigned addr, long const time ) ICODE_ATTR; static int SPC_read( THIS, unsigned addr, long const time ) { int result = RAM [addr]; if ( ((unsigned) (addr - 0xF0)) < 0x10 ) { assert( 0xF0 <= addr && addr <= 0xFF ); /* counters */ int i = addr - 0xFD; if ( i >= 0 ) { struct Timer* t = &this->timer [i]; Timer_run( t, time ); result = t->counter; t->counter = 0; } /* dsp */ else if ( addr == 0xF3 ) { SPC_run_dsp( this, time ); result = DSP_read( &this->dsp, RAM [0xF2] & 0x7F ); } } return result; } static void SPC_write( THIS, unsigned addr, int data, long const time ) ICODE_ATTR; static void SPC_write( THIS, unsigned addr, int data, long const time ) { /* first page is very common */ if ( addr < 0xF0 ) { RAM [addr] = (uint8_t) data; } else switch ( addr ) { /* RAM */ default: if ( addr < rom_addr ) { RAM [addr] = (uint8_t) data; } else { this->extra_ram [addr - rom_addr] = (uint8_t) data; if ( !this->rom_enabled ) RAM [addr] = (uint8_t) data; } break; /* DSP */ /*case 0xF2:*/ /* mapped to RAM */ case 0xF3: { SPC_run_dsp( this, time ); int reg = RAM [0xF2]; if ( reg < register_count ) { DSP_write( &this->dsp, reg, data ); } else { /*dprintf( "DSP write to $%02X\n", (int) reg ); */ } break; } case 0xF0: /* Test register */ /*dprintf( "Wrote $%02X to $F0\n", (int) data ); */ break; /* Config */ case 0xF1: { int i; /* timers */ for ( i = 0; i < timer_count; i++ ) { struct Timer * t = this->timer+i; if ( !(data & (1 << i)) ) { t->enabled = 0; t->next_tick = timer_disabled_time; } else if ( !t->enabled ) { /* just enabled */ t->enabled = 1; t->counter = 0; t->count = 0; t->next_tick = time; } } /* port clears */ if ( data & 0x10 ) { RAM [0xF4] = 0; RAM [0xF5] = 0; } if ( data & 0x20 ) { RAM [0xF6] = 0; RAM [0xF7] = 0; } SPC_enable_rom( this, (data & 0x80) != 0 ); break; } /* Ports */ case 0xF4: case 0xF5: case 0xF6: case 0xF7: /* to do: handle output ports */ break; /* verified on SNES that these are read/write (RAM) */ /*case 0xF8: */ /*case 0xF9: */ /* Timers */ case 0xFA: case 0xFB: case 0xFC: { int i = addr - 0xFA; struct Timer* t = &this->timer [i]; if ( (t->period & 0xFF) != data ) { Timer_run( t, time ); this->timer[i].period = data ? data : 0x100; } break; } /* Counters (cleared on write) */ case 0xFD: case 0xFE: case 0xFF: /*dprintf( "Wrote to counter $%02X\n", (int) addr ); */ this->timer [addr - 0xFD].counter = 0; break; } } #include "spc/Spc_Cpu.h" /**************** Sample generation ****************/ static int SPC_play( THIS, long count, int32_t* out ) ICODE_ATTR; static int SPC_play( THIS, long count, int32_t* out ) { int i; assert( count % 2 == 0 ); /* output is always in pairs of samples */ long start_time = -(count >> 1) * clocks_per_sample - extra_clocks; /* DSP output is made on-the-fly when DSP registers are read or written */ this->sample_buf = out; this->next_dsp = start_time + clocks_per_sample; /* Localize timer next_tick times and run them to the present to prevent a running but ignored timer's next_tick from getting too far behind and overflowing. */ for ( i = 0; i < timer_count; i++ ) { struct Timer* t = &this->timer [i]; if ( t->enabled ) { t->next_tick += start_time + extra_clocks; Timer_run( t, start_time ); } } /* Run from start_time to 0, pre-advancing by extra cycles from last run */ this->extra_cycles = CPU_run( this, start_time + this->extra_cycles ) + extra_clocks; if ( this->extra_cycles < 0 ) { /*dprintf( "Unhandled instruction $%02X, pc = $%04X\n", (int) CPU_read( r.pc ), (unsigned) r.pc ); */ return -1; } /* Catch DSP up to present */ #if 0 ENTER_TIMER(cpu); #endif SPC_run_dsp( this, -extra_clocks ); #if 0 EXIT_TIMER(cpu); #endif assert( this->next_dsp == clocks_per_sample - extra_clocks ); assert( this->sample_buf - out == count ); return 0; } /**************** ID666 parsing ****************/ struct { unsigned char isBinary; char song[32]; char game[32]; char dumper[16]; char comments[32]; int day,month,year; unsigned long length; unsigned long fade; char artist[32]; unsigned char muted; unsigned char emulator; } ID666; static int LoadID666(unsigned char *buf) { unsigned char *ib=buf; int isbinary = 1; int i; memcpy(ID666.song,ib,32); ID666.song[31]=0; ib+=32; memcpy(ID666.game,ib,32); ID666.game[31]=0; ib+=32; memcpy(ID666.dumper,ib,16); ID666.dumper[15]=0; ib+=16; memcpy(ID666.comments,ib,32); ID666.comments[31]=0; ib+=32; /* Ok, now comes the fun part. */ /* Date check */ if(ib[2] == '/' && ib[5] == '/' ) isbinary = 0; /* Reserved bytes check */ if(ib[0xD2 - 0x2E - 112] >= '0' && ib[0xD2 - 0x2E - 112] <= '9' && ib[0xD3 - 0x2E - 112] == 0x00) isbinary = 0; /* is length & fade only digits? */ for (i=0;i<8 && ( (ib[0xA9 - 0x2E - 112+i]>='0'&&ib[0xA9 - 0x2E - 112+i]<='9') || ib[0xA9 - 0x2E - 112+i]=='\0'); i++); if (i==8) isbinary=0; ID666.isBinary = isbinary; if(isbinary) { DEBUGF("binary tag detected\n"); ID666.year=*ib; ib++; ID666.year|=*ib<<8; ib++; ID666.month=*ib; ib++; ID666.day=*ib; ib++; ib+=7; ID666.length=*ib; ib++; ID666.length|=*ib<<8; ib++; ID666.length|=*ib<<16; ID666.length*=1000; ib++; ID666.fade=*ib; ib++; ID666.fade|=*ib<<8; ib++; ID666.fade|=*ib<<16; ib++; ID666.fade|=*ib<<24; ib++; memcpy(ID666.artist,ib,32); ID666.artist[31]=0; ib+=32; ID666.muted=*ib; ib++; ID666.emulator=*ib; ib++; } else { int year, month, day; unsigned long tmp; char buf[64]; DEBUGF("text tag detected\n"); year=month=day=0; ib+=11; memcpy(buf, ib, 3); buf[3] = 0; tmp = 0; for (i=0;i<3 && buf[i]>='0' && buf[i]<='9';i++) tmp=tmp*10+buf[i]-'0'; ID666.length = tmp * 1000; ib+=3; memcpy(buf, ib, 5); buf[5] = 0; tmp = 0; for (i=0;i<5 && buf[i]>='0' && buf[i]<='9';i++) tmp=tmp*10+buf[i]-'0'; ID666.fade = tmp; ib+=5; memcpy(ID666.artist,ib,32); ID666.artist[31]=0; ib+=32; /*I have no idea if this is right or not.*/ ID666.muted=*ib; ib++; memcpy(buf, ib, 1); buf[1] = 0; tmp = 0; ib++; } return 1; } /**************** Codec ****************/ static int32_t samples[WAV_CHUNK_SIZE*2] IBSS_ATTR; static struct Spc_Emu spc_emu IDATA_ATTR; enum {sample_rate = 32000}; /* The main decoder loop */ static int play_track( void ) { int sampleswritten=0; unsigned long fadestartsample = ID666.length*(long long) sample_rate/1000; unsigned long fadeendsample = (ID666.length+ID666.fade)*(long long) sample_rate/1000; int fadedec = 0; int fadevol = 0x7fffffffl; if (fadeendsample>fadestartsample) fadedec=0x7fffffffl/(fadeendsample-fadestartsample)+1; ENTER_TIMER(total); while ( 1 ) { ci->yield(); if (ci->stop_codec || ci->new_track) { break; } if (ci->seek_time) { int curtime = sampleswritten*1000LL/sample_rate; DEBUGF("seek to %d\ncurrently at %d\n",ci->seek_time,curtime); if (ci->seek_time < curtime) { DEBUGF("seek backwards = reset\n"); ci->seek_complete(); return 1; } ci->seek_complete(); } ENTER_TIMER(render); /* fill samples buffer */ if ( SPC_play(&spc_emu,WAV_CHUNK_SIZE*2,samples) ) assert( false ); EXIT_TIMER(render); sampleswritten+=WAV_CHUNK_SIZE; /* is track timed? */ if (ci->global_settings->repeat_mode!=REPEAT_ONE && ci->id3->length) { unsigned long curtime = sampleswritten*1000LL/sample_rate; unsigned long lasttimesample = (sampleswritten-WAV_CHUNK_SIZE); /* fade? */ if (curtime>ID666.length) { int i; for (i=0;ifadestartsample) { if (fadevol>0) { samples[i] = (samples[i]*(fadevol>>24))>>7; samples[i+WAV_CHUNK_SIZE] = (samples[i+WAV_CHUNK_SIZE]*(fadevol>>24))>>7; } else samples[i]=samples[i+WAV_CHUNK_SIZE]=0; fadevol-=fadedec; } } } /* end? */ if (lasttimesample>=fadeendsample) break; } ci->pcmbuf_insert(samples, samples+WAV_CHUNK_SIZE, WAV_CHUNK_SIZE); if (ci->global_settings->repeat_mode!=REPEAT_ONE) ci->set_elapsed(sampleswritten*1000LL/sample_rate); else ci->set_elapsed(0); } EXIT_TIMER(total); return 0; } /* this is the codec entry point */ enum codec_status codec_main(void) { memcpy( spc_emu.cycle_table, cycle_table, sizeof cycle_table ); do { DEBUGF("SPC: next_track\n"); if (codec_init()) { return CODEC_ERROR; } DEBUGF("SPC: after init\n"); ci->configure(DSP_SET_SAMPLE_DEPTH, 24); ci->configure(DSP_SET_FREQUENCY, sample_rate); ci->configure(DSP_SET_STEREO_MODE, STEREO_NONINTERLEAVED); /* wait for track info to load */ while (!*ci->taginfo_ready && !ci->stop_codec) ci->sleep(1); /* Read the entire file */ DEBUGF("SPC: request initial buffer\n"); ci->configure(CODEC_SET_FILEBUF_WATERMARK, ci->filesize); ci->seek_buffer(0); size_t buffersize; uint8_t* buffer = ci->request_buffer(&buffersize, ci->filesize); if (!buffer) { return CODEC_ERROR; } DEBUGF("SPC: read size = 0x%x\n",buffersize); do { SPC_Init(&spc_emu); if (SPC_load_spc(&spc_emu,buffer,buffersize)) { DEBUGF("SPC load failure\n"); return CODEC_ERROR; } LoadID666(buffer+0x2e); if (ci->global_settings->repeat_mode!=REPEAT_ONE && ID666.length==0) { ID666.length=3*60*1000; /* 3 minutes */ ID666.fade=5*1000; /* 5 seconds */ } ci->id3->length = ID666.length+ID666.fade; ci->id3->title = ID666.song; ci->id3->album = ID666.game; ci->id3->artist = ID666.artist; reset_profile_timers(); } while ( play_track() ); print_timers(ci->id3->path); } while ( ci->request_next_track() ); return CODEC_OK; }