/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2005 by Linus Nielsen Feltzing * * All files in this archive are subject to the GNU General Public License. * See the file COPYING in the source tree root for full license agreement. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include #include "config.h" #include "debug.h" #include "panic.h" #include #ifndef SIMULATOR #include "cpu.h" #include "i2c.h" #include "uda1380.h" #include "system.h" #endif #include "logf.h" #include #include #include #include "pcm_playback.h" #include "lcd.h" #include "button.h" #include "file.h" #include "buffer.h" #include "sprintf.h" #include "button.h" #include #ifdef HAVE_UDA1380 #define CHUNK_SIZE 32768 /* Must be a power of 2 */ #define NUM_PCM_BUFFERS (PCMBUF_SIZE / CHUNK_SIZE) #define NUM_PCM_BUFFERS_MASK (NUM_PCM_BUFFERS - 1) #define PCM_WATERMARK (CHUNK_SIZE * 6) #define PCM_CF_WATERMARK (PCMBUF_SIZE - CHUNK_SIZE*8) static bool pcm_playing; static bool pcm_paused; static int pcm_freq = 0x6; /* 44.1 is default */ static char *audiobuffer; static long audiobuffer_pos; long audiobuffer_free; static long audiobuffer_fillpos; static bool boost_mode; /* Crossfade modes. If CFM_CROSSFADE is selected, normal * crossfader will activate. Selecting CFM_FLUSH is a special * operation that only overwrites the pcm buffer without crossfading. */ enum { CFM_CROSSFADE, CFM_FLUSH }; static int crossfade_mode; static bool crossfade_enabled; static bool crossfade_active; static bool crossfade_init; static int crossfade_pos; static int crossfade_amount; static int crossfade_rem; static char *guardbuf; static void (*pcm_event_handler)(void); static unsigned char *next_start; static long next_size; static int last_chunksize = 0; struct pcmbufdesc { void *addr; int size; void (*callback)(void); /* Call this when the buffer has been played */ } pcmbuffers[NUM_PCM_BUFFERS]; volatile int pcmbuf_read_index; volatile int pcmbuf_write_index; int pcmbuf_unplayed_bytes; int pcmbuf_watermark; void (*pcmbuf_watermark_callback)(int bytes_left); /* Set up the DMA transfer that kicks in when the audio FIFO gets empty */ static void dma_start(const void *addr, long size) { pcm_playing = true; addr = (void *)((unsigned long)addr & ~3); /* Align data */ size &= ~3; /* Size must be multiple of 4 */ /* Reset the audio FIFO */ IIS2CONFIG = 0x800; EBU1CONFIG = 0x800; /* Set up DMA transfer */ SAR0 = ((unsigned long)addr); /* Source address */ DAR0 = (unsigned long)&PDOR3; /* Destination address */ BCR0 = size; /* Bytes to transfer */ /* Enable the FIFO and force one write to it */ IIS2CONFIG = (pcm_freq << 12) | 0x300 | 4 << 2; /* Also send the audio to S/PDIF */ EBU1CONFIG = 7 << 12 | 3 << 8 | 5 << 2; DCR0 = DMA_INT | DMA_EEXT | DMA_CS | DMA_SINC | DMA_START; } void pcm_boost(bool state) { static bool boost_state = false; if (crossfade_active || boost_mode) return ; if (state != boost_state) { #ifdef HAVE_ADJUSTABLE_CPU_FREQ cpu_boost(state); #endif boost_state = state; } } /* Stops the DMA transfer and interrupt */ static void dma_stop(void) { pcm_playing = false; DCR0 = 0; /* Reset the FIFO */ IIS2CONFIG = 0x800; EBU1CONFIG = 0x800; pcmbuf_unplayed_bytes = 0; last_chunksize = 0; audiobuffer_pos = 0; audiobuffer_fillpos = 0; audiobuffer_free = PCMBUF_SIZE; pcmbuf_read_index = 0; pcmbuf_write_index = 0; next_start = NULL; next_size = 0; crossfade_init = 0; pcm_paused = false; } /* sets frequency of input to DAC */ void pcm_set_frequency(unsigned int frequency) { switch(frequency) { case 11025: pcm_freq = 0x4; uda1380_set_nsorder(3); break; case 22050: pcm_freq = 0x6; uda1380_set_nsorder(3); break; case 44100: default: pcm_freq = 0xC; uda1380_set_nsorder(5); break; } } /* the registered callback function to ask for more mp3 data */ static void (*callback_for_more)(unsigned char**, long*) = NULL; int pcm_play_num_used_buffers(void) { return (pcmbuf_write_index - pcmbuf_read_index) & NUM_PCM_BUFFERS_MASK; } static void pcm_play_callback(unsigned char** start, long* size) { struct pcmbufdesc *desc = &pcmbuffers[pcmbuf_read_index]; int sz; pcmbuf_unplayed_bytes -= last_chunksize; audiobuffer_free += last_chunksize; if(desc->size == 0) { /* The buffer is finished, call the callback function */ if(desc->callback) desc->callback(); /* Advance to the next buffer */ pcmbuf_read_index = (pcmbuf_read_index + 1) & NUM_PCM_BUFFERS_MASK; desc = &pcmbuffers[pcmbuf_read_index]; } if(pcm_play_num_used_buffers()) { /* Play max 64K at a time */ sz = MIN(desc->size, 32768); *start = desc->addr; *size = sz; /* Update the buffer descriptor */ desc->size -= sz; desc->addr += sz; last_chunksize = sz; } else { /* No more buffers */ *size = 0; if (pcm_event_handler) pcm_event_handler(); } #if 1 if(pcmbuf_unplayed_bytes <= pcmbuf_watermark) { if(pcmbuf_watermark_callback) { pcmbuf_watermark_callback(pcmbuf_unplayed_bytes); } } #endif } void pcm_play_data(const unsigned char* start, int size, void (*get_more)(unsigned char** start, long* size)) { callback_for_more = get_more; get_more(&next_start, &next_size); dma_start(start, size); /* Sleep a while, then unmute audio output */ sleep(1); uda1380_mute(false); } void pcm_play_stop(void) { crossfade_active = false; pcm_set_boost_mode(false); if (pcm_playing) { uda1380_mute(true); pcm_boost(false); sleep(1); dma_stop(); } } void pcm_play_pause(bool play) { if(pcm_paused && play && pcmbuf_unplayed_bytes) { logf("unpause"); /* Reset chunk size so dma has enough data to fill the fifo. */ /* This shouldn't be needed anymore. */ //SAR0 = (unsigned long)next_start; //BCR0 = next_size; /* Enable the FIFO and force one write to it */ IIS2CONFIG = (pcm_freq << 12) | 0x300 | 4 << 2; EBU1CONFIG = 7 << 12 | 3 << 8 | 5 << 2; DCR0 |= DMA_EEXT | DMA_START; sleep(1); uda1380_mute(false); } else if(!pcm_paused && !play) { logf("pause"); uda1380_mute(true); /* Disable DMA peripheral request. */ DCR0 &= ~DMA_EEXT; IIS2CONFIG = 0x800; EBU1CONFIG = 0x800; } pcm_paused = !play; } bool pcm_is_playing(void) { return pcm_playing; } /* DMA0 Interrupt is called when the DMA has finished transfering a chunk */ void DMA0(void) __attribute__ ((interrupt_handler, section(".icode"))); void DMA0(void) { int res = DSR0; DSR0 = 1; /* Clear interrupt */ DCR0 &= ~DMA_EEXT; /* Stop on error */ if(res & 0x70) { dma_stop(); logf("DMA Error"); } else { if(next_size) { SAR0 = (unsigned long)next_start; /* Source address */ BCR0 = next_size; /* Bytes to transfer */ DCR0 |= DMA_EEXT; if (callback_for_more) callback_for_more(&next_start, &next_size); } else { /* Finished playing */ dma_stop(); logf("DMA No Data"); } } IPR |= (1<<14); /* Clear pending interrupt request */ } void pcm_init(void) { pcm_playing = false; pcm_paused = false; uda1380_init(); BUSMASTER_CTRL = 0x81; /* PARK[1,0]=10 + BCR24BIT */ DIVR0 = 54; /* DMA0 is mapped into vector 54 in system.c */ DMAROUTE = (DMAROUTE & 0xffffff00) | DMA0_REQ_AUDIO_1; DMACONFIG = 1; /* DMA0Req = PDOR3 */ /* Reset the audio FIFO */ IIS2CONFIG = 0x800; /* Enable interrupt at level 7, priority 0 */ ICR4 = (ICR4 & 0xffff00ff) | 0x00001c00; IMR &= ~(1<<14); /* bit 14 is DMA0 */ pcm_play_init(); pcm_set_frequency(44100); } void pcm_play_set_watermark(int numbytes, void (*callback)(int bytes_left)) { pcmbuf_watermark = numbytes; pcmbuf_watermark_callback = callback; } bool pcm_play_add_chunk(void *addr, int size, void (*callback)(void)) { /* We don't use the last buffer, since we can't see the difference between the full and empty condition */ if(pcm_play_num_used_buffers() < (NUM_PCM_BUFFERS - 2)) { pcmbuffers[pcmbuf_write_index].addr = addr; pcmbuffers[pcmbuf_write_index].size = size; pcmbuffers[pcmbuf_write_index].callback = callback; pcmbuf_write_index = (pcmbuf_write_index+1) & NUM_PCM_BUFFERS_MASK; pcmbuf_unplayed_bytes += size; return true; } else return false; } void pcm_watermark_callback(int bytes_left) { /* Fill audio buffer by boosting cpu */ pcm_boost(true); if (bytes_left <= CHUNK_SIZE * 2) crossfade_active = false; } void pcm_set_boost_mode(bool state) { if (state) pcm_boost(true); boost_mode = state; } void audiobuffer_add_event(void (*event_handler)(void)) { pcm_event_handler = event_handler; } unsigned int audiobuffer_get_latency(void) { int latency; /* This has to be done better. */ latency = (PCMBUF_SIZE - audiobuffer_free - CHUNK_SIZE)/4 / (44100/1000); if (latency < 0) latency = 0; return latency; } bool pcm_is_lowdata(void) { if (!pcm_is_playing() || pcm_paused) return false; if (pcmbuf_unplayed_bytes < PCM_WATERMARK || crossfade_active) return true; return false; } bool pcm_crossfade_init(void) { if (PCMBUF_SIZE - audiobuffer_free < CHUNK_SIZE * 8 || !crossfade_enabled) { return false; } logf("crossfading!"); crossfade_mode = CFM_CROSSFADE; crossfade_init = true; return true; } /** Initialize a track switch so that audio playback will not stop but * the switch to next track would happen as soon as possible. */ void pcm_flush_audio(void) { if (crossfade_init || crossfade_active || !pcm_playing) return ; crossfade_mode = CFM_FLUSH; crossfade_init = true; } void pcm_flush_fillpos(void) { if (audiobuffer_fillpos) { while (!pcm_play_add_chunk(&audiobuffer[audiobuffer_pos], audiobuffer_fillpos, pcm_event_handler)) { pcm_boost(false); yield(); /* This is a fatal error situation that should never happen. */ if (!pcm_playing) break ; } pcm_event_handler = NULL; audiobuffer_pos += audiobuffer_fillpos; if (audiobuffer_pos >= PCMBUF_SIZE) audiobuffer_pos -= PCMBUF_SIZE; audiobuffer_free -= audiobuffer_fillpos; audiobuffer_fillpos = 0; } } static void crossfade_start(void) { crossfade_init = 0; if (PCMBUF_SIZE - audiobuffer_free < CHUNK_SIZE * 4) { if (crossfade_mode == CFM_FLUSH) pcm_play_stop(); return ; } pcm_flush_fillpos(); pcm_boost(true); crossfade_active = true; crossfade_pos = audiobuffer_pos; switch (crossfade_mode) { case CFM_CROSSFADE: crossfade_amount = (PCMBUF_SIZE - audiobuffer_free - (CHUNK_SIZE * 2))/2; crossfade_rem = crossfade_amount; break ; case CFM_FLUSH: crossfade_amount = (PCMBUF_SIZE - audiobuffer_free - (CHUNK_SIZE * 2))/2; crossfade_rem = crossfade_amount; break ; } crossfade_pos -= crossfade_amount*2; if (crossfade_pos < 0) crossfade_pos += PCMBUF_SIZE; } static __inline int crossfade(short *buf, const short *buf2, int length) { int size, i; int val1, val2; size = MIN(length, crossfade_rem); switch (crossfade_mode) { case CFM_CROSSFADE: val1 = (crossfade_rem<<10)/crossfade_amount; val2 = ((crossfade_amount-crossfade_rem)<<10)/crossfade_amount; for (i = 0; i < size; i++) { buf[i] = ((buf[i] * val1) + (buf2[i] * val2)) >> 10; } break ; case CFM_FLUSH: for (i = 0; i < size; i++) { buf[i] = buf2[i]; } //memcpy((char *)buf, (char *)buf2, size*2); break ; } crossfade_rem -= size; if (crossfade_rem <= 0) crossfade_active = false; return size; } inline static bool prepare_insert(long length) { if (crossfade_init) crossfade_start(); if (audiobuffer_free < length + audiobuffer_fillpos + CHUNK_SIZE && !crossfade_active) { pcm_boost(false); return false; } if (!pcm_is_playing()) { pcm_boost(true); crossfade_active = false; if (audiobuffer_free < PCMBUF_SIZE - CHUNK_SIZE*4) pcm_play_start(); } return true; } void* pcm_request_buffer(long length, long *realsize) { void *ptr = NULL; if (!prepare_insert(length)) { *realsize = 0; return NULL; } if (crossfade_active) { *realsize = MIN(length, PCMBUF_GUARD); ptr = &guardbuf[0]; } else { *realsize = MIN(length, PCMBUF_SIZE - audiobuffer_pos - audiobuffer_fillpos); if (*realsize < length) { *realsize += MIN((long)(length - *realsize), PCMBUF_GUARD); } ptr = &audiobuffer[audiobuffer_pos + audiobuffer_fillpos]; } return ptr; } bool pcm_is_crossfade_active(void) { return crossfade_active; } void pcm_flush_buffer(long length) { int copy_n; char *buf; if (crossfade_active) { buf = &guardbuf[0]; length = MIN(length, PCMBUF_GUARD); while (length > 0 && crossfade_active) { copy_n = MIN(length, PCMBUF_SIZE - crossfade_pos); copy_n = 2 * crossfade((short *)&audiobuffer[crossfade_pos], (const short *)buf, copy_n/2); buf += copy_n; length -= copy_n; crossfade_pos += copy_n; if (crossfade_pos >= PCMBUF_SIZE) crossfade_pos -= PCMBUF_SIZE; } while (length > 0) { copy_n = MIN(length, PCMBUF_SIZE - audiobuffer_pos); memcpy(&audiobuffer[audiobuffer_pos], buf, copy_n); audiobuffer_fillpos = copy_n; buf += copy_n; length -= copy_n; if (length > 0) pcm_flush_fillpos(); } } audiobuffer_fillpos += length; try_flush: if (audiobuffer_fillpos < CHUNK_SIZE && PCMBUF_SIZE - audiobuffer_pos - audiobuffer_fillpos > 0) return ; copy_n = audiobuffer_fillpos - (PCMBUF_SIZE - audiobuffer_pos); if (copy_n > 0) { audiobuffer_fillpos -= copy_n; pcm_flush_fillpos(); copy_n = MIN(copy_n, PCMBUF_GUARD); memcpy(&audiobuffer[0], &guardbuf[0], copy_n); audiobuffer_fillpos = copy_n; goto try_flush; } pcm_flush_fillpos(); } bool pcm_insert_buffer(char *buf, long length) { long copy_n = 0; if (!prepare_insert(length)) return false; if (crossfade_active) { while (length > 0 && crossfade_active) { copy_n = MIN(length, PCMBUF_SIZE - crossfade_pos); copy_n = 2 * crossfade((short *)&audiobuffer[crossfade_pos], (const short *)buf, copy_n/2); buf += copy_n; length -= copy_n; crossfade_pos += copy_n; if (crossfade_pos >= PCMBUF_SIZE) crossfade_pos -= PCMBUF_SIZE; } while (length > 0) { copy_n = MIN(length, PCMBUF_SIZE - audiobuffer_pos); memcpy(&audiobuffer[audiobuffer_pos], buf, copy_n); audiobuffer_fillpos = copy_n; buf += copy_n; length -= copy_n; if (length > 0) pcm_flush_fillpos(); } } while (length > 0) { copy_n = MIN(length, PCMBUF_SIZE - audiobuffer_pos - audiobuffer_fillpos); copy_n = MIN(CHUNK_SIZE - audiobuffer_fillpos, copy_n); memcpy(&audiobuffer[audiobuffer_pos+audiobuffer_fillpos], buf, copy_n); buf += copy_n; audiobuffer_fillpos += copy_n; length -= copy_n; /* Pre-buffer to meet CHUNK_SIZE requirement */ if (audiobuffer_fillpos < CHUNK_SIZE && length == 0) { return true; } pcm_flush_fillpos(); } return true; } void pcm_play_init(void) { audiobuffer = &audiobuf[(audiobufend - audiobuf) - PCMBUF_SIZE - PCMBUF_GUARD]; guardbuf = &audiobuffer[PCMBUF_SIZE]; audiobuffer_free = PCMBUF_SIZE; audiobuffer_pos = 0; audiobuffer_fillpos = 0; boost_mode = 0; pcmbuf_read_index = 0; pcmbuf_write_index = 0; pcmbuf_unplayed_bytes = 0; crossfade_active = false; crossfade_init = false; pcm_event_handler = NULL; /* Turn on headphone power with audio output muted. */ uda1380_mute(true); sleep(HZ/4); uda1380_enable_output(true); } void pcm_crossfade_enable(bool on_off) { crossfade_enabled = on_off; } bool pcm_is_crossfade_enabled(void) { return crossfade_enabled; } void pcm_play_start(void) { struct pcmbufdesc *desc = &pcmbuffers[pcmbuf_read_index]; int size; char *start; if (crossfade_enabled) { pcm_play_set_watermark(PCM_CF_WATERMARK, pcm_watermark_callback); } else { pcm_play_set_watermark(PCM_WATERMARK, pcm_watermark_callback); } crossfade_active = false; if(!pcm_is_playing()) { size = MIN(desc->size, 32768); start = desc->addr; last_chunksize = size; desc->size -= size; desc->addr += size; pcm_play_data(start, size, pcm_play_callback); } } #endif /* HAVE_UDA1380 */