/*************************************************************************** * __________ __ ___. * Open \______ \ ____ ____ | | _\_ |__ _______ ___ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ / * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < < * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \ * \/ \/ \/ \/ \/ * $Id$ * * Copyright (C) 2011 by Amaury Pouly * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * ****************************************************************************/ #include "config.h" #include "system.h" #include "sd.h" #include "sdmmc.h" #include "ssp-imx233.h" #include "pinctrl-imx233.h" #include "button-target.h" #include "fat.h" #include "disk.h" #include "usb.h" #include "debug.h" /** * This code assumes a single SD card slot */ #ifdef SANSA_FUZEPLUS #define SD_SSP 1 #else #error You need to configure the ssp to use #endif static tCardInfo card_info; static long sd_stack [(DEFAULT_STACK_SIZE*2 + 0x200)/sizeof(long)]; static struct mutex sd_mutex; static const char sd_thread_name[] = "sd"; static struct event_queue sd_queue; static int sd_first_drive; static int last_disk_activity; static void sd_detect_callback(int ssp) { (void)ssp; /* This is called only if the state was stable for 300ms - check state * and post appropriate event. */ if(imx233_ssp_sdmmc_detect(SD_SSP)) queue_broadcast(SYS_HOTSWAP_INSERTED, 0); else queue_broadcast(SYS_HOTSWAP_EXTRACTED, 0); imx233_ssp_sdmmc_setup_detect(SD_SSP, true, sd_detect_callback, false); } void sd_power(bool on) { #ifdef SANSA_FUZEPLUS /* The Fuze+ uses pin B0P8 for whatever reason, power ? */ imx233_pinctrl_acquire_pin(0, 8, "sd power"); imx233_set_pin_function(0, 8, PINCTRL_FUNCTION_GPIO); imx233_enable_gpio_output(0, 8, true); imx233_set_gpio_output(0, 8, !on); /* disable pull ups when not needed to save power */ imx233_ssp_setup_ssp1_sd_mmc_pins(on, 4, PINCTRL_DRIVE_4mA, false); #endif } void sd_enable(bool on) { static int sd_enable = 2; /* 2 means not on and not off, for init purpose */ if(sd_enable == on) return; sd_enable = on; } #define MCI_NO_RESP 0 #define MCI_RESP (1<<0) #define MCI_LONG_RESP (1<<1) #define MCI_ACMD (1<<2) #define MCI_NOCRC (1<<3) #define MCI_BUSY (1<<4) static bool send_cmd(uint8_t cmd, uint32_t arg, uint32_t flags, uint32_t *resp) { if((flags & MCI_ACMD) && !send_cmd(SD_APP_CMD, card_info.rca, MCI_RESP, resp)) return false; enum imx233_ssp_resp_t resp_type = (flags & MCI_LONG_RESP) ? SSP_LONG_RESP : (flags & MCI_RESP) ? SSP_SHORT_RESP : SSP_NO_RESP; enum imx233_ssp_error_t ret = imx233_ssp_sd_mmc_transfer(SD_SSP, cmd, arg, resp_type, NULL, 0, !!(flags & MCI_BUSY), false, resp); if(resp_type == SSP_LONG_RESP) { /* Our SD codes assume most significant word first, so reverse resp */ uint32_t tmp = resp[0]; resp[0] = resp[3]; resp[3] = tmp; tmp = resp[1]; resp[1] = resp[2]; resp[2] = tmp; } return ret == SSP_SUCCESS; } static int sd_wait_for_tran_state(void) { unsigned long response; unsigned int timeout = current_tick + 5*HZ; int cmd_retry = 10; while (1) { while(!send_cmd(SD_SEND_STATUS, card_info.rca, MCI_RESP, &response) && cmd_retry > 0) cmd_retry--; if(cmd_retry <= 0) return -1; if(((response >> 9) & 0xf) == SD_TRAN) return 0; if(TIME_AFTER(current_tick, timeout)) return -10 * ((response >> 9) & 0xf); last_disk_activity = current_tick; } } static int sd_init_card(void) { sd_enable(false); sd_power(false); sd_power(true); sd_enable(true); imx233_ssp_start(SD_SSP); imx233_ssp_softreset(SD_SSP); imx233_ssp_set_mode(SD_SSP, HW_SSP_CTRL1__SSP_MODE__SD_MMC); /* SSPCLK @ 96MHz * gives bitrate of 96000 / 240 / 1 = 400kHz */ imx233_ssp_set_timings(SD_SSP, 240, 0, 0xffff); imx233_ssp_sd_mmc_power_up_sequence(SD_SSP); imx233_ssp_set_bus_width(SD_SSP, 1); imx233_ssp_set_block_size(SD_SSP, 9); card_info.rca = 0; bool sd_v2 = false; uint32_t resp; long init_timeout; /* go to idle state */ if(!send_cmd(SD_GO_IDLE_STATE, 0, MCI_NO_RESP, NULL)) return -1; /* CMD8 Check for v2 sd card. Must be sent before using ACMD41 Non v2 cards will not respond to this command */ if(send_cmd(SD_SEND_IF_COND, 0x1AA, MCI_RESP, &resp)) if((resp & 0xFFF) == 0x1AA) sd_v2 = true; /* timeout for initialization is 1sec, from SD Specification 2.00 */ init_timeout = current_tick + HZ; do { /* this timeout is the only valid error for this loop*/ if(TIME_AFTER(current_tick, init_timeout)) return -2; /* ACMD41 For v2 cards set HCS bit[30] & send host voltage range to all */ if(!send_cmd(SD_APP_OP_COND, (0x00FF8000 | (sd_v2 ? 1<<30 : 0)), MCI_ACMD|MCI_NOCRC|MCI_RESP, &card_info.ocr)) return -100; } while(!(card_info.ocr & (1<<31))); /* CMD2 send CID */ if(!send_cmd(SD_ALL_SEND_CID, 0, MCI_RESP|MCI_LONG_RESP, card_info.cid)) return -3; /* CMD3 send RCA */ if(!send_cmd(SD_SEND_RELATIVE_ADDR, 0, MCI_RESP, &card_info.rca)) return -4; /* Try to switch V2 cards to HS timings, non HS seem to ignore this */ if(sd_v2) { /* CMD7 w/rca: Select card to put it in TRAN state */ if(!send_cmd(SD_SELECT_CARD, card_info.rca, MCI_RESP, NULL)) return -5; if(sd_wait_for_tran_state()) return -6; /* CMD6 */ if(!send_cmd(SD_SWITCH_FUNC, 0x80fffff1, MCI_NO_RESP, NULL)) return -7; sleep(HZ/10); /* go back to STBY state so we can read csd */ /* CMD7 w/rca=0: Deselect card to put it in STBY state */ if(!send_cmd(SD_DESELECT_CARD, 0, MCI_NO_RESP, NULL)) return -8; } /* CMD9 send CSD */ if(!send_cmd(SD_SEND_CSD, card_info.rca, MCI_RESP|MCI_LONG_RESP, card_info.csd)) return -9; sd_parse_csd(&card_info); /* SSPCLK @ 96MHz * gives bitrate of 96 / 4 / 1 = 24MHz */ imx233_ssp_set_timings(SD_SSP, 4, 0, 0xffff); /* CMD7 w/rca: Select card to put it in TRAN state */ if(!send_cmd(SD_SELECT_CARD, card_info.rca, MCI_RESP, &resp)) return -12; if(sd_wait_for_tran_state() < 0) return -13; /* ACMD6: set bus width to 4-bit */ if(!send_cmd(SD_SET_BUS_WIDTH, 2, MCI_RESP|MCI_ACMD, &resp)) return -15; /* ACMD42: disconnect the pull-up resistor on CD/DAT3 */ if(!send_cmd(SD_SET_CLR_CARD_DETECT, 0, MCI_RESP|MCI_ACMD, &resp)) return -17; /* Switch to 4-bit */ imx233_ssp_set_bus_width(SD_SSP, 4); card_info.initialized = 1; return 0; } static void sd_thread(void) NORETURN_ATTR; static void sd_thread(void) { struct queue_event ev; while (1) { queue_wait_w_tmo(&sd_queue, &ev, HZ); switch(ev.id) { case SYS_HOTSWAP_INSERTED: case SYS_HOTSWAP_EXTRACTED: { int microsd_init = 1; fat_lock(); /* lock-out FAT activity first - prevent deadlocking via disk_mount that would cause a reverse-order attempt with another thread */ mutex_lock(&sd_mutex); /* lock-out card activity - direct calls into driver that bypass the fat cache */ /* We now have exclusive control of fat cache and sd */ disk_unmount(sd_first_drive); /* release "by force", ensure file descriptors aren't leaked and any busy ones are invalid if mounting */ /* Force card init for new card, re-init for re-inserted one or * clear if the last attempt to init failed with an error. */ card_info.initialized = 0; if(ev.id == SYS_HOTSWAP_INSERTED) { microsd_init = sd_init_card(); if(microsd_init < 0) /* initialisation failed */ panicf("microSD init failed : %d", microsd_init); microsd_init = disk_mount(sd_first_drive); /* 0 if fail */ } /* * Mount succeeded, or this was an EXTRACTED event, * in both cases notify the system about the changed filesystems */ if(microsd_init) queue_broadcast(SYS_FS_CHANGED, 0); sd_enable(false); /* Access is now safe */ mutex_unlock(&sd_mutex); fat_unlock(); break; } case SYS_TIMEOUT: if(!TIME_BEFORE(current_tick, last_disk_activity+(3*HZ))) sd_enable(false); break; case SYS_USB_CONNECTED: usb_acknowledge(SYS_USB_CONNECTED_ACK); /* Wait until the USB cable is extracted again */ usb_wait_for_disconnect(&sd_queue); break; } } } int sd_init(void) { mutex_init(&sd_mutex); queue_init(&sd_queue, true); create_thread(sd_thread, sd_stack, sizeof(sd_stack), 0, sd_thread_name IF_PRIO(, PRIORITY_USER_INTERFACE) IF_COP(, CPU)); sd_enable(false); imx233_ssp_sdmmc_setup_detect(SD_SSP, true, sd_detect_callback, false); return 0; } static int transfer_sectors(IF_MD2(int drive,) unsigned long start, int count, void *buf, bool read) { IF_MD((void) drive); int ret = 0; uint32_t resp; last_disk_activity = current_tick; mutex_lock(&sd_mutex); sd_enable(true); if(card_info.initialized <= 0) { ret = sd_init_card(); if(card_info.initialized <= 0) goto Lend; } if(!send_cmd(SD_SELECT_CARD, card_info.rca, MCI_NO_RESP, NULL)) { ret = -20; goto Lend; } ret = sd_wait_for_tran_state(); if(ret < 0) goto Ldeselect; while(count != 0) { int this_count = MIN(count, IMX233_MAX_SSP_XFER_SIZE / 512); /* Set bank_start to the correct unit (blocks or bytes) */ int bank_start = start; if(!(card_info.ocr & (1<<30))) /* not SDHC */ bank_start *= SD_BLOCK_SIZE; ret = imx233_ssp_sd_mmc_transfer(SD_SSP, read ? SD_READ_MULTIPLE_BLOCK : SD_WRITE_MULTIPLE_BLOCK, bank_start, SSP_SHORT_RESP, buf, this_count, false, read, &resp); if(ret != SSP_SUCCESS) break; if(!send_cmd(SD_STOP_TRANSMISSION, 0, MCI_RESP|MCI_BUSY, &resp)) { ret = -15; break; } count -= this_count; start += this_count; buf += this_count * 512; } Ldeselect: /* CMD7 w/rca =0 : deselects card & puts it in STBY state */ if(!send_cmd(SD_DESELECT_CARD, 0, MCI_NO_RESP, NULL)) ret = -23; Lend: mutex_unlock(&sd_mutex); return ret; } int sd_read_sectors(IF_MD2(int drive,) unsigned long start, int count, void* buf) { return transfer_sectors(IF_MD2(drive,) start, count, buf, true); } int sd_write_sectors(IF_MD2(int drive,) unsigned long start, int count, const void* buf) { return transfer_sectors(IF_MD2(drive,) start, count, (void *)buf, false); } tCardInfo *card_get_info_target(int card_no) { (void)card_no; return &card_info; } int sd_num_drives(int first_drive) { sd_first_drive = first_drive; return 1; } bool sd_present(IF_MD(int drive)) { IF_MD((void) drive); return imx233_ssp_sdmmc_detect(SD_SSP); } bool sd_removable(IF_MD(int drive)) { IF_MD((void) drive); return true; } long sd_last_disk_activity(void) { return last_disk_activity; }