/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2008 by Dave Chapman * Copyright (C) 2010 by Thomas Martitz * * LCD driver for the Sansa Fuze - controller unknown * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "config.h" #include "cpu.h" #include "lcd.h" #include "file.h" #include "debug.h" #include "system.h" #include "clock-target.h" /* The controller is unknown, but some registers appear to be the same as the HD66789R */ static bool display_on = false; /* is the display turned on? */ /* register defines */ #define R_START_OSC 0x00 #define R_DRV_OUTPUT_CONTROL 0x01 #define R_DRV_WAVEFORM_CONTROL 0x02 #define R_ENTRY_MODE 0x03 #define R_COMPARE_REG1 0x04 #define R_COMPARE_REG2 0x05 #define R_DISP_CONTROL1 0x07 #define R_DISP_CONTROL2 0x08 #define R_DISP_CONTROL3 0x09 #define R_FRAME_CYCLE_CONTROL 0x0b #define R_EXT_DISP_IF_CONTROL 0x0c #define R_POWER_CONTROL1 0x10 #define R_POWER_CONTROL2 0x11 #define R_POWER_CONTROL3 0x12 #define R_POWER_CONTROL4 0x13 #define R_RAM_ADDR_SET 0x21 #define R_WRITE_DATA_2_GRAM 0x22 #define R_GAMMA_FINE_ADJ_POS1 0x30 #define R_GAMMA_FINE_ADJ_POS2 0x31 #define R_GAMMA_FINE_ADJ_POS3 0x32 #define R_GAMMA_GRAD_ADJ_POS 0x33 #define R_GAMMA_FINE_ADJ_NEG1 0x34 #define R_GAMMA_FINE_ADJ_NEG2 0x35 #define R_GAMMA_FINE_ADJ_NEG3 0x36 #define R_GAMMA_GRAD_ADJ_NEG 0x37 #define R_GAMMA_AMP_ADJ_RES_POS 0x38 #define R_GAMMA_AMP_AVG_ADJ_RES_NEG 0x39 #define R_GATE_SCAN_POS 0x40 #define R_VERT_SCROLL_CONTROL 0x41 #define R_1ST_SCR_DRV_POS 0x42 #define R_2ND_SCR_DRV_POS 0x43 #define R_HORIZ_RAM_ADDR_POS 0x44 #define R_VERT_RAM_ADDR_POS 0x45 /* Flip Flag */ #define R_ENTRY_MODE_HORZ_NORMAL 0x7030 #define R_ENTRY_MODE_HORZ_FLIPPED 0x7000 static unsigned short r_entry_mode = R_ENTRY_MODE_HORZ_NORMAL; #define R_ENTRY_MODE_VERT 0x7038 #define R_ENTRY_MODE_SOLID_VERT 0x1038 /* FIXME */ #define R_ENTRY_MODE_VIDEO_NORMAL 0x7038 #define R_ENTRY_MODE_VIDEO_FLIPPED 0x7018 /* Reverse Flag */ #define R_DISP_CONTROL_NORMAL 0x0004 #define R_DISP_CONTROL_REV 0x0000 static unsigned short r_disp_control_rev = R_DISP_CONTROL_NORMAL; static const int xoffset = 20; static inline void lcd_delay(int x) { do { asm volatile ("nop\n"); } while (x--); } #define REG(x) (*(volatile unsigned long*)(x)) typedef unsigned long reg; static void as3525_dbop_init(void) { #if 0 CGU_DBOP = (1<<3) | AS3525_DBOP_DIV; DBOP_TIMPOL_01 = 0xe167e167; DBOP_TIMPOL_23 = 0xe167006e; /* short count: 16 | output data width: 16 | readstrobe line */ DBOP_CTRL = (1<<18|1<<12|1<<3); GPIOB_AFSEL = 0xfc; GPIOC_AFSEL = 0xff; DBOP_TIMPOL_23 = 0x6000e; /* short count: 16|enable write|output data width: 16|read strobe line */ DBOP_CTRL = (1<<18|1<<16|1<<12|1<<3); DBOP_TIMPOL_01 = 0x6e167; DBOP_TIMPOL_23 = 0xa167e06f; /* TODO: The OF calls some other functions here, but maybe not important */ #endif REG(0xC810000C) |= 0x1000; /* CCU_IO |= 1<<12 */ CGU_DBOP |= /*(1<<3)*/ 0x18 | AS3525_DBOP_DIV; DBOP_TIMPOL_01 = 0xE12FE12F; DBOP_TIMPOL_23 = 0xE12F0036; DBOP_CTRL = 0x41004; DBOP_TIMPOL_23 = 0x60036; DBOP_CTRL = 0x51004; DBOP_TIMPOL_01 = 0x60036; DBOP_TIMPOL_23 = 0xA12FE037; /* OF sets up dma and more after here */ } static inline void dbop_set_mode(int mode) { int delay = 10; if (mode == 32 && (!(DBOP_CTRL & (1<<13|1<<14)))) DBOP_CTRL |= (1<<13|1<<14); else if (mode == 16 && (DBOP_CTRL & (1<<13|1<<14))) DBOP_CTRL &= ~(1<<14|1<<13); else return; while(delay--) asm volatile("nop"); } static void dbop_write_data(const int16_t* p_bytes, int count) { const int32_t *data; if ((intptr_t)p_bytes & 0x3 || count == 1) { /* need to do a single 16bit write beforehand if the address is * not word aligned or count is 1, switch to 16bit mode if needed */ dbop_set_mode(16); DBOP_DOUT16 = *p_bytes++; if (!(--count)) return; } /* from here, 32bit transfers are save * set it to transfer 4*(outputwidth) units at a time, * if bit 12 is set it only does 2 halfwords though (we never set it) * switch to 32bit output if needed */ dbop_set_mode(32); data = (int32_t*)p_bytes; while (count > 1) { DBOP_DOUT32 = *data++; count -= 2; /* Wait if push fifo is full */ while ((DBOP_STAT & (1<<6)) != 0); } /* While push fifo is not empty */ while ((DBOP_STAT & (1<<10)) == 0); /* due to the 32bit alignment requirement or uneven count, * we possibly need to do a 16bit transfer at the end also */ if (count > 0) dbop_write_data((int16_t*)data, 1); } static void lcd_write_cmd(short cmd) { #if 0 /* Write register */ DBOP_TIMPOL_23 = 0xa167006e; dbop_write_data(&cmd, 1); lcd_delay(4); DBOP_TIMPOL_23 = 0xa167e06f; #elif 1 volatile int i; for(i=0;i<20;i++) nop; int r3 = 0x2000; DBOP_CTRL |= r3; r3 >>= 1; DBOP_CTRL &= ~r3; r3 <<= 2; DBOP_CTRL &= ~r3; DBOP_TIMPOL_23 = 0xA12F0036; cmd = swap16(cmd); DBOP_DOUT16 = cmd; while ((DBOP_STAT & (1<<10)) == 0); for(i=0;i<20;i++) nop; DBOP_TIMPOL_23 = 0xA12FE037; #else int i; DBOP_TIMPOL_23 = 0xA12F0036; for(i=0;i<20;i++) nop; dbop_write_data(&cmd, 1); for(i=0;i<20;i++) nop; DBOP_TIMPOL_23 = 0xA12FE037; #endif } static void lcd_write_reg(int reg, int value) { int16_t data = value; lcd_write_cmd(reg); dbop_write_data(&data, 1); } /*** hardware configuration ***/ void lcd_set_contrast(int val) { (void)val; } void lcd_set_invert_display(bool yesno) { r_disp_control_rev = yesno ? R_DISP_CONTROL_REV : R_DISP_CONTROL_NORMAL; if (display_on) { lcd_write_reg(R_DISP_CONTROL1, 0x0013 | r_disp_control_rev); } } #ifdef HAVE_LCD_FLIP static bool display_flipped = false; /* turn the display upside down */ void lcd_set_flip(bool yesno) { display_flipped = yesno; r_entry_mode = yesno ? R_ENTRY_MODE_HORZ_FLIPPED : R_ENTRY_MODE_HORZ_NORMAL; } #endif static void _display_on(void) { /* Initialise in the same way as the original firmare */ lcd_write_reg(R_DISP_CONTROL1, 0); lcd_write_reg(R_POWER_CONTROL4, 0); lcd_write_reg(R_POWER_CONTROL2, 0x3704); lcd_write_reg(0x14, 0x1a1b); lcd_write_reg(R_POWER_CONTROL1, 0x3860); lcd_write_reg(R_POWER_CONTROL4, 0x40); lcd_write_reg(R_POWER_CONTROL4, 0x60); lcd_write_reg(R_POWER_CONTROL4, 0x70); lcd_write_reg(R_DRV_OUTPUT_CONTROL, 277); lcd_write_reg(R_DRV_WAVEFORM_CONTROL, (7<<8)); lcd_write_reg(R_ENTRY_MODE, r_entry_mode); lcd_write_reg(R_DISP_CONTROL2, 0x01); lcd_write_reg(R_FRAME_CYCLE_CONTROL, (1<<10)); lcd_write_reg(R_EXT_DISP_IF_CONTROL, 0); lcd_write_reg(R_GAMMA_FINE_ADJ_POS1, 0x40); lcd_write_reg(R_GAMMA_FINE_ADJ_POS2, 0x0687); lcd_write_reg(R_GAMMA_FINE_ADJ_POS3, 0x0306); lcd_write_reg(R_GAMMA_GRAD_ADJ_POS, 0x104); lcd_write_reg(R_GAMMA_FINE_ADJ_NEG1, 0x0585); lcd_write_reg(R_GAMMA_FINE_ADJ_NEG2, 255+66); lcd_write_reg(R_GAMMA_FINE_ADJ_NEG3, 0x0687+128); lcd_write_reg(R_GAMMA_GRAD_ADJ_NEG, 259); lcd_write_reg(R_GAMMA_AMP_ADJ_RES_POS, 0); lcd_write_reg(R_GAMMA_AMP_AVG_ADJ_RES_NEG, 0); lcd_write_reg(R_1ST_SCR_DRV_POS, (LCD_WIDTH - 1)); lcd_write_reg(R_2ND_SCR_DRV_POS, 0); lcd_write_reg(R_HORIZ_RAM_ADDR_POS, (LCD_WIDTH - 1)); lcd_write_reg(R_VERT_RAM_ADDR_POS, 0); lcd_write_reg(0x46, (((LCD_WIDTH - 1) + xoffset) << 8) | xoffset); lcd_write_reg(0x47, (LCD_HEIGHT - 1)); lcd_write_reg(0x48, 0x0); lcd_write_reg(R_DISP_CONTROL1, 0x11); lcd_write_reg(R_DISP_CONTROL1, 0x13 | r_disp_control_rev); display_on = true; /* must be done before calling lcd_update() */ lcd_update(); } void lcd_init_device(void) { as3525_dbop_init(); GPIOA_DIR |= (0x20|0x1); GPIOA_DIR &= ~(1<<3); GPIOA_PIN(3) = 0; GPIOA_PIN(0) = 1; GPIOA_PIN(4) = 0; CCU_IO &= ~(0x1000); GPIOB_DIR |= 0x2f; GPIOB_PIN(0) = 1<<0; GPIOB_PIN(1) = 1<<1; GPIOB_PIN(2) = 1<<2; GPIOB_PIN(3) = 1<<3; GPIOA_PIN(4) = 1<<4; GPIOA_PIN(5) = 1<<5; _display_on(); } #if defined(HAVE_LCD_ENABLE) void lcd_enable(bool on) { if (display_on == on) return; if(on) { lcd_write_reg(R_START_OSC, 1); lcd_write_reg(R_POWER_CONTROL1, 0); lcd_write_reg(R_POWER_CONTROL2, 0x3704); lcd_write_reg(0x14, 0x1a1b); lcd_write_reg(R_POWER_CONTROL1, 0x3860); lcd_write_reg(R_POWER_CONTROL4, 0x40); lcd_write_reg(R_POWER_CONTROL4, 0x60); lcd_write_reg(R_POWER_CONTROL4, 112); lcd_write_reg(R_DISP_CONTROL1, 0x11); lcd_write_reg(R_DISP_CONTROL1, 0x13 | r_disp_control_rev); display_on = true; lcd_update(); /* Resync display */ send_event(LCD_EVENT_ACTIVATION, NULL); sleep(0); } else { lcd_write_reg(R_DISP_CONTROL1, 0x22); lcd_write_reg(R_DISP_CONTROL1, 0); lcd_write_reg(R_POWER_CONTROL1, 1); display_on = false; } } #endif #if defined(HAVE_LCD_ENABLE) || defined(HAVE_LCD_SLEEP) bool lcd_active(void) { return display_on; } #endif /*** update functions ***/ /* FIXME : find the datasheet for this RENESAS controller so we identify the * registers used in windowing code (not present in HD66789R) */ /* Set horizontal window addresses */ static void lcd_window_x(int xmin, int xmax) { xmin += xoffset; xmax += xoffset; lcd_write_reg(R_HORIZ_RAM_ADDR_POS + 2, (xmax << 8) | xmin); lcd_write_reg(R_RAM_ADDR_SET - 1, xmin); } /* Set vertical window addresses */ static void lcd_window_y(int ymin, int ymax) { lcd_write_reg(R_VERT_RAM_ADDR_POS + 2, ymax); lcd_write_reg(R_VERT_RAM_ADDR_POS + 3, ymin); lcd_write_reg(R_RAM_ADDR_SET, ymin); } static unsigned lcd_yuv_options = 0; void lcd_yuv_set_options(unsigned options) { lcd_yuv_options = options; } /* Line write helper function for lcd_yuv_blit. Write two lines of yuv420. */ extern void lcd_write_yuv420_lines(unsigned char const * const src[3], int width, int stride); extern void lcd_write_yuv420_lines_odither(unsigned char const * const src[3], int width, int stride, int x_screen, /* To align dither pattern */ int y_screen); /* Performance function to blit a YUV bitmap directly to the LCD * src_x, src_y, width and height should be even * x, y, width and height have to be within LCD bounds */ void lcd_blit_yuv(unsigned char * const src[3], int src_x, int src_y, int stride, int x, int y, int width, int height) { unsigned char const * yuv_src[3]; off_t z; /* Sorry, but width and height must be >= 2 or else */ width &= ~1; height >>= 1; z = stride*src_y; yuv_src[0] = src[0] + z + src_x; yuv_src[1] = src[1] + (z >> 2) + (src_x >> 1); yuv_src[2] = src[2] + (yuv_src[1] - src[1]); #ifdef HAVE_LCD_FLIP lcd_write_reg(R_ENTRY_MODE, display_flipped ? R_ENTRY_MODE_VIDEO_FLIPPED : R_ENTRY_MODE_VIDEO_NORMAL ); #else lcd_write_reg(R_ENTRY_MODE, R_ENTRY_MODE_VIDEO_NORMAL); #endif lcd_window_x(x, x + width - 1); if (lcd_yuv_options & LCD_YUV_DITHER) { do { lcd_window_y(y, y + 1); lcd_write_cmd(R_WRITE_DATA_2_GRAM); lcd_write_yuv420_lines_odither(yuv_src, width, stride, x, y); yuv_src[0] += stride << 1; /* Skip down two luma lines */ yuv_src[1] += stride >> 1; /* Skip down one chroma line */ yuv_src[2] += stride >> 1; y += 2; } while (--height > 0); } else { do { lcd_window_y(y, y + 1); lcd_write_cmd(R_WRITE_DATA_2_GRAM); lcd_write_yuv420_lines(yuv_src, width, stride); yuv_src[0] += stride << 1; /* Skip down two luma lines */ yuv_src[1] += stride >> 1; /* Skip down one chroma line */ yuv_src[2] += stride >> 1; y += 2; } while (--height > 0); } } /* Update the display. This must be called after all other LCD functions that change the display. */ void lcd_update(void) { if (!display_on) return; lcd_write_reg(R_ENTRY_MODE, r_entry_mode); lcd_window_x(0, LCD_WIDTH - 1); lcd_window_y(0, LCD_HEIGHT - 1); lcd_write_cmd(R_WRITE_DATA_2_GRAM); lcd_update_rect(0,0, LCD_WIDTH, LCD_HEIGHT); //dbop_write_data((fb_data*)lcd_framebuffer, LCD_WIDTH*LCD_HEIGHT); } /* Update a fraction of the display. */ void lcd_update_rect(int x, int y, int width, int height) { const fb_data *ptr; if (!display_on) return; /* nothing to draw? */ if ((width <= 0) || (height <= 0) || (x >= LCD_WIDTH) || (y >= LCD_HEIGHT) || (x + width <= 0) || (y + height <= 0)) return; if (x < 0) { /* clip left */ width += x; x = 0; } if (y < 0) { /* clip top */ height += y; y = 0; } if (x + width > LCD_WIDTH) width = LCD_WIDTH - x; /* clip right */ if (y + height > LCD_HEIGHT) height = LCD_HEIGHT - y; /* clip bottom */ lcd_write_reg(R_ENTRY_MODE, r_entry_mode); /* we need to make x and width even to enable 32bit transfers */ width = (width + (x & 1) + 1) & ~1; x &= ~1; lcd_window_x(x, x + width - 1); lcd_window_y(y, y + height -1); lcd_write_cmd(R_WRITE_DATA_2_GRAM); ptr = &lcd_framebuffer[y][x]; do { dbop_write_data(ptr, width); ptr += LCD_WIDTH; } while (--height > 0); }