/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2011 by Amaury Pouly * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "config.h" #include "audiohw.h" #include "pcm.h" #include "dma-imx233.h" #include "pcm-internal.h" #include "audioout-imx233.h" struct pcm_dma_command_t { struct apb_dma_command_t dma; /* padded to next multiple of cache line size (32 bytes) */ uint32_t pad[5]; } __attribute__((packed)) CACHEALIGN_ATTR; __ENSURE_STRUCT_CACHE_FRIENDLY(struct pcm_dma_command_t) /* Because we have no way of stopping the DMA properly (see below), we can only * let the tranfer finish on stop. However if the transfer is very long it could * take a while. We work around this by splitting big transfers into small burst * to make sure we can stop quickly. */ static int dac_locked = 0; static struct pcm_dma_command_t dac_dma; static bool dac_freezed = false; static const void *dac_buf; /* current buffer */ static size_t dac_size; /* remaining size */ /* for both recording and playback: maximum transfer size, see * pcm_dma_apply_settings */ static size_t dma_max_size = CACHEALIGN_UP(1600); enum { DAC_PLAYING, DAC_STOP_PENDING, DAC_STOPPED, }dac_state = DAC_STOPPED; /** * WARNING ! * Never reset the dma channel, otherwise it will halt the DAC for some reason * and I don't know how to recover from this state * */ static void play(void) { /* split transfer if needed */ size_t xfer = MIN(dac_size, dma_max_size); dac_dma.dma.next = NULL; dac_dma.dma.buffer = (void *)dac_buf; dac_dma.dma.cmd = BF_OR4(APB_CHx_CMD, COMMAND_V(READ), IRQONCMPLT(1), SEMAPHORE(1), XFER_COUNT(xfer)); /* dma subsystem will make sure cached stuff is written to memory */ dac_state = DAC_PLAYING; imx233_dma_start_command(APB_AUDIO_DAC, &dac_dma.dma); /* advance buffer */ dac_buf += xfer; dac_size -= xfer; } void INT_DAC_DMA(void) { /* if stop is pending, ackonowledge stop * otherwise try to get some more and stop if there is none */ if(dac_state == DAC_STOP_PENDING) { dac_state = DAC_STOPPED; } else if(dac_state == DAC_PLAYING) { /* continue if buffer is not done, otherwise try to get some new data */ if(dac_size != 0 || pcm_play_dma_complete_callback(PCM_DMAST_OK, &dac_buf, &dac_size)) { play(); pcm_play_dma_status_callback(PCM_DMAST_STARTED); } else dac_state = DAC_STOPPED; } imx233_dma_clear_channel_interrupt(APB_AUDIO_DAC); } void INT_DAC_ERROR(void) { dac_state = DAC_STOPPED; pcm_play_dma_status_callback(PCM_DMAST_ERR_DMA); imx233_dma_clear_channel_interrupt(APB_AUDIO_DAC); } void pcm_play_lock(void) { if(dac_locked++ == 0) imx233_dma_enable_channel_interrupt(APB_AUDIO_DAC, false); } void pcm_play_unlock(void) { if(--dac_locked == 0) imx233_dma_enable_channel_interrupt(APB_AUDIO_DAC, true); } void pcm_play_dma_stop(void) { /* do not interrupt the current transaction because resetting the dma * would halt the DAC and clearing RUN causes sound havoc so simply * wait for the end of transfer */ pcm_play_lock(); dac_buf = NULL; dac_size = 0; dac_state = DAC_STOP_PENDING; pcm_play_unlock(); } void pcm_play_dma_start(const void *addr, size_t size) { pcm_play_lock(); /* update pending buffer */ dac_buf = addr; dac_size = size; /* if we are stopped restart playback, otherwise IRQ will pick up */ if(dac_state == DAC_STOPPED) play(); else dac_state = DAC_PLAYING; pcm_play_unlock(); } void pcm_play_dma_pause(bool pause) { imx233_dma_freeze_channel(APB_AUDIO_DAC, pause); dac_freezed = pause; } void pcm_play_dma_init(void) { audiohw_preinit(); } void pcm_play_dma_postinit(void) { audiohw_postinit(); imx233_icoll_enable_interrupt(INT_SRC_DAC_DMA, true); imx233_icoll_enable_interrupt(INT_SRC_DAC_ERROR, true); imx233_dma_enable_channel_interrupt(APB_AUDIO_DAC, true); } void pcm_dma_apply_settings(void) { pcm_play_lock(); /* update frequency */ audiohw_set_frequency(pcm_fsel); /* compute maximum transfer size: aim at ~1/100s stop time maximum, make sure * the resulting value is a multiple of cache line. At sample rate F we * transfer two samples (2 x 2 bytes) F times per second = 4F b/s */ dma_max_size = CACHEALIGN_UP(4 * pcm_sampr / 100); pcm_play_unlock(); } size_t pcm_get_bytes_waiting(void) { struct imx233_dma_info_t info = imx233_dma_get_info(APB_AUDIO_DAC, DMA_INFO_AHB_BYTES); return info.ahb_bytes; } const void *pcm_play_dma_get_peak_buffer(int *count) { if(!dac_freezed) imx233_dma_freeze_channel(APB_AUDIO_DAC, true); struct imx233_dma_info_t info = imx233_dma_get_info(APB_AUDIO_DAC, DMA_INFO_AHB_BYTES | DMA_INFO_BAR); if(!dac_freezed) imx233_dma_freeze_channel(APB_AUDIO_DAC, false); *count = info.ahb_bytes; return (void *)info.bar; } /* * Recording */ /* Because we have no way of stopping the DMA properly (like for the DAC), * we can only let the tranfer finish on stop. However if the transfer is very * long it could take a while. We work around this by splitting big transfers * into small burst to make sure we can stop quickly. */ static int adc_locked = 0; static struct pcm_dma_command_t adc_dma; static void *adc_buf; /* current buffer */ static size_t adc_size; /* remaining size */ enum { ADC_RECORDING, ADC_STOP_PENDING, ADC_STOPPED, }adc_state = ADC_STOPPED; void pcm_rec_lock(void) { if(adc_locked++ == 0) imx233_dma_enable_channel_interrupt(APB_AUDIO_ADC, false); } void pcm_rec_unlock(void) { if(--adc_locked == 0) imx233_dma_enable_channel_interrupt(APB_AUDIO_ADC, true); } void pcm_rec_dma_init(void) { imx233_icoll_enable_interrupt(INT_SRC_ADC_DMA, true); imx233_icoll_enable_interrupt(INT_SRC_ADC_ERROR, true); imx233_dma_enable_channel_interrupt(APB_AUDIO_ADC, true); } void pcm_rec_dma_close(void) { pcm_rec_dma_stop(); } static void rec(void) { /* split transfer if needed */ size_t xfer = MIN(adc_size, dma_max_size); adc_dma.dma.next = NULL; adc_dma.dma.buffer = (void *)adc_buf; adc_dma.dma.cmd = BF_OR4(APB_CHx_CMD, COMMAND_V(WRITE), IRQONCMPLT(1), SEMAPHORE(1), XFER_COUNT(xfer)); /* dma subsystem will make sure cached stuff is written to memory */ adc_state = ADC_RECORDING; imx233_dma_start_command(APB_AUDIO_ADC, &adc_dma.dma); /* advance buffer */ adc_buf += xfer; adc_size -= xfer; } void INT_ADC_DMA(void) { /* if stop is pending, ackonowledge stop * otherwise try to get some more and stop if there is none */ if(adc_state == ADC_STOP_PENDING) { adc_state = ADC_STOPPED; } else if(adc_state == ADC_RECORDING) { /* continue if buffer is not done, otherwise try to get some new data */ if(adc_size != 0 || pcm_rec_dma_complete_callback(PCM_DMAST_OK, &adc_buf, &adc_size)) { rec(); pcm_rec_dma_status_callback(PCM_DMAST_STARTED); } else adc_state = ADC_STOPPED; } imx233_dma_clear_channel_interrupt(APB_AUDIO_ADC); } void INT_ADC_ERROR(void) { adc_state = ADC_STOPPED; pcm_rec_dma_status_callback(PCM_DMAST_ERR_DMA); imx233_dma_clear_channel_interrupt(APB_AUDIO_ADC); } void pcm_rec_dma_start(void *addr, size_t size) { pcm_rec_lock(); /* update pending buffer */ adc_buf = addr; adc_size = size; /* if we are stopped restart recording, otherwise IRQ will pick up */ if(adc_state == ADC_STOPPED) rec(); else adc_state = ADC_RECORDING; pcm_rec_unlock(); } void pcm_rec_dma_stop(void) { /* do not interrupt the current transaction because resetting the dma * would halt the ADC and clearing RUN causes sound havoc so simply * wait for the end of transfer */ pcm_rec_lock(); adc_buf = NULL; adc_size = 0; adc_state = ADC_STOP_PENDING; pcm_rec_unlock(); } const void *pcm_rec_dma_get_peak_buffer(void) { struct imx233_dma_info_t info = imx233_dma_get_info(APB_AUDIO_ADC, DMA_INFO_BAR); return (void *)info.bar; }